
FINITE LATTICES WITH ISOFORM CONGRUENCES

G. GRÄTZER AND E. T. SCHMIDT

Abstract. We call a lattice L isoform, if for any congruence relation Θ of L,
all congruence classes of Θ are isomorphic sublattices. We prove that for every
finite distributive lattice D, there exists a finite isoform lattice L such that the
congruence lattice of L is isomorphic to D.

1. Introduction

1.1. The main result. The congruence lattice of a finite lattice L is characterized
by a classical result of R. P. Dilworth as a finite distributive lattice D. Many papers
were published improving this result by representing a finite distributive lattice D
as the congruence lattice of a finite lattice L with additional properties. These
results are discussed in detail—as of 1998—in Section 1.7 of Appendix A and in
Section 1 of Appendix C of [1]. For a more recent survey, see G. Grätzer and E. T.
Schmidt [2]. This paper is a contribution to this field, the construction of finite
“isoform” lattices, a continuation of G. Grätzer, E. T. Schmidt and K. Thomsen
[3], where we construct finite “uniform” lattices.

Let L be a lattice. We call a congruence relation Θ of L isoform, if any two
congruence classes of Θ are isomorphic (as lattices). Let us call the lattice L
isoform, if all congruences of L are isoform.
Theorem 1. Every finite distributive lattice D can be represented as the congruence
lattice of a finite isoform lattice L.

Let L be a lattice. We call a congruence relation Θ of L uniform, if any two
congruence classes of Θ are of the same size (cardinality). Let us call the lattice
L uniform, if all congruences of L are uniform. The following result was proved in
G. Grätzer, E. T. Schmidt, and K. Thomsen [3]:
Theorem. Every finite distributive lattice D can be represented as the congruence
lattice of a finite uniform lattice L.

Since isomorphic lattices are of the same size, Theorem 1 is a stronger version
of the theorem just cited. Figure 1 shows the result of the construction in [3]
for D = C4, the four-element chain. This diagram shows that the lattice we
obtained in the earlier paper is not isoform, although it is fairly close to it. This
diagram also anticipates another property of our new construction (pruned Boolean
lattice) that we are going to state in Theorem 2.
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Figure 1. The uniform construction for the four-element chain.

Let L be a lattice. Let us call the lattice L regular, if whenever two congruences
share a congruence class, then the congruences are the same. The classical proofs
produce regular lattices, see [1]. Since an isoform lattice is always regular, the
lattices we construct in this paper are also regular.

1.2. Notation and concepts. We use the standard notation, as in [1]. For a
lattice L, we denote by ωL and ιL the smallest and largest congruence on L, re-
spectively; we drop the subscript if L is understood. If Θ is a congruence on L and
[a, b] is an interval of L, we call Θ discrete on [a, b] (or [a, b] is Θ-discrete), if Θ and
ω agree on [a, b], that is, Θ|[a, b] and ω[a,b], where | is the restriction operation. Cn

will denote the n-element chain.

1.3. The full result. To state the main result more fully, we need two more con-
cepts.

Let P = 〈P ;≤P 〉 be a finite poset. Then the partial ordering ≤P on P is the
reflexive-transitive extension of ≺P , the covering relation in 〈P ;≤P 〉, in formula:
ReflTr(≺P ) = ≤P . Now take a subset H of ≺P , and take the reflexive-transitive
extension ReflTr(H) of H. Then 〈P ; ReflTr(H)〉 is also a poset; we call it a pruning
of P . If you think of P in terms of its diagram, then the terminology is easy
to picture: We obtain the diagram of 〈P ; ReflTr(H)〉 from the diagram of P by
cutting out (pruning) some edges (each representing a covering) but not deleting
any elements. For instance, the lattice of Figure 1 is a pruning of the Boolean
lattice C5

2.
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Let L be a finite lattice. We call L discrete-transitive, if for any congruence Φ
of L and for a < b < c in L, whenever Φ is discrete on [a, b] and on [b, c], then Φ
discrete on [a, c].

Here is a more complete version of our main result:
Theorem 2. Every finite distributive lattice D can be represented as the congruence
lattice of a finite lattice L with the following properties:

(i) L is isoform.
(ii) For every congruence Θ of L, the congruence classes of Θ are projective in-

tervals.
(iii) L is a finite pruned Boolean lattice.
(iv) L is discrete-transitive.

