Über die Kongruenzrelationen der modularen Verbände

E. T. SCHMIDT

§ 1. Projektivität und Kongruenzrelationen

Zwei Intervalle eines Verbandes heißen transponiert, wenn sie sich in der Form $[a \land b, a], [b, a \lor b]$ schreiben lassen. Hat man Intervalle $[a_i, b_i] (1 \leq i \leq n)$ derart, daß $[a_i, b_i]$ und $[a_{i+1}, b_{i+1}]$ für $i = 1, 2, ..., n - 1$ transponiert sind, so nennt man $[a_1, b_1]$ und $[a_n, b_n]$ projektiv; in Zeichen $[a_1, b_1] \approx [a_n, b_n]$. Wenn $[a_{i+1}, b_{i+1}]$ und ein Teilintervall von $[a_i, b_i]$ transponiert sind ($i = 1, 2, ..., n - 1$), so heißt $[a_n, b_n]$ schwach projektiv zum $[a_1, b_1]$. Zwischen Projektivität und schwacher Projektivität ist bei modularen Verbänden ein enger Zusammenhang, es gilt nämlich (R. Wille [3]):

Ist $[c, d]$ schwach projektiv zu $[a, b]$ in einem modularen Verband, so existiert ein Teilintervall $[a', b']$ von $[a, b]$, so daß $[a', b'] \approx [c, d]$.

Sind a, b beliebige Elemente des Verbandes L, so bezeichne $\Theta(a, b)$ die kleinste Kongruenz $\Theta \in \mathcal{C}(L)$ mit der Eigenschaft $a \equiv b(\Theta)$. Es ist bekannt, daß in einem Verband gilt $u \equiv v(\Theta(a, b)) (a \leq b)$ dann und nur dann, wenn eine endliche Folge von Elementen

$$u \land v = z_0 \leq z_1 \leq \cdots \leq z_n = u \lor v$$
derart existiert, daß \([z_{i-1}, z_i]\) für jedes \(i\) \((i = 1, 2, \ldots, n)\) schwach projektiv zu \([a, b]\) ist. Wenn wir dann das erwähnte Ergebnis von Wille berücksichtigen, erhalten wir:

In einem modularen Verband \(L\) gilt \(u \equiv v(\Theta(a, b))\) \((a \leq b)\) dann und nur dann, wenn Elemente \(a \leq a_i \leq b_i \leq b\) \((i = 0, \ldots, n - 1)\) und \(u \lor v = z_0 \leq z_1 \leq \cdots \leq z_n\)

\[a_i, b_i] \approx [z_i, z_{i+1}].\]

Das bedeutet, daß es bei der Beschreibung der Kongruenzen eines modularen Verbandes genügt, die projektive Intervalle anzugeben.

Sind \([a \land b, a]\) und \([b, a \lor b]\) transponiert in einem modularen Verband, so ist die Abbildung \(f_{\lambda}: x \rightarrow x \lor b\) \((x \in [a \land b, a])\) eine Isomorphie zwischen diesen Intervallen, und \(g_{\alpha} = x \land a\) ist die inverse Abbildung. \(f_{\lambda} = x \lor b\) und \(g_{\alpha}\) sind spezielle unäre algebraische Funktionen. Wenn also \([a, b]\) und \([c, d]\) zwei projektive Intervalle sind, so sind sie isomorph, und es gibt eine unäre algebraische Funktion \(p(x)\), so daß die Beschränkung von \(p(x)\) auf \([a, b]\) \(p|_{[a, b]}\) eine Isomorphie zwischen \([a, b]\) und \([p(a), p(b)]\) angibt.

Es sei nun \(f: [a, b] \rightarrow [c, d]\) ein beliebiger Isomorphismus, so können wir \(f\) als eine partielle unäre Operation mit dem Definitions bereich \([a, b]\) und Wertevorrat \([c, d]\) auffassen. Eine partielle Operation dieser Art wollen wir kurz eine \(*\)-Operation nennen. Die inverse Abbildung \(f^{-1}: [c, d] \rightarrow [a, b]\) ist ebenfalls eine \(*\)-Operation.

Definition 1 [2]. Es sei \(f: [a, b] \rightarrow [c, d]\) eine beliebige \(*\)-Operation des Verbandes \(L\). Existiert eine unäre algebraische Funktion \(p(x)\), so daß für jedes \(x \in [a, b]\)

\[p(x) = f(x)\]

gilt, so heißt \(p\) eine Realisierung von \(f\).

