EVERY FINITE DISTRIBUTIVE LATTICE IS THE
CONGRUENCE LATTICE OF SOME MODULAR LATTICE

E. T. SCHMIDT

1. Introduction

The purpose of this paper is to prove the theorem formulated in the title. The
notation used is that of Grätzer [2]. The unary algebraic functions play by the
description of congruence relations a very important role. Let \(p = p(x) \) be an unary
algebraic function on the modular lattice \(K \), and let \(a_0 \leq b_0 \) be two elements of \(K \);
it is easy to show that there exists a pair \(a, b \in K \), \(a_0 \leq a \leq b \leq b_0 \) such that the restriction
of \(p \) to \([a, b]\), \(p|_{[a, b]} \) is an isomorphism between \([a, b]\) and \([p(a_0), p(b_0)]\), i.e.,
these intervals are projective. Let now \(f : [a, b] \to [c, d] \) be an arbitrary isomorphism,
then we take \(f \) as a partial unary operation with the domain \([a, b]\). We called such a
partial operation a \(\ast \)-operation. The inverse \(f^{-1} \) of \(f \) is again a \(\ast \)-operation. If
there exists for \(f \) an unary algebraic function \(p \) on \(K \), such that \(f = p|_{[a, b]} \), then \(p \) is
called a realization of \(f \).

Now we consider a sublattice \(K_0 \) of the lattice \(K \) (in other words \(K \) is an exten-
sion of \(K_0 \)). Then \(K \) determines a system of projective intervals \([a_0, b_0]\), \([c_0, d_0]\)
\((x \in \Omega) \) of \(K_0 \). Let \(p_0 \) denote the unary algebraic function which maps \([a_0, b_0]\) into
\([c_0, d_0]\). With the corresponding \(\ast \)-operation \(\hat{p}_0 = p_0|_{[a_0, b_0]} \) we get a partial algebra
\(K_0^\ast = \langle K_0; \lor, \land, \hat{p}_0 \mid x \in \Omega \rangle \). A congruence relation of \(K_0 \) has an extension to \(K \) iff
\(\Theta \) is a congruence relation of \(K_0^\ast \).

DEFINITION. Let \(K_0 \) be a lattice and \(f_x : [a_0, b_0] \to [c_0, d_0] \) be \(\ast \)-operations of
\(K_0 \). If there exist an extension \(K \) of \(K_0 \) such that the following conditions are satisfied:
(1) every \(f_x \) has a realization in \(K \);
(2) for every \(\Theta \in C(K_0^\ast) \) there exists exactly one congruence relation \(\overline{\Theta} \) of \(K \) such
that for \(a, b \in K_0, a \equiv b (\overline{\Theta}) \) iff \(a \equiv b (\Theta) \), then we say that \(K \) is a realization of \(K_0^\ast \).

For a realization \(K \) of \(K_0^\ast, C(K) \cong C(K_0^\ast) \) obviously holds, i.e., the congruence
lattices are isomorphic.

EXAMPLE. Let \(K_0 \) be the three element chain: \(0 < a < 1 \). Then \([0, a] \) and \([a, 1] \)
are isomorphic, so we have \(\ast \)-operations \(f : [a, 1] \to [0, a] \) and \(f^{-1} \). A realization of
\(\langle K_0; \lor, \land, f, f^{-1} \rangle \) is the following lattice, where \(p(x) = (((a \lor b) \land c) \lor d) \land a \)
realizes \(f \):

Presented by G. Grätzer. Received May 23, 1972. Accepted for publication in final form November 14,
We ask: does there exist for a modular lattice K_0 and *-operations a realization which is modular too? We prove, if K_0 is a chain then there always exists such a realization. In the second paragraph we give for a finite distributive lattice L a chain K_0 and *-operations f_i ($i=1, 2, ...$) with the property $L \cong C(K_0^*)$, where $K_0^* = \langle K_0; \lor, \land, f_i \rangle$. In the third paragraph there are proved two lemmas, and in the last paragraph the construction of K is given, which realizes K_0^*.