By Properties (i) and (ii), for every congruence relation Θ of L and for any two
congruence classes U and V of Θ, the congruence classes U and V are required
to be isomorphic and projective intervals, but we do not require that there be a
projectivity that is also an isomorphism. This raises the following question:
Problem 1. In Theorem 2, can we require the stronger condition:

For every congruence Θ of L, between any two congruence classes of Θ, there
is an isomorphism that is a projectivity.

For a finite lattice A with |A| > 2, a finite lattice B with |B| > 1, and a discrete-
transitive congruence Θ of B, we present the lattice construction N(A,B,Θ) in
Section 2. The congruence structure of this new construct is described in Sec-
tion 3—this is the most substantive part of the paper. The proof of Theorem 2
easily follows in Section 4 from the results in Section 3.

Anytime we prove a representation theorem of the type of Theorem 1, we raise
the question whether a stronger form is available:
Problem 2. Does every finite lattice have a congruence-preserving extension into
a finite isoform lattice?

Similarly, we can raise the question, what happens in the infinite case:
Problem 3. Is there an analogue of Theorem 1 for infinite lattices?

2. A lattice construction

Let A be a nontrivial finite lattice with bounds 0 and 1; let |A| > 2. Set
A− = A − {0, 1}. Let B be a nontrivial finite lattice with a discrete-transitive
congruence Θ. Note that ι is discreet-transitive.

We now introduce the lattice construction N(A,B,Θ), which was introduced
in [3] in the special case Θ = ι. Note that we shall only apply this construction in
the special case when A = C2

2, the four-element Boolean lattice.
For u ∈ A × B, we use the notation u = 〈uA, uB〉, where uA ∈ A and uB ∈ B.

We shall denote by ≤×, ≺×, ∧×, and ∨× the partial ordering, the covering relation,
the meet, and the join on A × B, respectively. Let B∗ = {0} × B, B∗ = {1} × B,
and for b ∈ B, let Ab = A× {b}. This notation is illustrated in Figure 2.

To prune A×B, we define the set:

Prune(A,B,Θ) = { 〈〈a, b1〉, 〈a, b2〉〉 | a ∈ A−, b1 ≺ b2 in B, and b1 ≡ b2 (Θ) }.
Prune(A,B,Θ) is a subset of ≺×, so we can define H = ≺×−Prune(A,B,Θ). Now
we take the reflexive-transitive extension ReflTr(H) of H. The set A×B with the
partial ordering ReflTr(H) is N(A,B,Θ). We shall denote by ≤N(A,B,Θ) (or simply
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B∗

B∗

Ab

〈0, 0〉

〈1, 0〉

〈0, 1〉

〈1, 1〉

〈0, b〉

〈1, b〉

Figure 2. The notation for the N(A,B,Θ) construction.

by ≤N , if A, B, and Θ are understood) the partial ordering of N(A,B,Θ). It is
clear that if Θ = ω, then N(A,B,Θ) is the direct product A×B.

We now describe ≤N .
Proposition 1. Let u, v ∈ A×B and u ≤× v. Then u ≤N v iff

(1) uA, vA ∈ A− and [uB , vB ] is Θ-discrete,

or

(2) uA or vA /∈ A−.

Proof. Let ≤F denote the binary relation onN(A,B,Θ) defined by this proposition,
that is, u ≤F v iff (1) or (2) holds.

≤F is obviously reflexive and antisymmetric. To show that it is transitive, let
u ≤F v and v ≤F w. Obviously, u ≤× w. We have some cases to distinguish.

Case 1. Both u ≤F v and v ≤F w hold by (1). Then u ≤F w by (1), since Θ is
discrete-transitive, so [uB , wB ] is Θ-discrete.

