E. T. Schmidt

Universale Algebren mit gegebenen Automorphismengruppen
und Unteralgebrenverbänden

SZEGED, 1963

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS
Universale Algebren mit gegebenen Automorphismengruppen
und Unteralgebrenverbänden

Von E. T. SCHMIDT in Budapest

1. In dieser Note wird ein Satz über die Unabhängigkeit der Automorphismengruppen und Unteralgebrenverbänden der universalen Algebren bewiesen.

Eine universale Algebra — oder kurz Algebra — ist ein Paar \((A, F)\), gebildet durch eine Menge \(A\) und durch die Gesamtheit \(F\) der über \(A\) definierten endlichstelligen Operationen. Es ist bekannt (Birkhoff [1]), daß jede Gruppe \(G\) mit der Automorphismengruppe \(G(A, F)\) einer Algebra \((A, F)\) isomorph ist.

Es sei \((A, F)\) eine Algebra und \(B\) eine nichtleere Teilmenge von \(A\). Wenn für jedes \(\varphi(x_1, x_2, \ldots, x_n) \in F\) aus \(x_1, x_2, \ldots, x_n \in B\) stets \(\varphi(x_1, x_2, \ldots, x_n) \in B\) folgt, dann wird \((B, F)\) eine Unteralgebra von \((A, F)\) genannt. Es ist bekannt, daß die Gesamtheit der Unteralgebren einer Algebra, in der eine in jeder Unteralgebra enthaltende Unteralgebra existiert, einen kompakt-erzeugten Verband, den sog. Unteralgebrenverband bildest. Nach einem Satz von G. Birkhoff und O. Frink [2] ist jeder kompakt-erzeugte Verband mit dem Unteralgebrenverband \(R(A, F)\) einer Algebra \((A, F)\) isomorph.

Wir beweisen den folgenden

Satz. Es sei \(G\) eine beliebige Gruppe und \(V\) ein kompakt-erzeugter Verband. Es existiert eine Algebra \((A, F)\) mit \(G(A, F) \cong G\) und \(R(A, F) \cong V\).

2. Zum Beweis des Satzes benötigen wir zwei Hilfssätze.

Hilfssatz 1. Es sei \(V\) ein kompakt-erzeugter Verband und \(H\) die Menge aller kompakten Elemente von \(V\). Dann ist \(H\) ein Halbverband mit Nullelement, und der Idealverband \(I(H)\) von \(H\) ist mit \(V\) isomorph.

Beweis: Siehe z. B. [3].

Hilfssatz 2. Zu jeder Gruppe \(G\) gibt es eine Algebra \((C, F_1)\) derart, so daß \(G(C, F_1) \cong G\) ist und \((C, F_1)\) nur eine von \((C, F_1)\) verschiedene Unteralgebra hat.

Beweis. Man betrachte die Menge \(C\), die aus \(G\) und aus einem neuen Element \(0\) besteht und definiere auf \(C\) die folgenden Operationen:

1. für jedes \(a \in G(\subseteq C)\) je eine Operation \(f_a(x)\) durch

\[
f_a(x) = \begin{cases}
 x \cdot a & \text{für } x \in G, \\
 0 & \text{für } x = 0;
\end{cases}
\]
2. eine binäre Operation \(x \cap y \) mit

\[
x \cap y = \begin{cases}
0 & \text{für } x \neq y, \\
x & \text{für } x = y
\end{cases}
\]

(diese Operation ist offensichtlich kommutativ, assoziativ und idempotent).

Es sei \(F_1 = \{ f_+, \cap \} \). Zuerst zeigen wir, daß \(G(C, F_1) \cong G \). Ist \(\alpha_a \ (a \in G) \) eine Abbildung von \((C, F_1) \) in sich, gegeben durch die Regel

\[
\alpha_a(x) = \begin{cases}
a \cdot x & \text{für } x \neq 0, \\
0 & \text{für } x = 0,
\end{cases}
\]

so ist \(\alpha \) ein Automorphismus: in der Tat, ist \(f_+ (\alpha_a(x)) = \alpha_a(f_+(x)) \) und \(\alpha_a(x \cap y) = \alpha_a(x) \cap \alpha_a(y) \). Umgekehrt, sei \(\alpha \) ein beliebiger Automorphismus von \((C, F_1) \). Dann ist \(0 \) ein Fixelement von \(\alpha \) (d.h., \(\alpha(0) = 0 \)). Nach der Definition der \(\cap \)-Operation gilt nämlich \(\alpha(0) \cap 0 = 0 \) (unabhängig davon, ob \(\alpha(0) = 0 \) oder \(\alpha(0) \neq 0 \) ist), woraus sich \(\alpha(x \cap 0) = \alpha(x(0)) \cap \alpha(0) = \alpha(0) \) und daraus, im Fall \(\alpha(x(0)) = \alpha(0) \) auch \(\alpha(0) = \alpha(x(0)) \cap \alpha(0) = 0 \) ergibt; andererseits, im Fall \(\alpha(x(0)) = \alpha(0) \) gilt offenbar auch \(\alpha(0) = 0 \). Es bezeichne \(e \) das Einselement von \(G \) und \(a \) das Bild von \(e \) bei \(\alpha \). Dann ist \(\alpha(e) = \alpha(f_+(e)) = f_+(\alpha(e)) = f_+(a) = a \cdot e = \alpha_a(e) \), d.h. jedes Automorphismus stimmt mit einem \(\alpha_a \) überein.

