Second problem set

Due date: 2019.02.21, 9.00
Topic: simple genetic algorithms

You have to send your solutions via email (evolalghf@gmail.com). You have to solve them unassisted, unless it's marked with a star. The problems marked * can be solved in groups of two. You can get maximum 10 points.

1. (4 points) Let us suppose, that an algorithm's running time is polynomial, that is $c n^{\alpha}$ for some $\alpha, c \in \mathbb{R}$ constants. Give an estimate for c and α if for input lengths $n=[4,5,6,7,8,9,10]$ we measured the following running times [37.1 58.7 84.0115 .1150 .8190 .9 235.2].
2. (6 points) Let us suppose, that we have a population containing 4 individuals called $e_{1}, e_{2}, e_{3}, e_{4}$. Their fitness's are $0.4,0.7,0.3,0.05$. We use a roulette-wheel selection to select the four parents.
a, What is the probability, that e_{2} won't be chosen as parent at all?
b, What is the probability, that e_{3} will be chosen two times?
Answer these two questions for $f(e)$ and also for the scaled $\hat{f}(e)=f^{2}(e)$ fitness function.
3. * (10 points)

What can be a good measure of performance for a genetic algorithm? Justify your answer! Using your measure find the optimal probability of the mutation for the backpacking problem, using elitism, a tournament selection with $k=4$, a fitness function described in the first lecture (sum of the values if the sum of the weights is below or equal to the capacity, 0 otherwise). Is there a significant difference in the efficiency between the optimal parameter and setting the probability of mutation to 0 ?