Es sei \(K_0^*\) ein Teilverband des Verbandes \(K\), d. h., \(K\) sei eine Erweiterung von \(K_0\).

Im Mittelpunkt unserer Untersuchungen steht die folgende Frage: Was ist der Zusammenhang zwischen \(\epsilon(K_0)\) und \(\epsilon(K)\)? \(K\) determiniert ein System von projektiven Intervallen \([a, b], [c, d]\) \((a, b, c, d \in \Omega)\) von \(K_0\) mit den zugehörigen unären algebraischen Funktionen \(p_\alpha\) (die also die Isomorphismen \(p_\alpha: [a, b] \rightarrow [c, d]\) an gegeben). Betrachten wir die entsprechende \(*\)-Operationen \(p_\alpha = p_{\alpha|[a, b]}\). Mit diesen \(*\)-Operationen gewinnen wir aus \(K_0\) eine partielle Algebra:

\[K_0^* = \langle K_0; \lor, \land, p_\alpha | \alpha \in \Omega \rangle.\]

Es ist einfach zu zeigen, daß eine Kongruenz \(\Theta\) von \(K_0\) dann und nur dann zu \(K\) erweiterbar ist, wenn \(\Theta\) eine Kongruenz von \(K_0^*\) ist.

Definition 2. Es seien \(f_\lambda: [a, b] \rightarrow [c, d]\) \(*\)-Operationen auf dem Verband \(K_0\) \((a, b, c, d \in K_0)\). Existiert eine Erweiterung \(K\) von \(K_0\), so daß

1) jedes \(f_\lambda\) hat eine Realisierung in \(K\);
2) für jedes \(\Theta \in \epsilon(K_0^*)\) gibt es genau eine Kongruenz \(\Theta\) von \(K\), so daß für \(a, b \in K_0\)

gilt \(a \equiv b(\Theta)\) dann und nur dann, wenn \(a \equiv b(\Theta)\),

so nennen wir \(K\) eine Realisierung von \(K_0^*\). Ist \(K\) modular, so heißt \(K\) eine modulare Realisierung.
Ist K eine Realisierung von K_0, so sind ihre Kongruenzverbände offensichtlich isomorph.

Nun können wir unser Hauptergebnis formulieren:

Satz 1. Sind $f_\alpha (\alpha \in \Omega)$ beliebige \ast-Operationen des beschränkten distributiven Verbands K_0, so existiert eine modulare Realisierung K von $K_0 = \langle K_0 ; \vee , \wedge , f_\alpha \rangle$.

Als eine Anwendung dieses Satzes zeigen wir den

Satz 2. Jeder distributive Verband ist dem Teilverband eines einfachen modularen Verbandes isomorph.

§ 2. Vorbereitungen

Es sei L ein Teilverband des Booleschen Verbandes B. Wir sagen, L R-erzeugt B (siehe [1]), wenn L erzeugt B als Ring, und wenn L ein 0- (oder 1-) Element enthält, so ist dieses 0- (bzw. 1-) Element das 0- (bzw. 1-) Element von B. Ist B R-erzeugt durch L, so bezeichnen wir B mit $B(L)$.

J. Hashimoto hat bewiesen, daß jede Kongruenzrelation von L genau eine Erweiterung zu $B(L)$ hat, d. h., ihre Kongruenzverbände sind isomorph. Für ein Intervall $[a, b]$ von L schreiben wir statt $B([a, b])$ auch $[a, b]_B$. Ist L_1 ein Teilverband von L, so gilt $B(L_1) \cap L = L_1$. Aus $[a, b] \simeq [c, d]$ ergibt sich damit $[a, b]_B \simeq [c, d]_B$.

Es sei $f : [a, b] \to [c, d]$ eine \ast-Operation von L. f läßt sich dann zu einer \ast-Operation $f_B : [a, b]_B \to [c, d]_B$ eindeutig erweitern. Bezeichne b' das relative Komplement von b im $[a, 1]_B$, und c' sei das relative Komplement von c im Intervall $[0, d]_B$.

Aus $[a, b] \simeq [c, d]$ folgt $[b', 1] \simeq [0, c']$. Wir können also dann zu f_B die folgende \ast-Operation f_B zuordnen:

$$f_B = f_B(x \wedge b) \wedge c' : [b', 1] \to [0, c']$$

Mit dieser \ast-Operation gilt dann

$$\varepsilon (\langle L ; f \rangle) \simeq \varepsilon (\langle B(L) ; f_B \rangle) \simeq \varepsilon (\langle B(L) ; f_B \rangle)$$.

