ON FINITELY GENERATED SIMPLE MODULAR LATTICES

by
E. T. SCHMIDT (Budapest)

0. Introduction

R. Wille asked the following question: does every finitely generated modular lattice contain a prime quotient? The answer is negative, as shown by the following

Theorem. There exists a finitely generated simple modular lattice of infinite length.

The proof is based on the method of [1].

1. Preliminaries

Let \(Q \) be the chain of all rational numbers \(\frac{k}{2^n}, 0 \leq k \leq 2^n, n = 0, 1, 2, \ldots \).

Lemma [1]. Let \(N \) be a bounded distributive lattice. Then there exists a bounded modular lattice \(M \) with the following properties:

(i) \(M \) has three elements \(u_1, u_2, u_3 \) such that 0, \(u_1, u_2, u_3, 1 \) form a sublattice isomorphic to \(\mathbb{Z}_3 \), (the five element modular but not distributive lattice) and \((u_i) \) is isomorphic to \(N \);

(ii) for every congruence relation \(\Theta_i \) of \((u_i) \) \(i = 1, 2, 3 \) there exists exactly one congruence relation \(\Theta \) of \(M \) such that for \(b, c \in (u_i) \) \(b = c(\Theta) \) iff \(b = c(\Theta_i) \).

We apply this lemma for the lattice \(Q = N \) and \(M \) will always denote this lattice getting from \(Q \).

The following lattice construction is due to Hall and Dilworth [2] (see also [1]). Let us take two bounded lattices \(L_1 \) and \(L_2 \). Suppose that \(L_1 \) has a principal dual ideal \(I_1 \), \(L_2 \) has a principal ideal \(I_2 \) and \(I_1 \cong I_2 \) by \(q : x \rightarrow x' \). We get a lattice \(L \) as follows: \(L \) is the set of all \(x \in L_1, y \in L_2 \), we identify \(x \) with \(x' \) for all \(x \in I_1, x \leq y \) have unchanged meaning if \(x, y \in L_1 \), or \(x, y \in L_2 \) and \(x < y, x, y \notin I_1 = I_2 \) iff \(x \in L_1, y \in L_2 \) and there exists a \(z \in I_1 \), such that \(x < z \) in \(L_1 \) and \(x < y \) in \(L_2 \). We denote \(L \) as follows:

\[L = L_1 + L_2(qI_1 = I_2). \]
It is easy to see that for modular lattices \(L_1, L_2 \) the lattice \(L \) is modular, too ([1] Lemma 2).

2. The construction

In the lattice \(M \) the dual ideal \(\{u_i\} \) is isomorphic to \(\{u_j\} \) and both are isomorphic to \(Q \). Let us take \(M \) in five disjoint replicas \(M_1, M_2, M_3, M_4 \) and \(M_5 \). We denote the elements \(u_1, u_2, u_3, 0, 1 \) in \(M_i \) by \(u_1^i, u_2^i, u_3^i, 0^i, 1^i \). The \(\{u_i^i\} \subseteq M_1 \) is isomorphic to \(\{u_1^2\} \subseteq M_2 \), by the natural isomorphism. For a natural isomorphism we use always the symbol \(\varphi_n \).

We can define the following lattices

\[
A_0 = M_5 + M_4(\varphi_n[u_2^2] = (u_4^1)); \\
A_1 = M_1 + M_2(\varphi_n[u_1^2] = (u_2^2)); \\
A_2 = M_4 + A_1(\varphi_n[u_3^2] = (u_1^2));
\]

where

\[
\varphi^{-1}(x) = \begin{cases}
\frac{x}{2} & \text{for } 0^1 \leq x \leq u_1^1, \\
\frac{x + 1}{2} & \text{for } 0^2 \leq x \leq u_2^1,
\end{cases}
\]

\[
K = A_0 + A_2(\varphi_n[1^1] = (0^2)).
\]

The poset of all \(0^i, u_i^i, u_2^i, u_3^i, 1^i \in K \) \((i = 1, 2, 3, 4, 5) \) is represented by Fig. 1.