2. A partial algebra

Let Q be the chain of all rational numbers r with $0 \leq r \leq 1$. Two non-trivial intervals $[a, b]$ and $[c, d]$ of Q are isomorphic, hence an arbitrary isomorphism defines a *-operation $f: [a, b] \to [c, d]$.

A congruence relation Θ is called irreducible if it is a join-irreducible element of the congruence lattice. The smallest congruence relation Θ such that $a \equiv b (\Theta)$ will be denoted by $\Theta(a, b)$ and is called a principal congruence relation. If the congruence lattice is finite then every irreducible congruence relation is obviously principal.

THEOREM 1. Let L be a finite distributive lattice. Then we can define on Q *-operations $f_1, f_2, ...$ such that the congruence lattice of the partial algebra $Q_L = \langle Q; \lor, \land, f_i | i = 1, 2, ... \rangle$ will be isomorphic to L.

Proof. We prove the theorem by induction as follows: for each positive integer n let $P(n)$ be the assertion that every distributive lattice of length $\leq n$ is isomorphic to $C(Q_L)$ for some partial algebra Q_L defined on Q with *-operations. If we take on Q for each pair $0 \leq a_i < b_i \leq 1$ an arbitrary isomorphism $f_i: [a_i, b_i] \to [0, 1]$, then the corresponding partial algebra $Q_L = \langle Q; \lor, \land, f_i \rangle$ is obviously simple, i.e. $C(Q_L) \cong 2$. $P(1)$ is proved.

We shall show that $P(n-1)$ implies $P(n)$. Now let L be any distributive lattice of length $n > 1$ and let p denote a maximal irreducible element of L. Let $p_1, p_2, ..., p_k$ denote those irreducible elements of L which are covered by p in the poset of the irreducible elements. If d denotes the join of all irreducible elements of L different from p, then the length of the ideal $L_1 = \langle d \rangle$ is $n-1$. By the induction hypotheses
there exists a partial algebra \(Q_L \), defined on \(Q = [0, 1] \) with \(*\)-operations \(f_i \), such that \(C(Q_L) \cong L_1 \). Now we take the interval \([0, 2] \) of rational numbers and we define the partial algebra \(Q_L \) on the set \([0, 2] \).

The congruence relations of \(Q_L \), which correspond to \(p_i \in L_1 \) \((i = 1, \ldots, k) \) are irreducible, consequently principal, i.e. \(p_i \rightarrow \Theta(a_i, b_i) \) \((a_i < b_i)\). We distinguish two cases. First, if \(p \) is an atom \((k = 0)\), then we take for every pair \(1 \leq a_i < b_i \leq 2 \) an arbitrary isomorphism \(f_i' : [a_i, b_i] \rightarrow [1, 2] \), and let

\[
Q_L = \langle [0, 2]; \lor, \land, f_1, f_i', f_i'^{-1} | i = 1, 2, \ldots \rangle.
\]

Then every congruence relation of \(Q_L \) is remade a congruence of \(Q_L \) if we take the rational numbers \(1 < r \leq 2 \) as one element classes. For every \(1 \leq a_i < b_i \leq 2 \) there is \(\Theta(a_i, b_i) = \Theta(1, 2) \) and therefore \(\Theta(1, 2) \) is an atom. Thus we have \(C(Q_L) \cong C(Q_{L_1}) \times \times 2 \cong L \). The intervals \([0, 1] \) and \([0, 2] \) are isomorphic, we can take also \(Q_L \) as a partial algebra defined on \([0, 1] \).