Das bedeutet, daß wir uns im Beweis des ersten Satzes auf Booleschen Verbände beschränken können, und wir können ohne Beschränkung der Allgemeinheit voraussetzen, daß die \ast-Operationen in der Form $f : [b, 1] \to [0, c]$ angegeben sind.

Wir geben zunächst eine Verschärfung des Lemma 1 aus [2].

Lemma 1. Es sei N ein beliebiger beschränkter distributiver Verband und A eine Indexmenge. Es existiert ein modularer Verband $M = N(A)$ mit 0 und 1, der die folgenden Eigenschaften besitzt:

(i) Für jedes $\alpha \in A$ gibt es ein $a(\alpha)$, so daß für $\alpha \neq \beta$ ($\alpha , \beta \in A$)

$$a(\alpha) \wedge a(\beta) = 0 , \quad a(\alpha) \vee a(\beta) = 1 ,$$

und das Hauptideal $(a(\alpha))$ ist isomorph zu N;

(ii) für jede Kongruenzrelation $\Theta_\alpha \in \varepsilon (a(\alpha))$ gibt es genau eine Kongruenz Θ_α von M, so daß für $c, d \in (a(\alpha))$ gilt $c \equiv d(\Theta_\alpha)$ dann und nur dann, wenn $c \equiv d(\Theta_\alpha)$.

Beweis. Die Elemente von M sind Abbildungen $a: A \to A^a \subseteq N$ von A in N, die den folgenden Eigenschaften genügen:

1. A^a ist eine endliche Teilmenge von N;
2. sind $\alpha, \beta, \gamma \in A$ drei verschiedene Elemente, so gilt $\alpha^a \land \beta^a = \alpha^a \land \gamma^a = \beta^a \land \gamma^a$ $a \leq a'$ (a, a' $\in M$) soll bedeuten, daß $\alpha^a \leq \alpha^a$ in N für jedes α, β in M ist dann eine teilweise geordnete Menge. $a(\alpha)$ sei wie folgt definiert: $\alpha(\alpha) = 1$ und wenn $\beta \neq \alpha$, so $\beta(\alpha) = 0$. Ist $\alpha \neq \beta$, so gilt $a(\alpha) \land a(\beta) = 0$ und $a(\alpha) \lor a(\beta) = 1$. Von hier an läuft der Beweis wie bei Lemma 1 von [2].

Bemerkung 1. Für $\alpha, \beta \in A$ sind $[0, a(\alpha)]$ und $[0, a(\beta)]$ projektiv. Infolgedessen sind auch $[0, a(\alpha)]$ und $[a(\beta), 1]$ projektiv.

Bemerkung 2. Ist die Indexmenge endlich, $A = \{1, 2, \ldots, k\}$, so bezeichnen wir $N(A)$ einfach mit $N(k)$. Wir werden den Fall $k = 3$ betrachten, der derselbe Verband ist wie M im Lemma 1 von [2]. In diesem Fall sind die Elemente von $N(3)$ Tripeln (x, y, z) $(x, y, z \in N)$, so daß $x \land y = x \land z = y \land z$.

$a(1) = (1, 0, 0), a(2) = (0, 1, 0)$ und $a(3) = (0, 0, 1)$.

§ 3. Summe von teilweise geordneten Mengen

Es sei L eine teilweise geordnete Menge, so daß für jedes Paar $a, b \in L$ inf \{a, b\}
existiert, und sup \{a, b\}
existiert genau dann, wenn a und b eine gemeinsame obere Scharlank haben. Wir definieren in L
a $\land b = \inf \{a, b\}$ und $a \lor b = \sup \{a, b\}$,

wenn sup \{a, b\} existiert. L ist dann ein partieller Verband. Eine Äquivalenzrelation Θ von L heißt eine Kongruenzrelation, wenn aus $a \equiv b(\Theta), c \equiv d(\Theta)$ folgt $a \land c \equiv b \land d(\Theta)$ und $a \lor c \equiv b \lor d(\Theta)$, angenommen, daß $a \lor c$ und $b \lor c$ beide existieren. Die Kongruenzen von L bilden dann einen Verband $\mathfrak{C}(L)$. Ist $a \in L$, so heißt $\{a\} = \{x; x \geq a\}$ ein duales Hauptideal von L. Unter der Voraussetzungen ist für jedes $a \in L$ das Ideal $\{a\} = \{x; x \leq a\}$ offensichtlich ein Verband. Wir wollen L modular nennen, wenn $\{a\}$ für jedes $a \in L$ ein modularer Verband ist.

