THE $M_3[D]$ CONSTRUCTION

Let D be a bounded distributive lattice, and let $M_3 = \{0, a, b, c, 1\}$ be the fiveelement non-distributive modular lattice. Then $M_3[D]$ denote the subposet of D^3 consisting of all $\langle x, y, z \rangle$ satisfying $x \wedge y = y \wedge z = z \wedge x$. We call such a triple balanced. This was introduced in [5].

Theorem. $M_3[D]$ satisfies the following conditions:

- (i) $M_3[D]$ is a modular lattice.
- (ii) The subset $\overline{M}_3 = \{<0, 0, 0>, <1, 0, 0>, <0, 1, 0>, <0, 0, 1>, <1, 1, 1>\}$ of $M_3[D]$ is a sublattice of $M_3[D]$ and it is isomorphic to M_3 ,
- (iii) The subposet $\overline{D} = \{ \langle x, 0, 0 \rangle \} x \in D$ of $M_3[D]$ is isomorphic to D; we identify \overline{D} with D,
- (iv) \overline{M}_3 and D generate $M_3[D]$,
- (v) Let Θ be a congruence relation of $\overline{D} = D$; then there is a unique congruence $\overline{\Theta}$ of $M_3[D]$ such that $\overline{\Theta}$ restricted to D is Θ ; therefore, $\operatorname{Con} M_3[D] \cong \operatorname{Con} D$.

FIGURE 1. $M_3[D]$ where D is the three-element chain

In today's terminology, $M_3[D]$ is a congruence preserving extension of D. The extension $M_3[D]$ is shown in Figure 1., where D is the three-element chain (see a rotary version).

Remarks. Let M_n be the modular but not distributive lattice with n atoms. In this case we can define $M_n[D]$ similarly. It is easy to see that $M_3[D]$ is a special subdirect power of M_3 , it is the lattice of all order-preserving mappings $f: J(D) \longrightarrow M_3$ (don't forget $\{f: J(D) \longrightarrow \mathbf{2}\} \cong \mathbf{D}$, where J(D) is the poset of all join-irreducible elements of D and $\mathbf{2}$ is the two-element lattice).

Date: February 3, 2008.

The first important generalization of this construction was the *Boolean triple* construction [2] which is a special case of a more general lattice tensor product construction of G. Grätzer and F. Wehrung (see [2]). These constructions play an important role by the congruence-preserving extensions. See more in Grätzer's new book [3]

Other interesting generalizations, related results in: R. W. Quackenbush [4], J. D. Farley [1].

FIGURE 2. D is the four-element chain

References

- J. D. Farley, Priestley powers of lattices and their congruences: a problem of E. T. Schmidt, Acta Sci. Math. 62 (1996), 3-45
- [2] G. Grätzer, F. Wehrung, Proper congruence-preserving extensions of lattices, Acta Math. Hungar. 85 (1999), 175-185).
- [3] G. Grätzer, The congruences of finite lattices, Birkhäuser, 2006
- [4] R. W. Quackenbush, Non-modular varieties of semimodular lattices with a spanning M_3 , Discrete Math. 53 (1985), 186-196
- [5] E. T. Schmidt Zur Characterisierung der Kongruenzverbände der Verbände, Math. Casopis Sloven. Acad. Vied. 18 (1968), 3-20.