The second case is when \(k > 0 \). We take the following isomorphism:

\[
g_0 : [1, 2] \rightarrow \left[1 + \frac{k}{k+1}, \frac{2}{2}
ight]
\]

is an arbitrary isomorphism with the property that \(\lim_{r \rightarrow \infty} g_0'(1) = 2 \). (For instance the mapping \(x \rightarrow (x + 2k)/(k + 1) \) is such an isomorphism);

\[
g_i : [a_i, b_i] \rightarrow \left[1 + \frac{i-1}{k+1}, 1 + \frac{i}{k+1}\right], \quad i = 1, 2, \ldots, k
\]

is an arbitrary isomorphism. The partial algebra \(Q_L \) is defined by

\[
Q_L = \langle [0, 2]; \lor, \land, f_1, g_0, g_i, g_i^{-1} | j = 1, 2, \ldots; i = 0, 1, \ldots, k \rangle.
\]

We shall prove that \(C(Q_L) \) is isomorphic to \(L \). To do this we prove some simple statements:

1. every \(\Theta \in C(Q_{L_1}) \) has an extension to a congruence relation \(\bar{\Theta} \) of \(Q_L \).

 Proof. Let \(\Theta \) be an arbitrary congruence relation of \(Q_{L_1} \), \(\Theta \) defines a reflexive and symmetric relation \(\Theta^* \) on \([0, 2] \):

 \[
u \equiv \nu(\Theta^*) \mathrm{iff} \begin{cases}
 \text{either } 0 \leq u, v \leq 1 \text{ and } u \equiv v(\Theta) \\
 \text{or } u = g_0^s g_i(x), \nu = g_0^s g_i(y), \quad g_i \leq x, y \leq b_i, \ x \equiv y(\Theta) \\
 \quad \text{for some integer } s \geq 0 \text{ and } 1 \leq i \leq k, \text{ where } g_0^0 \text{ is the identity map.}
\end{cases}
 \]

 Let \(\bar{\Theta} \) denote the transitive extensions of \(\Theta^* \). The restriction of \(\bar{\Theta} \) to \([0, 1] \) is \(\Theta \),
and ϑ is obviously a congruence relation of Q_L. ϑ is therefore an extension (the smallest extension) of ϑ to Q_L.

2. Every congruence relation $\vartheta(u, v)$, $0 \leq u \leq v < 2$ of Q_L is the extension of a congruence relation $\vartheta \in C(Q_L)$.

Proof. Let x, y be two elements of the interval $[a_i, b_i]$ and let ϕ be an arbitrary congruence relation of Q_L. For two integers s and i ($1 \leq i \leq k$), $x = g_s g_i(x) \equiv y = g_s g_i(y)$ if and only if $x = g_i^{-1} g_0^{-s} (x') = g_i^{-1} g_0^{-s} (y') = y(\phi)$. $\vartheta(x, y) \in C(Q_L)$ is therefore an extension of $\vartheta(x, y) \in C(Q_L)$. If $1 \leq u < v < 2$, then there exists a natural number m such that $u, v \leq g_0^m(1)$. There exists a finite chain

$$u = u_0 < u_1 < \cdots < u_t = v$$

such that for every $j (= 1, \ldots, t)$, $u_j \leq g_j^s(a_j, g_j^s(b_j))$ for some s and i ($1 \leq i \leq k$).

We have proved that $\vartheta(u_{j-1}, u_j)$ ($j = 1, \ldots, t$) is the extension of a congruence relation $\vartheta_j \in C(Q_L)$. Then $\vartheta(u, v)$ is obviously the extension of $\bigvee_{j=1}^t \vartheta_j$.

3. $\vartheta(u, 2) = \vartheta(1, 2)$ for every $1 \leq u < 2$, hence $\vartheta(1, 2)$ is irreducible.