In the lattice \(M \), \(u_i/0 \) and \(1/0 \) are projective quotients, hence \(1^3/0^3 \) and \(u_i^3/0^2 \) are projective in \(K \). We shall denote the corresponding algebraic function which maps \(1^3/0^3 \) onto \(u_i^3/0^2 \) by \(f_0(x) \). Then

\[
f_0(x) = \left\{ \left[\left[\left(x \wedge u_2^1 \right) \vee u_3^2 \right] \wedge u_1^2 \right] \vee u_4^2 \right\} \wedge u_5^2 \
\]

Similarly, \(1^3/0^3 \) and \(u_i^3/0^3 \) are projective, and there corresponds to the algebraic function \(g_0(x) \). \(f_0^{-1}(x) \) and \(g_0^{-1}(x) \) are inverse functions.

\[
u_i/0^3 \text{ is a sublattice of } 1^3/0^3, \text{ therefore the restrictions of } f_0, f_0^{-1}, g_0, g_0^{-1} \text{ define four unary partial operations } f_0, f_0^{-1}, g_0, g_0^{-1} \text{ on } 1^3/0^3. \text{ On the other hand, we have a natural isomorphism between } 1^3/0^3 \text{ and } Q. \text{ By this isomorphism we get the partial operations } f, f^{-1}, g, g^{-1} \text{ on } Q \text{ corresponding } f_0, f_0^{-1}, g_0, g_0^{-1}.
\]

By the definition of \(A_2 \) we have:

\[
f(x) = \frac{x + 1}{2}, \ x \in Q; \quad f^{-1}(x) = 2x - 1, \quad \frac{1}{2} \leq x \leq 1;
\]

\[
g(x) = \frac{x}{2}, \ x \in Q; \quad g^{-1}(x) = 2x, \quad 0 \leq x \leq \frac{1}{2}.
\]
We have to prove that K is a finitely generated simple lattice. First we prove that $P = \{u_i, u'_i, u^i_i \mid i = 1, 2, \ldots, 5\}$ is a generating set. We can see that $f_0, f_0^{-1}, g_0, g_0^{-1}$ are defined by the elements of P, hence it is enough to prove that in the partial algebra

$$Q = \langle Q; \lor, \land, f, f^{-1}, g, g^{-1} \rangle$$

the subset $Q_0 = \{0, 1\}$ is a generating set. Let Q_0 be denote the subalgebra generated by Q_0, and let Q_n be the following subset of Q:

$$Q_n = \left\{ \frac{0}{2^n}, \frac{1}{2^n}, \frac{2}{2^n}, \ldots, \frac{k}{2^n}, \ldots, \frac{2^n}{2^n} \right\}.$$

The union $\bigcup_{n=0}^{\infty} Q_n$ is obviously Q. We prove by induction for n, that every $Q_n \subseteq Q_0$; $Q_0 \subseteq Q_n$ by the definition of Q_0. Now let $Q_n \subseteq Q_0$ and let $\frac{u}{2^{n+1}} \in Q_{n+1}$, where $0 \leq u \leq 2^{n+1}$. If $u \leq 2^n$ then $\frac{u}{2^n} \in Q_n$ and $\frac{u}{2^{n+1}} = g \left(\frac{u}{2^n} \right)$, hence $\frac{u}{2^{n+1}} \in Q_{n+1}$. In other case $2^n \leq u \leq 2^{n+1}$ we take $\frac{u - 2^n}{2^n} \in Q_n$ and apply the operation f getting $\frac{u}{2^{n+1}} = f \left(\frac{u - 2^n}{2^n} \right) \in Q_{n+1}$.
By condition (ii) of the Lemma every congruence relation of \(K \) is the smallest extension of a congruence relation of the quotient \(1^3/u_3^1 \). Therefore if \(Q \) is a simple partial algebra, \(K \) is a simple lattice. Let \(u, v, u < v \) be two elements of \(Q \) and let \(\Theta \) be a congruence relation such that \(u \equiv v(\Theta) \). Then there exist two integers \(k \) and \(n \) with the property

\[
u \leq \frac{k}{2^n} < \frac{k + 1}{2^n} \leq v.
\]

From \(u \equiv v(\Theta) \) we get \(\frac{k}{2^n} = \frac{k + 1}{2^n} (\Theta) \). If \(\frac{k + 1}{2^n} \leq \frac{1}{2} \) then we can apply \(g^{-1} \), hence

\[
\frac{k}{2^{n-1}} = g^{-1} \left(\frac{k}{2^n} \right) = g^{-1} \left(\frac{k + 1}{2^n} \right) = \frac{k + 1}{2^{n-1}} (\Theta).
\]