Case 2. u ≤F v holds by (1) and v ≤F w holds by (2). So uA, vA ∈ A− and vA

or wA /∈ A−; therefore, uA ∈ A− and wA /∈ A−. Then u ≤F w by (2).
Case 3. u ≤F v holds by (2) and v ≤F w holds by (1). Then again, u ≤F w by

(2), arguing as in Case 2.
Case 4. u ≤F v and v ≤F w both hold by (2), that is, uA or vA /∈ A− and vA or

wA /∈ A−. If uA or wA /∈ A−, then we are done by (2). Assume, to the contrary,
that uA and wA ∈ A−. Then vA /∈ A−, so vA = 0 or 1 and uA ≤ vA ≤ wA.
If vA = 0, then uA = 0, contradicting that uA ∈ A−. If vA = 1, then wA = 1,
contradicting that wA ∈ A−.

We have proved that ≤F is a partial ordering. Finally, observe that if u ≺ v,
then u ≤F v iff u ≤N v. It follows that ≤F = ≤N . �

The reader may find useful the following formulation of Proposition 1:

(†) u ≤× v and u �N v iff uA, vA ∈ A− and [uB , vB ] is not Θ-discrete.
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Figure 3 is a simple illustration of the N(A,B,Θ) construction with A = C2
2,

B = C4, and Θ the congruence on C4 collapsing the two middle elements. Note
that Θ is discrete-transitive.

The following lemma was proved in [3] for Θ = ι.
Lemma 1. N(A,B,Θ) is a lattice under the partial ordering ≤N . The meet and
join in N(A,B,Θ) can be computed using the formulas:

(3) u ∧N v =

{
u ∧× v, if u ∧× v ≤N u and u ∧× v ≤N v;
〈0, uB ∧ vB〉, otherwise.

and

(4) u ∨N v =

{
u ∨× v, if u ≤N u ∨× v and v ≤N u ∨× v;
〈1, uB ∨ vB〉, otherwise.

Proof. Let u, v ∈ A×B, and let t be a lower bound of u and v in N(A,B,Θ).
Case 1. u ∧× v is not a lower bound of both u and v in N(A,B,Θ).
For instance, let u ∧× v �N u. By (†), then

uA ∧ vA, uA ∈ A− and [uB ∧ vB , uB ] is not Θ-discrete.

It follows that [t, uB ] is not Θ-discrete, so t ≤N u implies that tA /∈ A−. We cannot
have tA = 1, since that would imply that uA = 1, contrary to uA ∈ A−. Therefore,
tB = 0, which yields that t ≤ 〈0, uB ∧ vB〉.

So in Case 1, u ∧N v = 〈0, uB ∧ vB〉.
Case 2. u ∧× v is a lower bound of both u and v in N(A,B,Θ).
Again by (†), if t �N u ∧× v, then tA, uA ∧ vA ∈ A− and [t, u ∧× v] is not

Θ-discrete. Since uA ∧ vA ∈ A−, it follows that uA ∈ A− and/or vA ∈ A−, say,
uA ∈ A−. Since t ≤N u and tA, uA ∈ A−, we conclude that [t, u] is Θ-discrete,
contradicting that [t, u ∧× v] is not Θ-discrete.

So in Case 2, u ∧N v = u ∧× v.
This verifies the meet formula. The join formula follows by duality. �

0

1

a0 a1

〈0, 0〉

〈0, b1〉

〈0, b2〉

〈0, 1〉

〈1, 0〉

〈1, b1〉

〈1, b2〉

〈1, 1〉

〈a0, 0〉

〈a0, b1〉

〈a0, b2〉

〈a0, 1〉

〈a1, 0〉

〈a1, b1〉

〈a1, b2〉

〈a1, 1〉

Θ
b1

b 2

0

1

A = C2
2 N(C2

2,C4,Θ) B = C4

Figure 3. A simple illustration of N(A,B,Θ).
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3. The congruences on N(A,B,Θ).

Let A be a bounded lattice. A congruence Φ of A separates 0, if [0]Φ = {0},
that is, x ≡ 0 (Φ) implies that x = 0. Similarly, a congruence Φ of A separates 1,
if [1]Φ = {1}, that is, x ≡ 1 (Φ) implies that x = 1. We call the lattice A non-
separating, if neither 0 nor 1 is separated by any congruence Φ �= ω of A.

In this section, we assume that A is a non-separating finite lattice with more
than two elements, B is a finite lattice with more than one element, and Θ > ω is
a discrete-transitive congruence on B.