Proof. Let t be the last integer with $u \leq g_0^t(1)$. If $2 \equiv u(\phi)$ then $2 = g_0^{-t}(2) \equiv g_0^{-t}(u) = 1(\phi)$, hence $\vartheta(u, 2) \equiv \vartheta(1, 2)$. But $\vartheta(u, 2) \leq \vartheta(1, 2)$ is trivially satisfied and thus $\vartheta(u, 2) = \vartheta(1, 2)$. If $\vartheta(1, 2) = \vartheta_1 \vee \vartheta_2$ then there exists a sequence $2 = u_0 > u_2 > \cdots > u_t = 1$ such that for each i, $u_i \equiv u_{i+1}(\vartheta_i)$ or $u_i \equiv u_{i+1}(\vartheta_2)$. For instance $2 = u_2(\vartheta_1)$. But $\vartheta(1, 2) = \vartheta(u_2, 2)$ implies $\vartheta_1 = \vartheta(1, 2); \vartheta(1, 2)$ is therefore irreducible.

4. For an irreducible congruence relation $\vartheta \in C(Q_L)$ is $\vartheta(1, 2) \leq \overline{\vartheta}$ if and only if $\overline{\vartheta} \equiv \vartheta(a_i, b_i)$ for some $i \in \{1, \ldots, k\}$.

Proof. From $1 + (i-1)/(k+1) \equiv 1 + i/(k+1)$ ($\vartheta(1, 2)$) we get by the applications of $g_i^{-1} g_i^{-1}(1 + (i-1)/(k+1)) \equiv g_i^{-1}(1 + i/(k+1)) = b_i(\vartheta(1, 2))$ i.e.

$\overline{\vartheta(a_i, b_i)} \equiv \vartheta(1, 2)$. The statement "only if" is trivial.

1-4 imply that the poset of all irreducible congruence relations of $C(Q_L)$ is isomorphic to the poset of all irreducible elements of L, following $C(Q_L) \simeq L$.

3. Two preliminary constructions

Lemma 1. Let N be a bounded distributive lattice. Then there exists a bounded modular lattice M with the following properties:

(i) M has three elements a_1, a_2, a_3 such that $0, a_1, a_2, a_3, 1$ form a sublattice isomorphic to \mathcal{L}_3 and $(a_1]$ is isomorphic to N;

(ii) for every congruence relation ϑ of $(a_i]$ ($i = 1, 2, 3$) there exists exactly one congruence relation $\overline{\vartheta}$ of M such that for $\beta, \gamma \in (a_i]$ $\beta \equiv \gamma(\vartheta)$ iff $\beta \equiv \gamma(\overline{\vartheta})$.

Proof. We take the set M of all triples (x, y, z) $(x, y, z \in N)$ with the property $x \land y = x \land z = y \land z$. $(x, y, z) \leq (x', y', z')$ means that $x \leq x'$, $y \leq y'$ and $z \leq z'$; then M will be a poset. If $\beta = (x, y, z)$, $\gamma = (x', y', z') \in M$ then

$$(x \land x') \land (y \land y') = (x \land x') \land (z \land z') = (y \land y') \land (z \land z'),$$

therefore $\beta \land \gamma = (x \land x', y \land y', z \land z') \in M$. M is therefore a \land-semilattice. It is easy to prove – using the distributivity of N – that $\sup \{\beta, \gamma\} = \beta \lor \gamma$ exists and

$$\beta \lor \gamma = ((x \lor x') \lor ((y \lor y') \lor (z \lor z')),$$

$$\land ((y \lor y') \lor ((x \lor x') \lor (z \lor z')) \lor ((x \lor x') \lor (y \lor y'))).$$

The operations \land and \lor make M into a lattice. This lattice was defined first in [5].

Now we prove the modularity of M. Let be $\gamma = (x, y, z)$, $\beta = (u, v, w)$ and $\alpha = (a, b, c)$, $\alpha > \beta$. The modularity means $z \land (\beta \lor \gamma) \leq \beta \lor (x \land \gamma)$. Take the first components of these elements: $a \land ((u \lor x) \lor ((v \lor y) \lor (w \lor z)))$ and $((u \lor (a \land x)) \lor (v \lor (b \land y)) \lor (w \lor (c \land z)))$. Then using the facts: $u \land w = u \land v$, $y \land z = x \land z$, $b \land v = v$, $c \land w = w$ and the distributivity of N we can write:

$$a \land ((u \lor x) \lor ((v \lor y) \lor (w \lor z))) = [a \land (u \lor x)] \lor [a \land (v \lor y)] \lor (w \lor z)$$

$$= [u \lor (a \land x)] \lor (a \land v \lor w) \lor (a \land v \lor z)$$

$$\lor (a \land v \lor w) \lor (a \land v \lor z)$$

$$= u \lor (a \land x) \lor (a \land v \lor w) \lor (a \land v \lor z)$$

$$= u \lor (a \land x) \lor (a \land b \lor v \lor z) \lor (a \land y \lor w \lor c)$$

$$= u \lor (a \land x) \lor (a \land c \lor v \lor z) \lor (a \land y \lor w \lor b)$$

$$\leq u \lor (a \land x) \lor (a \land c \lor v \lor z) \lor (a \land y \lor w \lor b)$$

$$\lor (v \land w \lor (v \land c \lor z) \lor (v \land y \lor w) \lor (v \land y \lor c \lor z))$$

$$= (u \lor (a \land x)) \lor \{u \lor (b \land y) \lor (c \land z))\}.$$

The same inequality holds for the other components, hence M is modular.

Let $\alpha_1 = (1, 0, 0)$, $\alpha_2 = (0, 1, 0)$, $\alpha_3 = (0, 0, 1)$. Then $\alpha_i \land \alpha_j = (1, 1, 1)$, $\alpha_i \land \alpha_j = (0, 0, 0)$ if $i \neq j$ and so $\alpha_1, \alpha_2, \alpha_3, 1$ from \mathcal{M}_5. For the remaining statements of the lemma we refer to [5].

COROLLARY 1. The intervals $[0, \alpha_1]$ and $[0, \alpha_3]$ are projective; the corresponding unary algebraic function is $p_{1, 2}(x) = (x \lor \alpha_3) \land \alpha_2$, $[0, \alpha_1]$ and $[\alpha_1, 1]$ are projective; the corresponding function is:

$$q_1(x) = [(x \lor \alpha_3) \land \alpha_2] \lor \alpha_1 = p_{1, 2}(x) \lor \alpha_1.$$

Let us take two bounded lattices L_1 and L_2. Suppose that L_1 has a principal dual ideal \mathcal{I}_1, L_2 has a principal ideal \mathcal{I}_2 and $\mathcal{I}_1 \cong \mathcal{I}_2$. Let $\varphi: x \to x'$ denote this iso-
morphism. We can construct a lattice \(L \) as follows: \(L \) is the set of all \(x \in L_1 \) and \(x \in L_2 \), we identify \(x \) with \(x' \) for all \(x \in L_1; x \leq y \) have unchanged meaning if \(x, y \in L_1 \), or \(x, y \in L_2 \) and \(x \wedge y = x \vee y \) iff \(x \in L_1, y \in L_2 \) and there exists a \(z \in L_1 \) such that \(x < z \) in \(L_1 \), and \(z < y \) in \(L_2 \). Let \(\lor \), \(\land \), denote the join operations in \(L_1 \), and let \(0_2 \) denote the zero of \(L_2 \). It is easy to see that in \(L \) \(\sup \{ x, y \} \) always exists and

\[
\sup \{ x, y \} = \begin{cases} x \lor y & \text{if } x, y \in L_1 \\ \left(x \lor 0_2 \right) \lor y & \text{if } x \in L_1 \text{ and } y \in L_2. \end{cases}
\]

By the duality we have that \(L \) is a lattice.

We denote \(L \) as follows: \(L = L_1 + L_2 (\phi \varphi_1 = \varphi_2) \).

