
Evolutionary algorithms

Neural networks

Neural networks Evolutionary algorithms

About the structure of the brain

The smallest unit of the nervous system is the neuron. Neuron is a
combination of the nerve cell and all of its protuberances. Neurons
are irritable cells that specialize in stimulating and driving nerves.

Neural networks Evolutionary algorithms

About the structure of the brain II

The information arrives via dendrites. There is a single output of
the cell called the axon. The brain consists of a network of such
nerve cells, partly with known topology (areas that perform a
particular function, and within it, can be divided into levels).

For example, about one third of the brain surface consists of
neurons specialized in image processing, which are organized into
different levels. At lower levels, the brain recognizes and determines
the direction, recognizing forms and objects at higher levels.

Neural networks Evolutionary algorithms

Seeing

Mauro Manassi; Bilge Sayim; Michael H. Herzog (Journal of
Vision)

Neural networks Evolutionary algorithms

Neural networks

The very simple artificial imitation of the brain is the neural
network, the most advanced image and text processing tool used
today. From a mathematical point of view, he approximates a
nonlinear function with the composition of simple functions.

The neural network consists of a linked topology of localized
processing elements (neurons).

When constructing a neural network, we must plan the elemental
neurons and the connection (topology) between them. This
network still has many free parameters. The optimization of free
parameters is called training. With the given parameters
calculating the output from the input is the retrieval.

Neural networks Evolutionary algorithms

MLP networks

An elemental neuron has several inputs and one output. In the
simplest case, the output depends on the input through a linear
combination of inputs has the form of

g

(
N∑
i=1

θixi

)

θi are the weights, g is the activation function. The latter may be,
for example, a sign function or a smoother, sigmoid type. There is
a linear (but continuous) function, which can be considered as a
transition between the two.

Neural networks Evolutionary algorithms

A neuron

Neural networks Evolutionary algorithms

Activation function

Neural networks Evolutionary algorithms

Topology

The topology of the network can be described by a directed graph
that tells the input and output of each neuron. Based on the type
of edges, one neuron can be

I input (they get the input of the network and forward to the
other neurons),

I output (forward information to environment)

I hidden (their input and output can only be another neuron).

Neural networks Evolutionary algorithms

Topology

In the simplest case (forward multilayer network), the same type of
neurons form layers: there is an input, an output, or any number of
hidden layers, from which all edges are forward (from the input
layer to the output layer).

This structure means a lot of unknown independent weight.
However, in some tasks, it is possible to simplify: for example,
when image recognition is performed by certain groups on the
same part of the image, we can take the same weights in each of
these groups.

Neural networks Evolutionary algorithms

Theorem

Theorem (Cybenko, 1989)
Let f (x) be a continuous function on K ⊂ Rn compact set, and
ε > 0 is arbitrary. Then there is a neural network with one hidden
layer and sigmoid activation function, which has the precision:

max
x∈K
|f (x)− hθ(x)| < ε

The idea of the proof is the uniform continuity of the f (x)
function, which makes it approachable with a step function. The
step function can be approached with the neural network, but the
number of required neurons is an open question. Later, this
theorem was significantly generalized by others. Although the
proof is constructive, it can’t be used in practice to build a net,
because the number of necessary neurons might be to much.

Neural networks Evolutionary algorithms

CNN

Neural nets designed for a specific problem mimic the hierarchy of
the brain area that solves the problem: for example, convolutional
nets are used in image processing have many identical smaller units
are connected. A low-level component solves a simpler problem for
a portion of the image (such as the upper left corner): for
example, it detects whether there is a vertical line in a given
sub-picture. The output of these low-level components is used by
the next level of the neural network as input.

A little information about how many neurons and layers in a neural
network today: CNN

Neural networks Evolutionary algorithms

http://www.codesofinterest.com/2017/07/milestones-of-deep-learning.html

Classification: an example

Let k be the dimension of the input. We have a classification task,
that is, we want to determine which of the K classes our input
belongs to. An example: we have 20× 20 pixel gray scale pictures.
We want to find out which digit is on the picture. There are a
total of 100 sample inputs here, each has a label, which tell us
what digit is on the picture. This is our training set.

Neural networks Evolutionary algorithms

A NN with one hidden layer

Green labeled neurons are the so-called ’bias’ units. In the
example, k = 400 and K = 10. The output on each of the 10
neurons is a number between 0 and 1, which is the highest, that
will be our guess for the class.