Let Ψ be a congruence relation of N(A,B,Θ). Then define Ψ∗ and Ψ∗ as the
restriction of Ψ to B∗ and B∗, respectively, and define Ψb as the restriction of Ψ to
Ab, for b ∈ B. Since B∗ and B∗ are isomorphic to B, we can also view Ψ∗ and Ψ∗

as congruences on B. Similarly, Ab is isomorphic to A, for any b ∈ B, so we can
also view Ψb as a congruence on A.

We start with two easy observations.
Lemma 2. Ψ∗ = Ψ∗.

Proof. Indeed, if b0 ≡ b1 (Ψ∗), then 〈0, b0〉 ≡ 〈0, b1〉 (Ψ). Joining both sides with
〈1, 0〉, we obtain that 〈1, b0〉 ≡ 〈1, b1〉 (Ψ), that is, b0 ≡ b1 (Ψ∗). And symmetri-
cally. �

Lemma 3. The congruence Ψ∗ = Ψ∗ of B and the family of congruences

ΓΨ = {Ψb | b ∈ B }
of A describe the congruence Ψ of N(A,B,Θ).

Proof. A congruence in a finite lattice is completely determined by the set of prime
intervals it collapses. Since every prime interval of N(A,B,Θ) is in one of the
sublattices B∗, B∗, or Ab, for some b ∈ B, or is perspective to a prime interval of
B∗, the statement follows. �

We continue by analyzing ΓΨ (defined in Lemma 3).
Lemma 4. Either ΓΨ = {ωAb

| b ∈ B } or ΓΨ = { ιAb
| b ∈ B }.

Proof. Let us assume that x < y ∈ Ab, for some b ∈ B and x ≡ y (Ψ). Since
A is non-separating, we can assume that x = 〈0, xB〉, the zero of Ab. Joining the
congruence with 〈0, 1〉, we obtain that 〈0, 1〉 ≡ 〈0, 1〉 ∨ y (Ψ); obviously, 〈0, 1〉 <
〈0, 1〉∨y. So we can assume that x < y ∈ A1. Again, using that A is non-separating,
we can assume that x, y ∈ A1, x ≡ y (Ψ), and yA = 1.

If xA = 0, then Ψ1 = ιA, so for any b ∈ B, Ψb = ιA follows be meeting the
congruence x ≡ y (Ψ) with the element 〈1, b〉.

So let xA �= 0. By assumption, Θ > ω, so the interval [0, 1] of B is not Θ-
discrete. So if we meet the congruence x ≡ y (Ψ) with 〈1, 0〉, by (3), we obtain
that 〈1, 0〉 ≡ 〈0, 0〉 (Ψ), that is, Ψ0 = ιA. So for any b ∈ B, Ψb = ιA follows by
joining the congruence 〈1, 0〉 ≡ 〈0, 0〉 (Ψ) with the element 〈0, b〉. �

Now with every congruence Φ of B, we associate a congruence N(Φ, A,B,Θ) of
the lattice N(A,B,Θ); we shall write N(Φ) for N(Φ, A,B,Θ), if A, B, and Θ are
understood.
Lemma 5. For every congruence Φ of B, there exists a unique minimal congruence
N(Φ) of N(A,B,Θ) satisfying N(Φ)∗ = N(Φ)∗ = Φ.
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The congruence N(Φ) of N(A,B,Θ) can be described as follows:

N(Φ) =

{
ωA × Φ, if Φ ∧ Θ = ω;
ιA × Φ, if Φ ∧ Θ > ω.

Proof. First, let us assume that Φ ∧ Θ = ω. Let Ψ = ωA × Φ.
Obviously, Ψ is an equivalence relation on N(A,B,Θ) with the property that

x ≡ y (Ψ) iff x ∧ y ≡ x ∨ y (Ψ). By Lemma I.3.8 of [1], to show that Ψ is a
congruence relation, it is sufficient to verify that

(SP) For x, y ∈ N(A,B,Θ) with x < y, and for t ∈ N(A,B,Θ), if x ≡ y (Ψ),
then

x ∧ t ≡ y ∧ t (Ψ) and x ∨ t ≡ y ∨ t (Ψ).
We now prove (SP) for meets. (SP) for joins follows dually.