Lemma 2. (Hall and Dilworth [3]). Let \(L_1 \) be a principal ideal and \(L_2 \) be a principal dual ideal of the lattice \(L \), such that \(L_1 \cup L_2 = L \) and \(L_1 \cap L_2 = \phi \). If \(L_1 \) and \(L_2 \) are modular lattices then \(L \) is a modular lattice too. If \(\Theta_1 \) and \(\Theta_2 \) are congruence relations of \(L_1 \) resp. \(L_2 \) such that \(\Theta_1 \upharpoonright [L_1 \cap L_2] = \Theta_2 \upharpoonright [L_1 \cap L_2] \), then there exists a congruence relation \(\Theta \) of \(L \) with the property \(\Theta \upharpoonright L_i = \Theta_i \) \((i = 1, 2) \).

4. The construction

Lemma 3. Let \(K_0 \) be a modular lattice, which has the following properties:

1. \(K_0 \) has a dual ideal \(\mathcal{I}_0 \) isomorphic to \(Q \);
2. every congruence relation of \(K_0 \) is the smallest extension of a congruence relation of \(\mathcal{I}_0 \).

Let \(f: [a, b] \rightarrow [c, d] \), \(a, b, c, d \in \mathcal{I}_0 \) a *-operation on \(K_0 \), and let denote \(K_0^* = \langle K_0; \lor, \land, f \rangle \). Then there exists a realization \(K \) of \(K_0^* \) which is a modular lattice and has a dual ideal \(\mathcal{I} \) such that (1) and (2) are satisfied.

Proof. Let us take the following two lattices:

I. Let \(S \) denote the lattice \(M \) given in Lemma 1 if we set \(N = Q \). Then we take the intervals \(S_i = [0, x_i] \) and \(S_i^* = [x_i, 1] \) \(i = 1, 2 \) and the corresponding unary algebraic functions \(p_{i, i}(x) (i \neq j) \) and \(q_i \) given in the Corollary of Lemma 1.

II. \(T = Q \times Q \). Let be \(T_1 = [(0, 0), (1, 0)] \), \(T_2 = [(0, 0), (0, 1)] \) and \(T_1^* = [(1, 0), (1, 1)] \). Then it is obviously \(T_1 \cong T_2 \cong T_1^* \cong Q \). \(T_1 \) and \(T_2 \) are projective; the unary algebraic function is \(v_{1, 2}(x) = x \lor (0, 1) \).

We define \(A_0 = T + S (\psi T^1 = S_2) \) where \(\phi \) is an arbitrary isomorphism between \(T_1 \) and \(S_2 \). Let \(A \) be the lattice \(A_0 + T (\phi S^1 = S_2) \) where \(\psi \) is again an arbitrary isomorphism (Fig. 2). Let \(\sigma \) denote the zero of \(A \) and let \(e_1, e_2, e_3, e_4 \) be the elements given in Fig. 2 (\(e_1 \) is the element \((1, 0) \), \(e_2 \) is the element \((1, 0) \) of the second \(T \) component of \(A \); similarly \(e_3 \) is \((1, 0) \) and \(e_4 \) is \((0, 1) \) in the first \(T \) component of \(A \).
By Lemma 1 and 2 we get: for every congruence relation Θ of $(e_1]$ (resp. $[e_1]$) there exists exactly one congruence relation $\bar{\Theta}$ of A such that for $x, y \in (e_1]$ (resp. $x, y \in [e_1]$) $x \equiv y(\bar{\Theta})$ iff $x \equiv y(\Theta)$. The intervals $[e_3, e_2]$ and $[e_4, e_3, v e_4]$ are projective, the corresponding unary function is $r_{12}q_1(x)$.

$(e_1]$ is the ordinal sum $S_1 + S_1 + S_1$ hence $(e_1]$ is isomorphic to Q. The same holds for the dual ideal $[e_4]$. Let now ϱ be an arbitrary isomorphism $\varrho : S_0 \rightarrow (e_1]$ such that $\varrho(a) = e_3$ and $\varrho(b) = e_2$. Then we can define the lattice $B = K_0 + A (\varrho S_0 = (e_1])$. (See Fig. 3.)

The intervals $[a, b]$ and $[e_1, e_1 v e_2]$ are projective; we have namely the unary function $\lambda_1 = r_{12}q_1(\varrho(x))$.