Eine nichtleere Teilmenge I eines Verbandes K heißt ein Abschnitt, wenn aus $x \in I, y \leq x$ stets $y \in I$ folgt.

Das nächste Lemma verallgemeinert das Lemma 2 aus [2].

Lemma 2. Es sei K ein Verband und L eine teilweise geordnete Menge, so daß für jedes Paar $a, b \in L$ inf \{a, b\} existiert, und sup \{a, b\} existiert genau dann, wenn a, b eine gemeinsame obere Scharlank haben. Das duale Ideal \{i\} von L sei isomorph zu dem Abschnitt I von K, und i soll den folgenden Eigenschaften genügen:

1) für jedes $a \in L$ existiert $a \lor i$, und wenn $a \lor i \geq b \geq i$, so gilt

$(a \land b) \lor i = b$,
(ii) wenn sup \(\{a, b\} \) nicht existiert, so ist

\[
i = (i \wedge a) \lor (i \wedge b) = (i \lor a) \land (i \lor b).
\]

Wenn wir die bei der Isomorphie \(I \rightarrow [i] \) entsprechenden Elemente von \(I \) und \([i]\) identifizieren, so ist die mengentheoretische Vereinigung \(L \cup K = L + K \) ein Verband, der \(L \) als einen Abschnitt und \(K \) als ein duales Ideal enthält. Sind \(L \) und \(K \) modular, so ist \(L + K \) ein modularer Verband. Sind \(\Theta_1 \) bzw. \(\Theta_2 \) Kongruenzrelationen von \(L \) bzw. \(K \), so daß \(\Theta_1^{[0]} = \Theta_2^{[0]} \) ist, so existiert eine Kongruenz \(\Theta \) von \(L + K \) mit der Eigenschaft \(\Theta_1^{[L]} = \Theta_1 \) und \(\Theta_2^{[K]} = \Theta_2 \).

Beweis. Die Operationen von \(K \) bzw. \(L \) bezeichne \(\lor_K, \land_K \) bzw. \(\lor_L, \land_L \). Es seien \(a, b \) beliebige Elemente von \(L + K \), wir zeigen, daß \(a \lor b = \sup \{a, b\} \) und \(a \land b = \inf \{a, b\} \) existieren, und zwar

\[
a \lor b = \begin{cases}a \lor_K b, & \text{wenn } a, b \in K; \\
(a \lor_L i) \lor_K b, & \text{wenn } a \in L \text{ und } b \in K;
\end{cases}

\]

\[
(\lor_K b) \land_K (a \lor_L i), \text{wenn } a, b \in L \text{ und sup } \{a, b\}
\]

\[
a \land b = \begin{cases}a \land_K b, & \text{wenn } a, b \in K; \\
(a \land_L b, & \text{wenn } a, b \in L; \\
((a \lor_L i) \land_K b) \land_L a, & \text{wenn } a \in L, b \in K.
\end{cases}
\]

Daß \(a \lor b \) bzw. \(a \land b \) tatsächlich \(\sup \{a, b\} \) bzw. \(\inf \{a, b\} \) definieren, zeigt eine triviale Rechnung, die wir dem Leser überlassen.

Es seien \(K \) und \(L \) modular. Wir wollen zeigen, daß \(L + K \) ein modularer Verband ist, d. h., wenn \(x \lor z = y \lor z, x \land z = y \land z, x \geq y, \) so folgt \(x = y \). Je nach der Lage von \(x, y, z \) müssen wir mehrere Fälle diskutieren.

1. \(x, y \in K \) und \(z \in L \). Wegen \(x \lor z = (x \lor i) \lor z = x \lor (i \lor z) \) und ähnlicherweise \(y \lor z = y \lor (i \lor z) \) folgt \(x \land (i \lor a) > y \land (i \lor z) \) aus der Modularität von \(K \). Es gilt aber

\[
[x \land (i \lor z)] \land z = x \land z = y \land z = [y \land (i \lor z)] \land z
\]

und

\[
[x \land (i \lor z)] \lor z = i \lor z = [y \land (i \lor z)] \lor z,
\]

wegen der Modularität von \(L \) erhalten wir also

\[
x \land (i \lor z) = y \land (i \lor z).
\]

Dieser Widerspruch zeigt \(x = y \).