So we assume that x ≡ y (Ψ), that is,

(5) xA = yA

and

(6) xB ≡ yB (Φ).

We wish to prove that x ∧ t ≡ y ∧ t (Ψ), that is,

(7) (x ∧ t)A = (y ∧ t)A

and

(8) (x ∧ t)B ≡ (y ∧ t)B (Φ).

By (3), the equation (8) can be rewritten as

(9) xB ∧ tB ≡ yB ∧ tB (Φ),

which always holds by (6) since Φ is a congruence on B. Note that by the assump-
tion Φ ∧ Θ = ω, (9) can be rewritten as that

(10) [xB ∧ tB , yB ∧ tB ] is Θ-discrete.

So we wish to show that (5) and (6) imply (7).
(y∧t)A = yA∧tA or (y∧t)A = 0 by (3). If (y∧t)A = 0, then (x∧t)A ≤ (y∧t)A = 0,

so (x ∧ t)A = (y ∧ t)A (= 0), proving (7).
If (y ∧ t)A = yA ∧ tA, that is, y ∧ t = y ∧× t, then we prove that x ∧ t = x ∧× t,

which trivially verifies that (7) holds.
So assume that y ∧ t = y ∧× t. By (3), this is equivalent to y ∧ t ≤N y and

y ∧ t ≤N t, which can be rewritten as follows:
One of the following conditions holds:

(11a) yA ∧ tA = 0 or 1,

(11b) yA = 0 or 1,

(11c) [yB ∧ tB , yB ] is Θ-discrete.

and one of the following conditions holds:

(12a) yA ∧ tA = 0 or 1,

(12b) tA = 0 or 1,

(12c) [yB ∧ tB , tB ] is Θ-discrete,
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We want to prove that x ∧ t = x ∧× t. By (3), this is equivalent to x ∧ t ≤N x
and x ∧ t ≤N t, that is, one of the following conditions holds:

(13a) xA ∧ tA = 0 or 1,

(13b) xA = 0 or 1,

(13c) [xB ∧ tB , xB ] is Θ-discrete,

and one of the following conditions holds:

(14a) xA ∧ tA = 0 or 1,

(14b) tA = 0 or 1,

(14c) [xB ∧ tB , tB ] is Θ-discrete.

We claim that more is true: (11) implies (13) and (12) implies (14).
So assume (11). Since xA = yA, (11a) implies (13a) and (11b) implies (13b).

Finally, (11c) gives us that [yB∧tB , yB ] is Θ-discrete; by (10), [xB∧tB , yB∧tB ] is Θ-
discrete. Since Θ is discrete-transitive, we conclude that [xB ∧ tB , xB ] is Θ-discrete,
verifying the conclusion of (13c).

Next assume (12) holds. Since xA = yA, (12a) implies (14a) and (12b) implies
(in fact, is the same as) (14b). Finally, (12c) gives us that [yB∧tB , tB ] is Θ-discrete;
by (10), [xB ∧ tB , yB ∧ tB ] is Θ-discrete. Since Θ is discrete-transitive, we conclude
that [xB ∧ tB , tB ] is Θ-discrete, verifying the conclusion of (14c).

Second, let us assume that Φ ∧ Θ > ω. Define Ψ = ιA × Φ. Obviously, Ψ is a
congruence relation on N(A,B,Θ). Moreover, Ψ∗ = Ψ∗ = Φ and Ψb = ιA, for all
b ∈ B.

Let Σ be a congruence of N(A,B,Θ) satisfying that Σ∗ = Σ∗ = Φ. Since
Φ∧Θ > ω, we can choose in B the elements b1 ≺ b2 such that b1 ≡ b2 (Φ∧Θ). From
Σ∗ = Φ, it follows that b1 ≡ b2 (Σ) also holds. By assumption, A has more than
two elements, so we can choose a ∈ A−. By (2) and (4), 〈a, b1〉 ∨ 〈0, b2〉 = 〈1, b2〉.
Since b1 ≡ b2 (Σ∗), it follows that 〈0, b1〉 ≡ 〈0, b2〉 (Σ). Joining both sides with
〈a, b1〉, we get that 〈a, b1〉 ≡ 〈1, b2〉 (Σ), and so 〈a, b1〉 ≡ 〈1, b1〉 (Σ). We obtain
that Σb1 > ωAb1

, so by Lemma 4, Σb = ιAb
, for all b ∈ B. We conclude that

Σ ≥ Ψ, so Ψ = N(Φ) is indeed the smallest congruence of N(A,B,Θ) satisfying
that Ψ∗ = Ψ∗ = Φ. �

The map N : Φ �→ N(Φ) maps ConB into ConN(A,B,Θ). This map has many
interesting properties.
Lemma 6.