Jetzt können wir schon leicht zeigen, daß die Abbildung \(a \mapsto \alpha_a \ (a \in G) \) ein Isomorphismus von \(G \) auf \(G(C, F_1) \) ist. Nach der entsprechenden Definition gilt nämlich \(\alpha_a \circ \alpha_b = \alpha_{a \cdot b} \) für alle \(a, b \in G \), so daß \(\alpha_a \circ \alpha_b = \alpha_{a \cdot b} \) ist; ferner gilt für \(a \neq b \) immer \(\alpha_a(e) \neq \alpha_b(e) \).

Wir haben noch zu beweisen, daß die oben definierte Algebra \((C, F_1) \) nur eine von ihr verschiedene Unteralgebra hat. Die einelementige Menge \{0\} ist offensichtlich eine Unteralgebra von \((C, F_1) \). Ist \((K, F_1) \) eine von \{0\} verschiedene Unteralgebra im \((C, F_1) \) so gibt es ein \(c \neq 0 \) in \(K \). Es sei \(b \) ein beliebiges Element aus \(G \). Dann gilt \(b = f_{e-1}(c) \), d.h. \(b \in K \). Es sei \(b \neq c \), so folgt auch \(0 = b \cap c \in K \). Damit haben wir gezeigt, daß \(C = K \) ist. (Hier wurde vorausgesetzt, daß \(G \) mindestens zwei verschiedene Elemente enthält; im Fall \(G = \{ e \} \) darf man \((C, F_1) = \{ G, 0 \} \) wählen.)

3. Jetzt seien \(G \) und \(V \) gegeben. \((C, F_1) \) sei wie im vorangehenden Paragraphen definiert; \(H \) bezeichne den Halbverband der kompakten Elemente von \(V \), und \(0 \) das Nullelement von \(H \).

Besteht \(V \) (und folglich auch \(H \)) nur aus einem Element, so sei \((A, F) = (G, f_a) \). In diesem Fall ist die Isomorphie zwischen \(G(A, F) \) und \(G \) ebenso bewiesen werden, wie im Beweis von Hilfssatz 2. Ferner hat \((A, F) \) keine echte Unteralgebra, da für beliebiges \(b \in A \) aus \(c \in (A, F) \) auch \(b = f_{e-1}(c) \) folgt.

Von hier an können wir voraussetzen, daß \(V \) mindestens zwei verschiedene Elemente enthält.

Wir ordnen jedem \(h \in H \setminus \{ 0 \} \) eine mit \((C, F_1) \) isomorphe Algebra \((C_h, F_1) \) zu und es bezeichne \(c_h \) dasjenige Element in \(C_h \), welches dem Element \(c \) von \(C \) bei dem Isomorphismus \((C, F_1) \cong (C_h, F_1) \) entspricht. Die Elemente \(O_h \) seien identifiziert und — wie in \((C, F_1) \) — einfach durch 0 bezeichnet; übrigens sei aber \(C_h \times C_h = 0 \) für \(h \neq k \) vorausgesetzt. Wir definieren eine Algebra \((A, F) \) wie folgt: \(A \) sei die
Vereinigungsmenge aller \(C_h \), also \(A = \bigvee_{h \in h \setminus \{0\}} C_h \), und die folgenden Operationen seien in Betracht genommen:

1. die ursprünglichen Operationen \(f_a \) \((a \in G)\);
2. die ursprüngliche Operation \(\cap \), erweitert auf die ganze Menge \(A \) durch die Regel: \(c_h \cap c_k = 0 \) für \(h \neq k \);
3. mit Hilfe der Operation \(V \) von \(H \) definieren wir eine binäre, assoziative und idempotente Operation auf \(A \) wie folgt: \(c_h \lor c_k = c_h \uplus c_k \) für \((c' \neq 0)\) und \(c_h \lor 0 = c_h \);
4. endlich sei \(g_h \) für jedes \(h \in H \setminus \{0\} \) durch

\[
g_h(c_k) = \begin{cases} c_h & \text{für } k \equiv h \\ 0 & \text{sonst} \end{cases}
\]
definiert.

Es sei also \(F = \{f_a, \cap, \lor, g_h\} \).