In the other case \(\frac{1}{2} \leq \frac{k}{2^n} \); from \(\frac{k}{2^n} = \frac{k + 1}{2^n} (\Theta) \) we get using \(f^{-1} \)

\[
\frac{k - 2^{n-1}}{2^{n-1}} = f^{-1} \left(\frac{k}{2^n} \right) = f^{-1} \left(\frac{k + 1}{2^n} \right) = \frac{k + 1 - 2^{n-1}}{2^{n-1}} (\Theta).
\]

By induction we have that from \(u \equiv v(\Theta) \) it follows \(0 \equiv 1(\Theta) \), i.e., \(Q \) is a simple partial algebra.

This completes the proof of the theorem.

Corollary. There exist a finitely generated modular lattice which does not contain a prime quotient.

Proof. Let \(K \) be a finitely generated simple modular lattice of infinite length. If \(a/b \) is a prime quotient of \(K \) and \(c/d \) is an arbitrary quotient \(c \equiv d(\Theta(a, b)) \), hence there exists a finite chain \(d = z_0 < z_1 < \ldots < z_n = c \) such that \(z_i/z_{i-1} \) is weak projective into \(a/b \) (\(i = 1, 2, \ldots, n \)) and therefore \(z_i/z_{i-1} \) has a finite length. This implies that \(c/d \) has a finite length. This is a contradiction to the assumption that \(K \) is of infinite length.

References

(*Received December 14, 1973*)
By condition (ii) of the Lemma every congruence relation of \(K \) is the smallest extension of a congruence relation of the quotient \(1^{n}/u_{1}^{n} \). Therefore if \(Q \) is a simple partial algebra, \(K \) is a simple lattice. Let \(u, v, u < v \) be two elements of \(Q \) and let \(\Theta \) be a congruence relation such that \(u \equiv v(\Theta) \). Then there exist two integers \(k \) and \(n \) with the property

\[
u \leq \frac{k}{2^{n}} \leq \frac{k + 1}{2^{n}} \leq v.
\]

From \(u \equiv v(\Theta) \) we get \(\frac{k}{2^{n}} = \frac{k + 1}{2^{n}} (\Theta) \). If \(\frac{k + 1}{2^{n}} \leq \frac{1}{2} \) then we can apply \(g^{-1} \), hence

\[
\frac{k}{2^{n-1}} = g^{-1}\left(\frac{k}{2^{n}}\right) = g^{-1}\left(\frac{k + 1}{2^{n}}\right) = \frac{k + 1}{2^{n-1}} (\Theta).
\]

In the other case \(\frac{1}{2} \leq \frac{k}{2^{n}} \); from \(\frac{k}{2^{n}} = \frac{k + 1}{2^{n}} (\Theta) \) we get using \(f^{-1} \)

\[
\frac{k - 2^{n-1}}{2^{n-1}} = f^{-1}\left(\frac{k}{2^{n}}\right) = f^{-1}\left(\frac{k + 1}{2^{n}}\right) = \frac{k + 1 - 2^{n-1}}{2^{n-1}} (\Theta).
\]

By induction we have that from \(u \equiv v(\Theta) \) it follows \(0 \equiv 1(\Theta) \), i.e., \(Q \) is a simple partial algebra.

This completes the proof of the theorem.

Corollary. There exist a finitely generated modular lattice which does not contain a prime quotient.

Proof. Let \(K \) be a finitely generated simple modular lattice of infinite length. If \(a/b \) is a prime quotient of \(K \) and \(c/d \) is an arbitrary quotient \(c = d(\Theta(a, b)) \), hence there exists a finite chain \(d = z_{0} < z_{1} < \ldots < z_{n} = c \) such that \(z_{i}/z_{i-1} \) is weak projective into \(a/b \) \((i = 1, 2, \ldots, n) \) and therefore \(z_{i}/z_{i-1} \) has a finite length. This implies that \(c/d \) has a finite length. This is a contradiction to the assumption that \(K \) is of infinite length.

References

(Received December 14, 1973)