(i) The map N : Φ �→ N(Φ) is an order preserving, one-to-one map of ConB into
ConN(A,B,Θ).

(ii) The map N is an order preserving, one-to-one map of the join-irreducible
elements of ConB into the join-irreducible elements of ConN(A,B,Θ).

(iii) The lattice ConN(A,B,Θ) has exactly one join-irreducible element that is not
in the image of N :

Σ = Θ(〈0, 0〉, 〈1, 0〉).
Σ is a minimal join-irreducible element of ConN(A,B,Θ).

(iv) For a minimal join-irreducible congruence Φ of B, we have

Σ < N(Φ) iff Φ ≤ Θ.
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Proof. Statement (i) follows directly from Lemma 5.
A join-irreducible congruence of a finite lattice is one that is generated by a

covering pair of elements. If Φ = Θ(b1, b2) with b1 ≺ b2 in B, then N(Φ) =
Θ(〈0, b1〉, 〈0, b2〉) and 〈0, b1〉 ≺ 〈0, b2〉 in N(A,B,Θ). So the join-irreducible con-
gruences of B are mapped by N into join-irreducible congruences of N(A,B,Θ),
verifying (ii).

As we argued in the proof of Lemma 3, any prime interval of N(A,B,Θ) is in
one of the sublattices B∗, B∗, or Ab, for some b ∈ B, or is perspective to a prime
interval of B∗. The prime intervals in B∗ and B∗ generate the join-irreducible
congruences of the form N(Φ), where Φ is a join-irreducible congruence of B. The
remaining prime intervals all generate the same join-irreducible congruence, Σ, by
Lemma 4, verifying (iii).

Σ < N(Φ) holds iff Φ∧Θ > ω. If Φ∧Θ < Φ, then there is a join-irreducible con-
gruence of B below Φ∧Θ, so properly below Φ, contrary to assumption. Therefore,
Φ ∧ Θ = Φ, that is, Φ ≤ Θ, verifying (iv). �

Let D be a finite distributive lattice. Let J(D) denote the poset of join-irre-
ducible elements of D. For a minimal join-irreducible element p of D, let Cov(p)
denote the covers of p in J(D), that is, the set of all join-irreducible elements q of D
for which p ≺ q in J(D). Let D′ denote the join-subsemilattice of D generated by
J(D) − {p}. Obviously, D′ is a finite distributive lattice with J(D′) = J(D) − {p}.
The set Cov(p) is an antichain of J(D′).

Conversely, given a finite distributive lattice D′ and an antichain C �= ∅ of
J(D′), we can form the poset J(D′) ∪ {p}, where p /∈ J(D′), and we can extend
the partial ordering of J(D′) to J(D′) ∪ {p} by requiring that p < q, for all q ∈ C;
more precisely, we must set p < r, for every r ∈ J(D′) for which there exists a
q ∈ C satisfying q ≤ r. The poset J(D′) ∪ {p} determines a distributive lattice D.
Obviously, in D, we have Cov(p) = C.

We call D′ the distributive lattice we obtain from D by deleting the minimal
join-irreducible element p, and we call D the distributive lattice obtained from D′

by adding a minimal join-irreducible element under C.
Now we summarize what we have learned about the congruence lattice of our

construct N(A,B,Θ).

Theorem 3. Let A be a finite non-separating lattice with more than two elements.
Let B be a finite lattice with more than one element, and let Θ > ω be a discrete-
transitive congruence on B. Let Θ = Σ1∨· · ·∨Σn be an irredundant representation
of Θ as a join of join-irreducible elements, and set C = {Σ1, . . . ,Σn}. Finally,
let Σ be the join-irreducible congruence of N(A,B,Θ) defined in Lemma 6: Σ =
Θ(〈0, 0〉, 〈1, 0〉).

