On n-permutable equational classes

SZEGED, 1972
INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS
On n-permutable equational classes

By E. T. SCHMIDT in Budapest

The product $\Theta \circ \Phi$ of two congruences Θ, Φ of an algebra A is defined by the following rule: $a \equiv b(\Theta \circ \Phi)$ if and only if $c \in A$ exists such that $a \equiv c(\Theta)$ and $c \equiv b(\Phi)$. Two congruences Θ_1 and Θ_2 are n-permutable if and only if $\Theta_1 \circ \Theta_2 \circ \Theta_1 \circ \Theta_2 \circ \cdots = \Theta_2 \circ \Theta_1 \circ \Theta_2 \circ \Theta_1 \circ \cdots$, where on both sides there are n factors. An algebra A is n-permutable if every two congruences in A are n-permutable. We define an equational class to be n-permutable if every algebra of this class is n-permutable. It is well known, that an n-permutable equational class is $(n+1)$-permutable. In [1] G. Grätzer asks for examples of equational classes which show that n-permutability and $(n+1)$-permutability are not equivalent\(^1\). In this note we give an example with this property.

Theorem. For every natural number $n \geq 2$ there exists an $(n+1)$-permutable equational class \mathcal{K}_n which is not n-permutable.

Proof. Let n be a natural number. An n-Boolean algebra

$$\mathcal{B}=\{B; \lor, \land, f_1(x), \ldots, f_n(x), o_0, o_1, \ldots, o_n\}$$

is an algebra with two binary operations \lor, \land, n unary operations $f_1(x), \ldots, f_n(x)$ and $n+1$ nullary operations o_0, o_1, \ldots, o_n, such that the following conditions are satisfied:

1. $(B; \lor, \land)$ is a distributive lattice;
2. $x \lor o_0 = o_n, x \lor o_0 = x$ for all $x \in B$;
3. $[(x \lor o_{i-1}) \land o_i] \lor f_i(x) = o_i, [(x \lor o_{i-1}) \land o_i] \land f_i(x) = o_{i-1}$.

The class of all n-Boolean algebras is denoted by \mathcal{K}_n. If $o_{i-1} \equiv x \equiv o_i$ then $f_i(x)$ is the relative complement from x in $[o_{i-1}, o_i]$, i.e. this interval is a Boolean lattice. A 1-Boolean algebra is a Boolean algebra. A finite chain \mathcal{C}_n of $n+1$ elements is

\(^1\) For $n=2$ A. Mitschke [2] has solved this problem.
an n-Boolean algebra, if we take its elements as nullary operations: $a_0 = a_1 = a_2 = \ldots = a_n$ ($o_i \in \mathcal{G}_n$), and $f_i(x) = a_i$ if $x = a_i$, $f_i(x) = a_{i-1}$ if $x \equiv a_i$. The congruences of \mathcal{G}_n are the lattice-congruences, i.e., \mathcal{G}_n is not n-permutable. This shows that \mathcal{N}_n is not n-permutable.

Let B denote an arbitrary n-Boolean algebra and $x, y \in B, x \geq y$. Set $a_i = (o_i \wedge x) \vee y$. (Then is $a_0 = y, a_n = x$.) If Θ_1 and Θ_2 are arbitrary congruences from B, such that $x \equiv y (\Theta_1 \vee \Theta_2)$, then $a_{i-1} \equiv a_i (\Theta_1 \vee \Theta_2)$ ($i = 1, 2, \ldots, n$). The interval $[a_{i-1}, a_i]$ is projective to a subinterval of $[o_{i-1}, o_i]$, i.e., $[a_{i-1}, a_i]$ is a Boolean lattice. Every Boolean lattice is 2-permutable and so for every i ($i = 1, 2, \ldots, n$) there exists a $t_i \in [a_{i-1}, a_i]$ such that

$$a_{i-1} \equiv t_i (\Theta_1) \text{ if } i \text{ odd, } a_{i-1} \equiv t_i (\Theta_2) \text{ if } i \text{ even, } a_i \equiv t_i (\Theta_1) \text{ if } i \text{ even, } a_i \equiv t_i (\Theta_2) \text{ if } i \text{ odd.}$$

We have therefore between x, y a chain $y_0 = a_0 = y, y_1 = t_1, y_2 = t_2, \ldots, y_n = x = a_n$ with $n + 1$ elements, such that $y_{i-1} \equiv y_i (\Theta_1)$ if i even and $y_{i-1} \equiv y_i (\Theta_2)$ if i odd. \mathcal{N}_n is therefore $(n+1)$-permutable.

Remark. An equational class is $(n+1)$-permutable if and only if there exists $(n+2)$-ary algebraic operations p_0, \ldots, p_{n+1} satisfying the following identities (see [3]):

$$p_0(x_0, \ldots, x_{n+1}) = x_0, \quad p_{i-1}(x_0, x_0, x_2, x_2, \ldots) = p_i(x_0, x_0, x_2, x_2, \ldots) \quad (i \text{ even}),$$

$$p_{i-1}(x_0, x_1, x_1, x_3, x_3, \ldots) = p_i(x_0, x_1, x_1, x_3, x_3, \ldots) \quad (i \text{ odd}),$$

$$p_{n+1}(x_0, \ldots, x_{n+1}) = x_{n+1}.$$

A. MITSCHKE and H. WERNER have considered for the class \mathcal{N}_n the algebraic operations:

$$p_i(x_0, x_1, \ldots, x_{n+1}) = (x_i \wedge f_{n+1-i}(x_{i+1}) \vee x_{i+2}) \vee (x_{i+2} \wedge (f_i(x_{i+1}) \vee x_i))$$

which show that \mathcal{N}_n is $(n+1)$-permutable.

Bibliography

(Received November 2, 1970)