2. \(x, y, z \in L \). Wir können annehmen, daß \(\sup \{y, z\} \) in \(L \) nicht existiert, sonst hätten wir aus der Modularität von \(L \) gleich \(z = y \). Aus (ii) folgt

\[
(x \land i) \lor (z \land i) = i = (y \land i) \lor (z \land i).
\]

Wegen \(x \land z = y \land z \) ist

\[
(x \land i) \land (z \land i) = (y \land i) \land (z \land i),
\]

und die Modularität von \(L \) ergibt also \(x \land i = y \land i \). Wäre \(x \geq y \), so müßte \(x \lor i > y \lor i \) gelten. Dann ist aber

\[
(x \lor i) \lor (z \lor i) = x \lor z = y \lor z = (y \lor i) \lor (z \lor i)
\]
und wegen (ii)

\[(x \lor i) \land (z \lor i) = i = (y \lor i) \land (z \lor i),\]

d. h., da K modular ist, \(x \lor i = y \lor i\). Dieser Widerspruch zeigt \(x = y\).

3. \(x \in K\) und \(y, z \in L\). Betrachten wir \(y' = y \lor d\). Aus \(x > y\) folgt, daß entweder \(x > y'\) oder \(y' > y\) gilt. Im ersten Fall können wir wie bei Fall 1 diskutieren (statt \(y\) nehmen wir \(y'\)), und der zweite Fall ist derselbe wie Fall 2.

4. \(x, y, z \in K\). Da K ein modulärer Verband ist, folgt sofort \(x = y\).

5. \(x, z \in K\) und \(y \in L\). In diesem Fall ist \(x \land z \in K\) und so aus \(x \land z = y \land z\) folgt \(y \in K\), d. h. \(x, y, z \in K\) wie unter Fall 4.

6. \(x, y \in L\) und \(z \in K\). Betrachten wir die Elemente \(x \lor i, y \lor i\). Es gilt dann

\[x \land i = (x \land z) \land i = (y \land z) \land i = y \land i,\]

und so, wenn \(x > y\), aus der Modularität von \(L\) erhalten wir \(x \lor i > y \lor i\). Für diese Elemente gilt aber

\[(x \lor i) \lor z = x \lor z = y \lor z = (y \lor i) \lor z,\]

d. h., da K modular ist, \((x \lor i) \land z > (y \lor i) \land z\). Aus (i) ergibt sich aber

\[(a = x, b = (x \lor i) \land z) (x \lor i) \land z = (x \lor i) \lor z\]

und ähnlich erweise \((y \lor i) \land z = (y \lor i) \land z,\) d. h., wegen \(x \land z = y \land z\) ist

\[(x \lor i) \land z = (y \lor i) \land z.\]

Dieser Widerspruch zeigt \(x = y\). \(L + K\) ist also ein modulärer Verband.

Nun seien \(\Theta_1\) bzw. \(\Theta_2\) Kongruenzen von \(K\) bzw. \(L\), so daß \(\Theta_j|_K = \Theta_j|_L\) ist. Wir definieren eine Äquivalenzrelation \(\Theta\) auf \(L + K\) wie folgt:

\[x \equiv y(\Theta)\]

dann und nur dann, wenn einer der folgenden Fälle erfüllt ist:

(a) \(x, y \in K\) und \(x \equiv y(\Theta_1)\);
(b) \(x, y \in L\) und \(x \equiv y(\Theta_2)\);
(c) \(x \in L, y \in K\) (oder symmetrisch \(x \in K, y \in L\)),

und es existiert ein \(z \in I\), so daß \(x \equiv z(\Theta_2)\) und \(z \equiv y(\Theta_1)\).

Die Beschränkung von \(\Theta\) auf \(K\) bzw. \(L\) ist dann offensichtlich \(\Theta_1\) bzw. \(\Theta_2\). Daß \(\Theta\)

eine Kongruenzrelation ist, folgt unmittelbar aus der Definition der Verbandsoperationen von \(L + K\). Damit ist das Lemma bewiesen.

In dem nächsten Lemma definieren wir einen partiellen Verband \(L\), der den in Lemma 2 geforderten Eigenschaft genügt.

Betrachten wir erst den im Lemma 1 definierten Verband \(N(A)\), und zu jedem \(a \in A\) wählen wir \(x_a \in N(A)\), so daß \(x_a \geq a(x)\) gelte (vgl. Abb. 1). Das duale Hauptideal \(T_a = \langle x_a \rangle\) ist dann ein distributiver Verband. \([a(x), 1]\) und \([0, a(x)]\) sind projektiv, und nach Lemma 1 gilt \([0, a(x)] \approx N\); \(T_a\) ist also ein Teilverband des distributiven Verbandes \([a(x), 1]\), also ist selbst distributiv.