Then we can obtain—up to isomorphism—the congruence lattice of N(A,B,Θ)
by adjoining to the congruence lattice of B a minimal join-irreducible element un-
der C.

Equivalently, we can obtain—up to isomorphism—the congruence lattice of B by
deleting the minimal join-irreducible element Σ of ConN(A,B,Θ).

We need one more property of our construction.

Lemma 7. Let A, B, and Θ be given as in Theorem 3. If the congruence Φ of B
is discrete-transitive, then so is N(Φ).
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Proof. First, let us assume that Φ ∧ Θ = ω, so N(Φ) = ωA × Φ by Lemma 5.
For elements a < b ∈ N(Φ), then a ≡ b (N(Φ)) iff aA = bA and aB ≡ bB (Φ). It
follows that an interval [u, v] of N(A,B,Θ) is N(Φ)-discrete iff the interval [uB , vB ]
of B is Φ-discrete. This clearly implies that if Φ is discrete-transitive in B, then
N(Φ) is discrete-transitive in N(A,B,Θ).

Second, let us assume that Φ∧Θ > ω, so N(Φ) = ιA×Φ by Lemma 5. Then an
interval [u, v] of N(A,B,Θ) is N(Φ)-discrete iff uA = vA and the interval [uB , vB ]
of B is Φ-discrete. The discrete-transitivity of N(Φ) follows. �

Corollary. Let A, B, and Θ be given as in Theorem 3. If all congruence of B are
discrete-transitive, then all congruence of N(A,B,Θ) are discrete-transitive.

Proof. First, observe that Σ = Θ(〈0, 0〉, 〈1, 0〉) is discrete-transitive. Now the state-
ment follows because all the congruences of N(A,B,Θ) that have not yet been
proven discrete-transitive are of the form Σ ∨ N(Φ), and the join of two discrete-
transitive congruences is clearly discrete-transitive. �

4. The proof of Theorem 2

Let D be a finite distributive lattice. We have to construct a lattice L satisfying
the requirements of Theorem 2.

If D is the one-element lattice, then let L be the one-element lattice.
If D has more than one element, then J(D) �= ∅, and we use induction on the

size of J(D).
If | J(D)| = 1, then let L = C2. If | J(D)| = 2, then either J(D) is unordered and

then let L = C2
2, or J(D) is the two-element chain, in this case let L be the lattice

of Figure 4. Obviously, the lattice of Figure 4 satisfies the conditions of Theorem 2.

Figure 4. The lattice L for the three-element chain.

Now for the induction step, let |J(D)| = n > 2. If J(D) is an antichain, the
statement is trivial; for L we can choose a finite Boolean lattice. Otherwise, choose a
minimal but not maximal join-irreducible element p ofD. Let D′ be the distributive
lattice join-generated by J(D) − {p}. Then | J(D′)| = n − 1, so by the induction
hypothesis, there is a lattice B and a lattice isomorphism α : D′ → ConB satisfying
Conditions (i)–(iv) of Theorem 2.

Since p is not a maximal element of J(D), it follows that Cov(p) �= ∅. Take a
q ∈ Cov(p). Since q ∈ D′, under the isomorphism α it is mapped to a congruence
Θq of B. Now we define

Θ =
∨

( Θq | q ∈ Cov(p) ).
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The lattice L of Theorem 2 is defined as

L = N(C2
2, B,Θ).

By Theorem 3, we have the isomorphism ConL ∼= D.
We have to prove that the lattice L satisfies Conditions (i)-(iv) of Theorem 2.
To investigate the congruence classes of L, by Theorem 3 (see Lemmas 5 and 6

for more detail), a congruence Ψ of L is one of the following form:
Form 1. Ψ = N(Φ) = ωA×Φ, where Φ is a congruence of B satisfying Φ∧Θ = ω.
Form 2. Ψ = N(Φ) = ιA×Φ, where Φ is a congruence of B satisfying Φ∧Θ > ω.
Form 3. Ψ = N(Φ) ∨ Σ, where Φ is a congruence of B.
If Ψ is of Form 1, then the congruence classes of N(Φ) are described as follows:

Let [u, v] be a congruence class of Φ in B. Then the congruence classes of Ψ in L
are exactly the intervals of the form [〈a, u〉, 〈a, v〉], for any a ∈ A. Obviously, from
(2) and Lemma 1, the interval [u, v] of B is isomorphic to the interval [〈a, u〉, 〈a, v〉]
of L.