Take A in a second exemplar A' ($x \rightarrow x'$ let be an isomorphism between A and A'). If ν is an isomorphism $[e_4] \rightarrow (e_1']$ such that $\nu(\varrho(c) v e_4) = e_3'$ and $\nu(\varrho(d) v e_4) = e_2'$ then we can define $C = B + A' (\nu(e_4) = [e_1'])$. We have the lattice on Fig. 4.

Using the Lemma 2 we get: for every congruence relation Θ of K_0 there exists exactly one congruence relation $\bar{\Theta}$ of C such that for $x, y \in K_0$ $x \equiv y(\bar{\Theta})$ iff $x \equiv y(\Theta)$. Similarly as in lattice B we have: $[e_1 v e_4, e_1 v e_2]$ and $[c_v d]$ are projective; the corresponding function let λ_2.

Finally let us take the lattice $D = S + S (\mu S_2 = S_1)$ with an arbitrary isomorphism μ (Fig. 5) $[d_2, d_1]$ and $[d_3, d_2]$ are projective; let λ_3 denote the corresponding unary function.
The ideal \((d,]\) is isomorphic to \(Q\), hence it is isomorphic to the dual ideal \([e,]\) of
\(C\). We shall define \(K = C + D\) with an isomorphism \(\phi: [e,] \rightarrow (d,]\) as follows: Let be
\(\lambda^{-1} \lambda' \lambda^{-1} \lambda' f = f\) (Fig. 6). Then a congruence relation \(\Theta\) of \(K_0\) has an extension to
\(K\) if \(\Theta\) is a congruence relation of \(K_0^*\) and every congruence relation of \(K\) is the extension
of a congruence \(\Theta \in \Theta(K_0)\). \(K\) is a realization of \(K_0^*\). The dual ideal \(\mathcal{F}\) generated
by \(e^* \in K\) satisfies obviously (1) and (2). This proves Lemma 3.

To prove our theorem let be \(K_0 = Q_\Lambda = \langle Q; \vee, \wedge, f_1, f_2, \ldots \rangle\). Applying the Lemma 3
we get an extension \(K_1\) of \(K_0\) which realizes \(\langle Q; \vee, \wedge, f_1 \rangle\). We can extend \(K_1\) to \(K_2\)
such that \(K_2\) realizes \(\langle Q; \vee, \wedge, f_1, f_2 \rangle\). From \(K_i\) we can get on similar way \(K_{i+1}\). By a
direct limit procedure we get a lattice \(K\) which realizes \(Q_\Lambda\) and so \(C(K) \cong C(Q_\Lambda)\). This
proves \(C(K) \cong L\).

Remark 1. A modular lattice satisfying the identity

\[x \vee \bigwedge_{i=0}^{n} y_i = \bigwedge_{j=0}^{n} (x \vee \bigwedge_{i=0 \wedge j}^{n} y_i) \]

is called an \(n\)-distributive lattice. (See G. Bergman [1] and A. Huhn [4].) A. Huhn has proved that \(L\) is \(n\)-distributive iff \(L\) does not contain a sublattice \(B \cong 2^{n+1}\) and an
element x such that x is the relative complement of all atoms of B in interval $[\inf B, \sup B]$. It is easy to show that the lattices T and S do not contain sublattice isomorphic to 2^3, therefore we have:

THEOREM 2. Every finite distributive lattice is isomorphic to the congruence lattice of a 2-distributive lattice.

Remark 2. Let K_0 be an arbitrary bounded distributive lattice and f_2 ($x \in \Omega$) $*$-operations on K_0. In [6] it is proved\(^1\) that K_0 has a modular extension, which is a realization of $K_0^* = \langle K_0; \lor, \land, f_2 \rangle$.

REFERENCES

Mathematical Institute of the Hungarian Academy of Sciences Budapest Hungary

\(^1\) G. Grätzer proved the same statement for an arbitrary distributive lattice K_0 with zero.