Zu jedem \(T_a\) können wir dann den modularen Verband \(T_a(3)\) betrachten. (Siehe die zweite Bemerkung nach Lemma 1.) \(T_a(3)\) enthält dann drei Elemente \(u_a, v_a, w_a\), so daß

\[u_a \land v_a = u_a \land w_a = v_a \land w_a = 0_a.\]
Kongruenzrelationen der modularen Verbände

und

\[u_a \lor v_a = u_a \lor w_a = v_a \lor w_a = 1_a \]

(\(u_a\) ist nämlich \(a(1)\), \(v_a = a(2)\) und \(w_a = a(3)\) in \(T_a(3)\)). Laut Lemma 1 ist \((u_a)\) isomorph \(T_a\).

\(L\) sei die mengentheoretische Vereinigung \(\bigcup_{\alpha, \beta \in A} T_a(3) \cup N(\Lambda)\), wo wir bei den Isomorphismen \(T_a \to (u_a)\) entsprechende Elemente identifizieren. \(x \leq y\) hat unveränderte Bedeutung, wenn \(x, y \in T_a(3)\) für ein \(\alpha \in \Lambda\) oder wenn \(x, y \in N(\Lambda)\); für \(x \in N(\Lambda), y \in T_a(3)\) gilt \(x \leq y\) dann und nur dann, wenn ein \(z \in T_a\) derart existiert, daß \(z \leq z\) in \(N(\Lambda)\) und \(z \leq y\) in \(T_a(3)\). Die Elemente \(x \in T_a(3), y \in T_b(3), \alpha = \beta, x, y \in N(\Lambda)\) sind unvergleichbar.

Lemma 3. \(L\) ist ein modularer partieller Verband, der den Eigenschaften (i) und (ii) aus Lemma 1 genügt. Jede Kongruenzrelation von \(N(\Lambda) \subseteq L\) hat genau eine Erweiterung zu \(L\).

Beweis. Es bezeichne \(i\) das größte Element von \(N(\Lambda)\). Erst zeigen wir, daß \(\inf \{a, b\}\) in \(L\) stets existiert. Ist \(a, b \in T_a(3)\) oder \(a, b \in N(\Lambda)\), so gilt die Behauptung offensichtlich. Wenn \(a \in T_a(3)\) und \(b \in N(\Lambda)\) (oder symmetrisch), so ist \(a \land i \in T_a = (u_a) \subseteq N(\Lambda)\), also können wir \(c = (a \land i) \land b\) in \(N(\Lambda)\) bilden. Offensichtlich ist dann \(c = \inf \{a, b\}\). Ist schließlich \(a \in T_a(3), b \in T_b(3), \alpha = \beta\), \(a, b \in N(\Lambda)\), so ist \(\inf \{a, b\} = (a \land i) \land (b \land i)\), wo \(a \land i\) im \(T_a(3), b \land i\) im \(T_b(3)\) gebildet ist; \(a \land i, b \land i \in N(\Lambda)\), wir können also in \(N(\Lambda)\) ihren Durchschnitt bilden. Sind \(a, b \in N(\Lambda)\) oder \(a, b \in T_a(3)\), so existiert sup \(\{a, b\}\) und ist dasselbe, wie in \(N(\Lambda)\) bzw. \(T_a(3)\) ursprünglich. Wenn \(a \in T_a(3)\) und \(b \in N(\Lambda)\), so ist sup \(\{a, b\}\)

\[= a \lor ((a \land i) \lor b) \] (\(a \land i\) ist aus \(N(\Lambda)\)), wir können also \((a \land i) \lor b\) in \(N(\Lambda)\) bilden; dies ist aber auch in \(T_a\), und somit existiert \(a \lor ((a \land i) \lor b)\) im \(T_a(3)\).

Im letzten Fall, wenn \(a \in T_a(3), b \in T_b(3), \alpha = \beta\) und \(a, b \in N(\Lambda)\), haben \(a, b\) keine gemeinsame obere Schranke. sup \(\{a, b\}\) existiert also im \(L\) genau dann, wenn \(a\) und \(b\) eine gemeinsame obere Schranke besitzen.