Neural networks Evolutionary algorithms

A NN with one hidden layer

This is how one neuron looks like.

Neural networks Evolutionary algorithms

Finding the optimal weights

If the net topology is given, the determination of unknown weights
(all θ matrices) is the next task. The value of the function to be
approximated at each of the (typically many) training points is
known (in our example the 0-9 digits).

Thus, it is possible to determine the total error of the net with the
given weights, our aim is to minimize it. This is a function
optimization task in high dimension.

In this example, we have a total of 401 · 25 + 26 · 10 = 10285 θ-s,
this is the dimension of the task.

Neural networks Evolutionary algorithms

Measuring the error

To solve the function optimization task, we have to assign a metric
to the deviation of the neural network output and the desired
output. In the case of a sigmoid activation function, the
logarithmic penalty function is appropriate. In other cases, the
smallest square deviation comes into play.

Neural networks Evolutionary algorithms

Measuring the error

Suppose we have m learning points, for each we know which class
they belong. The value of y is 1 for this class, the rest is 0. Then
the cost function is:

J(θ) =
−1

m

∑
trainingpoints

classes∑
k=1

y log(k.output)+(1−y) log(1−k.output)

If the net perfectly matches our data (which is not a goal!) then it
would be 0, otherwise it is positive. Our goal is to find the θ
weights for which this cost is minimal.

Neural networks Evolutionary algorithms

Finding the optimal weights

An option (and today considered as the most advanced method) is
to calculate optimal weights using (stochastic) gradient method.

To do this, we need to calculate the derivative of all θ
(l)
i ,j of the

above cost function.

For the derivatives we can write a recursive formula using the chain
rule, starting from the output layer and going backwards on the
layers (that is why it is called ’back-propagation of error’).

Neural networks Evolutionary algorithms

Backpropagation

If we use the g(z) = 1
1+exp(−z) sigmoid activation function with

the cost-function above then we have the following recursion for
the partial derivatives:

δ(L) = hθ(x)− y

δl = θ̂
(l)
δ(l+1). ∗ g ′(θ(l−1)a(l−1)),

where the θ̂
(l)

matrix is obtained by deleting the weights of the
bias units. Using these δ quantities:

∂

∂θ
(l)
i ,j

=
1

m

∑
trainingexamples

δ
(l+1)
i a

(l)
j

Neural networks Evolutionary algorithms

Validation

At the end of the learning process, we test on a validation set how
well the ’optimal’ weights solve the problem. To do this, we divide
our learning points into two parts at first. Some of the data (about
75-80%) is used to adjust the weights. The remainder is used for
validation, the error on this set is the net error of the net.

A large net is particularly exposed to the risk of overfitting.
Although the cost will be 0, we have not learned the task, but the
test-set. To avoid this, one term is added to the cost function, the
sum of the squares of all weights weighted by some parameter. Of
course, the gradient must be recalculated.

Neural networks Evolutionary algorithms

Learning curve
It is worth observing how changing the number of examples will
change the validation error. Here is the precision of a net with 25
hidden neurons, depending on the number of examples.

Neural networks Evolutionary algorithms

Learning curve

If the validation error and the error on the training set are still far
from each other, then we probably have many variables compared
to the number of examples (high variance). In this example, we
have a total of 10285θ and 4000 training points. From a larger
data set, we can expect better alignment of parameters, but it is
costly to acquire, and more time to teach the net.

If the validation error and the error on the training set are close to
each other but equally high, then the model is bad, no further
learning data can be expected. (high bias)

Neural networks Evolutionary algorithms

Measuring the performance

Suppose we have the task of deciding whether or not the 9 digit is
in the picture. Would we be satisfied with a 90% performance?
However, if the numbers are uniformly distributed and the net
responds ’not 9’ regardless of the data, then it achieves this
performance.

That’s why we introduce the F1 score to measure performance.
Consider a classification problems with two classes where only
positive / negative answers has to be given. The ’recall’ of the
model is the ratio of the true positive to all positive cases.
’Precision’ is the ratio of true positive to all positive predicted
cases. The harmonic mean of the two ratios is F1 score.

Neural networks Evolutionary algorithms

F1 score

Predicted \ Reality Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False negative (FN) True negative (TN)

The recall:

R =
TP

TP + FN

precision:

P =
TP

TP + FP

and the F1 score is:

F1 =
2PR

P + R
.

Neural networks Evolutionary algorithms