Zuerst zeigen wir, daß \(G(A, F) \equiv G \) ist. Zu diesem Zweck betrachten wir ein beliebiges Automorphismus \(\alpha \) von \((A, F) \). Für \(c_h \neq 0 \) gilt \(\alpha(c_h) \in (C_h, F_I) \); ist nämlich \(\alpha(c_h) = c'_h \) so folgt, aus \(\alpha(g_h(c_k)) = g_h(\alpha(c_k)) \), \(c'_h = g_h(c'_k) \) woraus sich entweder \(c'_h = c'_k \) \((k = h)\) oder \(c'_k = 0 \) ergibt. Wäre aber \(c'_k = 0 \), so wäre \(\alpha(c_k) = 0 \) und folglich \(\alpha(0) = 0 \); aus \(c_h \lor 0 = c_h \) ergibt sich aber \(\alpha(c_h) \lor \alpha(0) = \alpha(c_h) \), für jedes \(c_h \) und folglich \(\alpha(0) = 0 \), so daß nur der Fall \(c'_h = c'_k \) ist möglich. So ist \(\alpha(c_h) \in (C_h, F_I) \) wie behauptet haben. Damit haben wir bewiesen, daß \(\alpha \) auf jedem \((C_h, F_I)\) einen Automorphismus induziert.

Wir zeigen: \(\alpha(c_h) = c'_h \) so gilt \(\alpha(c_k) = c'_k \) für jedes \(k \in H \setminus \{0\} \). In der Tat gilt \(\alpha(c_h \lor c_k) = \alpha(c_h) \lor \alpha(c_k) = (\alpha(c_h)) \lor (\alpha(c_k)) = c'_h \lor c'_k \) und folglich \(\alpha(c_k) = \alpha(c_k) \lor c'_k = c'_k \).

Wir müssen noch zeigen: ist \(\alpha \) ein beliebiges Automorphismus von \((C_h, F_I)\), so läßt sich er auf \((A, F)\) erweitern. Es sei die Abbildung \(\alpha \) von \((A, F)\) in sich folgendermaßen definiert:

\(\alpha(c_h) = (\alpha(c))_h \) für jedes \(k \in M \setminus \{0\} \). Es ist leicht einzusehen, daß dieses \(\alpha \) ein Automorphismus von \((A, F)\) und zwar die Erweiterung von \(\alpha \) ist. Damit haben wir die Isomorphismus \(G \equiv G(A, F) \) bewiesen.

Nun beweisen wir, daß \(R(A, F) \equiv V \) ist.

Es sei \(K \) eine von \(\{0\} \) verschiedene Unteralgebra von \((A, F)\) und sei \(c_k \in K \) für irgendwelches \(c \neq 0 \) \((h \in H \setminus \{0\})\). Da \(K \lor (C_h, F_I) \) eine Unteralgebra von \((C_h, F_I)\) ist, soll \(K \lor (C_h, F_I) = (C_h, F_I) \) bestehen, und dies bedeutet \(c_k \in K \) für jedes \(c' \in (C, F_I) \). Es sei \(k \in M \setminus \{0\}, k \neq h \). Aus \(c_k \in K \) folgt \(c_k = g_h(c_k) \in K \). Ist \(c_h \), \(c_k \in K \), so gilt auch \(c_h \lor c_k = c_h \lor 0 = c_h \). Damit haben wir folgendes bewiesen: aus \(c_h \), \(c_k \in K \) folgt \(c_k \in K \) für jedes \(c' \in (C, F_I) \) und für jedes \(k \) mit \(k \equiv h \cup k \), Anders gesagt, bilden das Element \(O \) und diejenigen Elemente \(h \in M \setminus \{0\} \), für welche \(c_k \in K \), ein Ideal von \(H \).

Es sei \(I \) ein beliebiges, von Null verschiedenes Ideal von \(H \). Betrachten wir die Teilmenge \(K_I = \{0\} \lor \{c_k \mid k \in L, c \in G, F_I\} \) von \((A, F)\).

\(K_I \) ist offensichtlich eine Unteralgebra von \((A, F)\). Folglich ist \(I \to K_I \) eine ein-eindeutige Abbildung von \(I(H) \) auf \(R(A, F) \) (dem Ideal \(\{0\} \) entspricht die Unteralgebra \(\{0\} \)) und ist \(I(H) \equiv R(A, F) \). Nach Hilfssatz 1 ist jedoch \(V \equiv I(H) \), woraus \(V \equiv R(A, F) \) folgt. Damit ist unser Satz bewiesen.

4. Es sei \((A, F)\) eine Algebra und \(M(A, F) \) die Gesamtheit der Meromorphismen von \((A, F)\) (Ein Meromorphismus ist ein Isomorphismus einer Algebra in
sich.) Die Menge $M(A, F)$ ist eine Halbgruppe mit Einselement und ist charakterisiert durch das Erfüllstein der rechtseitige Kürzungsregel (das bedeutet, daß aus $\beta x = \gamma x$ folgt $\beta = \gamma$). Nun stellen wir das folgende

Problem: Es sei V ein kompakt-erzeugter Verband und G eine Halbgruppe mit Einselement, so daß in G die rechtseitige Kürzungsregel gilt. Gibt es eine Algebra (A, F), so daß $M(A, F) \cong G$ und $R(A, F) \cong V$ ist?

Literaturverzeichnis

(Eingegangen am 18. Oktober 1962)