Wir wollen zeigen, daß \(L\) modular ist, d. h. jedes Hauptideal \((a)\) ein modularer Verband ist. Ist \(a \in N(\Lambda)\), so ist die Behauptung offensichtlich. Wenn aber \(a \in T_a(3)\) für ein \(a \in A\), so ist \((a)\) in der Vereinigung der modularen Verbände \(N(\Lambda)\) und \(T_a(3)\) erhalten, also ist nach Lemma 2 aus [2] die Vereinigung und damit auch ihr Teilverbund \((a)\) wieder modular.
Die Eigenschaft (i) aus Lemma 2 ist wegen der Modularität trivialerweise erfüllt.
Nehmen wir an, daß $\sup \{a, b\}$ nicht existiert, d. h. $a \in T_a(3), b \in T_b(3), a \not\preceq b$
und $a, b \in N(A)$, dann ist $a \land i \supseteq a(x), b \land i \supseteq a(\beta), d. h., aus a(x) \lor a(\beta) = i$ folgt
$(a \land i) \lor (b \land i) = i$. Die zweite Identität aus (ii) $(a \lor i) \land (b \lor i) = i$ ist trivial.
Jede Kongruenzrelation von T_a hat genau eine Erweiterung zu $T_a(3)$; aber die
Elemente von T_a sind mit den Elementen von (u_a) identifiziert, folglich hat jede
Kongruenzrelation von $N(A)$ höchstens eine Erweiterung zu L. Daß sich jedes
$\Theta \in \mathcal{E}(N(A))$ tatsächlich erweitern läßt, folgt trivialerweise aus den Definitionen
der Operationen und Lemma 1. Damit ist das Lemma bewiesen.

§ 4. Beweis von Satz 1

Gegeben seien ein Boolescher Verband B und \ast-Operationen in der Form f_a:
$[b_a, 1] \to [0, c_a]$.
Die identische Abbildung $f_0: x \to x$ ist ebenfalls eine \ast-Operation. Wir wollen
zeigen, daß die partielle Algebra $B^\ast = \langle B; \lor, \land, f_0, f_a | x \in \Omega \rangle$
eine modulare Realisierung hat.
A sei die Menge aller Indizes der definierten \ast-Operationen, d. h.

$$A = \{0, a | x \in \Omega\} = \{0\} \cup \Omega.$$

Zu dieser Indexmenge und zu B betrachten wir den im Lemma 1 gegebenen Verband $B(A)$. Das Einselement von $B(A)$ bezeichnen wir mit i. $a(x)$ sind die in
Lemma 2 definierten Elemente. Das Intervall $[a(x), i]$ ist zu B isomorph, und bei
diesem Isomorphismus entspricht dem Element $b_a \in B$ das Element $b^\ast \supseteq a(x)$.
Für f_0 ist b_0 Nullelement von B, und b_0 ist also $a(0)$.
Zu $[b_a, 1] \cong T_a$ betrachten wir $T_a(3)$, die in der zweiten Bemerkung nach Lemma 1
definiert wurde. Aus $B(A)$ und $T_a(3) (x \in \Omega)$ können wir laut Lemma 3 einen partiellen Verband L konstruieren. Das Nullelement von $T_a(3)$ sei 0_a, das Einselement bezeichne i_a; $T_a(3)$ hat drei Elemente u_a, v_a, w_a, so daß

$$u_a \land v_a = u_a \land w_a = v_a \land w_a = 0_a,$$

$$u_a \lor v_a = u_a \lor w_a = v_a \lor w_a = i_a,$$

und $[0_a, u_a] \cong [b, 0]$, i_a ist isomorph $[b_a, 1]$. Wir identifizieren dann die bei den Isomorphismen
$[0_a, u_a] \cong [b, 0], i_a$ entsprechende Elemente. Abb. 2 zeigt L, wenn $\Omega = \{1\}$, d. h.
$A = \{0, 1\}$ ist. In diesem partiellen Verband gilt

$$[u_0, i_0] \cong [a(0), i] \cong [a(x), i]$$ \hspace{1cm} (1)

und

$$[u_a, i_a] \cong [b_a, i].$$ \hspace{1cm} (2)

Wenn wir Lemma 1 berücksichtigen, so erhalten wir aus (1) und (2), daß jede
Kongruenzrelation von L durch ihre Beschränkung auf $[u_0, i_0]$ eindeutig bestimmt
ist. Als nächster Schritt wird K als ein zu $B(A)$ isomorpher Verband definiert. Der
Isomorphismus $B(A) \to K$ sei $x \to x, x \in B$. B und das Ideal $(a(x))$ von K
 sind isomorph; dieser Isomorphismus soll mit ψ bezeichnet werden. Wenn $y \in B$, so ist
also $\psi(y) \in (a(x)) \subseteq K$.
Mit L und K können wir dann $L + K$ definieren (Lemma 2), wir müssen dazu nur sagen, welche Elemente wir identifizieren wollen. Es sei $t \in [u_0, i_0]$. Nach (1) und (2) gibt es eine unäre algebraische Funktion (Projektivität) $p(x)$, die t in ein Element $p(t) \in [u_0, i_0] = B$ überführt, und zwar $p(u_0) = 0 = (-u_0)$ und $p(i_0) = 1 = (-i_0)$. Jetzt können wir die *-Operation anwenden; $f_*=p(t)$ ist dann im Intervall $[0, e_0] \subseteq B$. Wenden wir schließlich den Isomorphismus ψ an, so ist $\psi f_* p(t) \in [e(t)] \subseteq K$. Wir identifizieren nun jedes $t \in [a_0, i_0]$ mit $\psi f_* p(t)$. Damit erhalten wir nach Lemma 2 den modularen Verband $V = L + K$ (Abb. 3).