Now if [u, v] and [u′, v′] are any two congruence classes of Φ in B, then [u, v] and
[u′, v′] are isomorphic intervals and they are projective, by induction hypothesis.
It is obvious, then, that [〈a, u〉, 〈a, v〉] and [〈a′, u′〉, 〈a′, v′〉] are isomorphic, for any
a, a′ ∈ A.

We also have to show that [〈a, u〉, 〈a, v〉] and [〈a′, u′〉, 〈a′, v′〉] are projective. Since
[〈a, u〉, 〈a, v〉] is perspective to [〈0, u〉, 〈0, v〉] and [〈a′, u′〉, 〈a′, v′〉] is perspective to
[〈0, u′〉, 〈0, v′〉], it is sufficient to show that [〈0, u〉, 〈0, v〉] and [〈0, u′〉, 〈0, v′〉] are
projective.

By the induction hypothesis, [u, v] and [u′, v′] are projective. A trivial induction
shows (see Section III.1 of [1]) that it is sufficient to verify that if [u, v] and [u′, v′] are
perspective, then so are [〈0, u〉, 〈0, v〉] and [〈0, u′〉, 〈0, v′〉]. By duality, it is sufficient
to compute this for “up” perspectivity: So let v ∧ u′ = u and v ∨ u′ = v′. Then
obviously, 〈0, v〉 ∧ 〈0, u′〉 = 〈0, u〉 and 〈0, v〉 ∨ 〈0, u′〉 = 〈0, u〉, completing the case.

If Ψ is of Form 2 or 3, then the congruence classes of Ψ are described in Lemmas 5
and 6 as follows: Let [u, v] be a congruence class of Φ in B. Then the congruence
classes of Ψ in L are exactly the intervals of L of the form [〈0, u〉, 〈1, v〉]. Now observe
that [〈0, u〉, 〈1, v〉] is isomorphic to N(C2

2, [u, v], ι[u,v]), so if the intervals [u, v] and
[u′, v′] of B are isomorphic, so are the intervals [〈0, u〉, 〈1, v〉] and [〈0, u′〉, 〈1, v′〉]
of L.

Then we have to show that any two congruence classes of Ψ are projective in-
tervals. So let [u, v] and [u′, v′] be any two congruence classes of Φ in B. Then
[〈0, u〉, 〈1, v〉] and [〈0, u′〉, 〈1, v′〉] are the corresponding Ψ classes in L. Now if [u, v]
is “up” perspective to [u′, v′], that is, v ∨ u′ = v′ and v ∧ u′ = u, then obviously
〈1, v〉 ∨ 〈0, u′〉 = 〈1, v′〉 and 〈1, v〉 ∧ 〈0, u′〉 = 〈0, u〉. By duality, we get “down”
perspectivity, and by induction, projectivity.

This completes the proof of Conditions (i) and (ii). Condition (iii) is obvious:
By induction hypothesis, B is a pruned Boolean lattice. Of course, C2

2 is a Boolean
lattice. So L is a pruned Boolean lattice. Finally, by the Corollary to Lemma 7,
the congruences of L are discrete-transitive.

Note that to prove Theorem 1, any non-separating finite lattice A with more
than two elements will do. To prove Theorem 2, we can choose A as any non-
separating finite lattice with more than two elements, provided that A is a pruned,
finite Boolean lattice. In either case, the smallest lattice we can choose is A = C2

2.
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S. E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998. xx+663 pp. ISBN: 0-
12-295750-4, ISBN: 3-7643-5239-6. Softcover edition, Birkhäuser Verlag, Basel–Boston–Berlin,
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Műegyetem rkp. 3, H-1521 Budapest, Hungary

E-mail address, E. T. Schmidt: schmidt@math.bme.hu

URL, E. T. Schmidt: http://www.math.bme.hu/~schmidt/