Zu zeigen ist noch, daß $L + K = V$ eine Realisierung von B^* ist. Wir haben schon gesehen, daß jede Kongruenz von $B = [u_0, i_0]$ genau eine Erweiterung zu L hat. Dieses Intervall ist mit dem Intervall $[0, a(0)]$ von K identifiziert, und jede Kongruenz von K ist durch ihre Beschränkung auf $[0, a(0)]$ bestimmt; infolgedessen gilt dasselbe für V, d. h., jede Kongruenz von V ist durch ihre Beschränkung auf $[u_0, i_0]$ bestimmt.

In V gilt nach (1) und (2) $[b_0, 1] \approx [e_0, 0] (\subseteq [u_0, i_0] = B)$, d. h., die Beschränkung einer Kongruenz Φ von $L + K$ auf B ist eine Kongruenz von B^*. Wir müssen schließlich zeigen, daß sich jede Kongruenz von B^* tatsächlich zu V erweitern läßt. Es sei Θ eine Kongruenz von B^*, sie läßt sich dann zu L und zu K erweitern. Diese Kongruenzen seien Θ_1 bzw. Θ_2. Daß sich Θ zu V erweitern läßt, bedeutet, daß die Beschränkung von Θ_1 bzw. Θ_2 auf $L \cap K$ dieselbe Äquivalenz ist. Das ist aber auf Grund der Konstruktion von $L + K$ trivial. Damit ist Satz 1 bewiesen.

§ 5. Beweis von Satz 2

Wir nennen einen Booleschen Verband B homogen, wenn für jedes $a \in B$, $a \neq 0$ das Ideal $[a]$ isomorph B ist. Es bezeichne f_*: $[a] \rightarrow B$ einen Isomorphismus. Die entsprechende partielle Algebra

$$B^* = \langle B; \lor, \land, f_*|a \in B, a \neq 0\rangle$$
ist offensichtlich einfach. Nach Satz 1 hat B^* eine modulare Realisierung V, die
also ein einfacher modularer Verband ist. B ist dann einem Teilverband von V
isomorph.
Zum Beweis von Satz 2 müssen wir zeigen, daß jeder distributive Verband in
einem homogenen Booleschen Verband einbettbar ist.
Es sei H eine beliebige Menge. $B(H)$ ist der Boolesche Verband aller Teilmengen
von H. Ist die Mächtigkeit von B

$$|B| = \aleph \geq \aleph_0,$$
so bilden alle Teilmengen $X \subseteq H$ der Mächtigkeit $|X| < \aleph$ ein Ideal I. B/I ist
dann ein homogener Boolescher Verband. Es sei L ein beliebiger distribute
Verband. Dann existiert eine Menge H', so daß L einem Teilverband von $B(H')$
isomorph ist, und zwar sei $\bar{a} \subseteq H$ für $a \in L$ die entsprechende Teilmenge. Jedem
$a \in L$ ordnen wir eine Menge X_a zu, so daß $|X_a| = |L|$ und für $a \neq b$

$$X_a \cap X_b = \emptyset.$$
Es sei $H' = H \cup \bigcup_{a \in L} X_a$ und wir betrachten $B(H')$. Zu $a \in L$ können wir $\bar{a} \cup X_a$
$$\subseteq H'$$ zuordnen. Wenn wir dann $B(H')/I$ bilden, so erhalten wir einen Monomorphismus von L in den homogenen Booleschen Verband $B(H')I$. Damit ist Satz 2
bewiesen.

LITERATUR

[2] Schmidt, E. T.: Every finite distributive lattice is the congruence lattice of some
modular lattice. To appear in the Algebra Univ.

Manuskripteingang: 9. 6. 1972

VERFASSER:

E. T. SCHMIDT, Mathematisches Institut der Ungarischen Akademie der
Wissenschaften Budapest