Standard sublattices

E. Fried and E. T. Schmidt

0. Introduction

The concept of a standard ideal of a lattice was introduced in [1]. An ideal S of a lattice L is called standard if

$$I \land (S \lor K) = (I \land S) \lor (I \land K)$$

(1)

holds for any pair of ideals I, K of L, where \lor and \land denote the lattice-operations of the ideal-lattice $I(L)$ of L.

This concept is a generalization of neutral ideals and has many useful properties. Standard ideals play the same role for lattices as invariant subgroups for groups. A congruence of a group is determined by any congruence-class. However, even this does not hold for congruences generated by standard ideals. So, we should take into consideration all "standard-like" possible congruence-classes.

The aim of this paper is to give a generalization of standard ideals for convex sublattices, called standard sublattices, and to prove that many important properties of standard ideals are also valid for standard sublattices.

1. The definition of a standard sublattice

We shall denote by \cup and \cap the set-theoretical and by \lor and \land the lattice-theoretical operations. \emptyset denotes the empty set. The convex sublattice generated by a subset A of the lattice L will be denoted by $\langle A \rangle$. Let A and B be two (nonempty) subsets of the lattice L. Then we define

$$A \lor B = \langle \{a \lor b| a \in A, b \in B\} \rangle$$

$$A \land B = \langle \{a \land b| a \in A, b \in B\} \rangle,$$

i.e., $A \lor B$ and $A \land B$ are the convex sublattices of L generated by the elements $a \lor b$ and $a \land b (a \in A, b \in B)$, respectively.

Let us remark, if A and B are both ideals (or both dual-ideals) then $A \lor B$ and $A \land B$ are exactly the join and the meet of A and B in the ideal-lattice. However, in the general case neither $A \leq A \lor B$ nor $A \land B \leq A$ are valid. For example, if $A = \{a\}$ and $B = \{b\}$ then both inequalities imply $A = B$.

Presented by G. Grätzer. Received March 6, 1974. Accepted for publication in final form December 16, 1974.
DEFINITION. A convex sublattice S of a lattice L is called a standard sublattice if
\begin{equation}
I \lor (S, K) = \langle I \lor S, I \lor K \rangle
\end{equation}
and
\begin{equation}
I \land (S, K) = \langle I \land S, I \land K \rangle
\end{equation}
hold for any pair $\{I, K\}$ of convex sublattices of L, whenever neither $S \lor K$ nor $I \land (S, K)$ are empty. (Thus, the word 'standard' implies convexity.)

PROPOSITION 1. For each $s \in L$, $\{s\} \lor K \neq \emptyset$ implies $s \in K$, yielding $\langle \{s\}, K \rangle = K$, $I \lor \{s\} \leq I \lor K$, and $I \lor \{s\} \leq I \lor K$. Thus, in (2) and (3) both the left and the right hand sides of the equations are $I \lor K$ and $I \lor K$, respectively.

Now, we are going to prove that we have indeed a generalization. To do this we need the following

LEMMA 1. For the convex sublattices A and B of the lattice L the equalities
\begin{equation}
A \lor (B) = (A \lor B) ~ \text{and} ~ \langle A, (B) \rangle = (A \lor B)
\end{equation}
hold, where (X) denotes the ideal generated by X.

Proof. $A \lor (B)$ implies, obviously, both $A \lor (B) \leq (A) \lor (B)$ and $\langle A, (B) \rangle \leq \langle (A), (B) \rangle = (A \lor B)$.

(i) $x \in (A \lor (B))$ implies $x \in (A)$ and $x \in (B)$, for $(A \lor (B)) = (A) \lor (B)$. Since the ideal (A) consists of all elements of L having an upper bound in A we have $x \leq a$ for some $a \in A$. Hence $x = a \lor x \in A \lor (B)$.

(ii) Let $x \in (A)$, i.e., $x \leq a$ for some $a \in A$, and $y \in (B)$. Then we have, using the convexity of $\langle A, (B) \rangle$, by $y \leq x \lor y \leq a \lor y$ that $x \lor y \in \langle A, (B) \rangle$. Thus, $(A \lor (B))$ is the smallest convex sublattice containing all $x \lor y$ ($x \in (A)$, $y \in (B)$), is contained in $\langle A, (B) \rangle$.

PROPOSITION 2. An ideal S of a lattice L is standard if and only if it is a standard sublattice.

Proof. Let us assume, first, that the ideal S is a standard sublattice of L. Then the ideals I and K are, of course, convex sublattices. Moreover $S \lor K \neq 0$ and $I \lor (S, K) \neq 0$ are, clearly, satisfied. Thus we have by (2) and (3)
\begin{equation}
I \lor (S, K) = \langle I \lor S, I \lor K \rangle ~ \text{and} ~ I \lor (S, K) = \langle I \lor S, I \lor K \rangle.
\end{equation}

$\langle (A, (B) \rangle = A \lor B$ for the ideals A and B, i.e., we arrive at
\begin{equation}
I \lor (S \lor K) = (I \lor S) \lor (I \lor K) ~ \text{and} ~ I \lor (S \lor K) = (I \lor S) \lor (I \lor K).
\end{equation}
The first equality gives us, precisely, that \(S \) is a standard ideal. (The second equality is an obvious one.)

Let, conversely, \(S \) be a standard ideal.

Using the obvious equality \((I \land K) = (I \land (K))\) valid for any subset \(I \) and \(K \) of \(L \), we have for the convex sublattice \(I \) and \(K \) of \(L \), by Lemma 1:

\[
I \land (S \lor (K)) = (I \land S) \land (I \land (K))
\]

and

\[
(I \land S, I \land K) = (I \land S, I \land K) = (I \land S) \lor (I \land K) = ((I \land S) \lor (I \land K)).
\]

The standard ideal property for \(S \) yields (2).

We claim, now, that (3) is valid for every ideal \(S \) of \(L \).

\(S \subseteq (S, K) \) and \(K \subseteq (S, K) \) imply \((I \lor S, I \lor K) \subseteq (I \lor S, K) \). By Lemma 1 \((S, K) = S \lor (K)\), i.e., \(I \lor (S, K) \) is, clearly, the convex sublattice generated by the elements of the form \(x \lor (s \land y) \) where \(x \in I, s \in S, y \in t \) for some \(t \in K \). By convexity

\[
x \lor (s \land y) \land (x \lor t) \in (I \lor S, I \lor K)
\]

and

\[
x \lor (s \land y) \lor (x \lor t) \subseteq x \lor (s \land y) \lor (x \lor t)
\]

imply \(x \lor (s \land y) \in (I \lor S, I \lor K) \).

Using the convexity of \((I \lor S, I \lor K) \) again we have \(I \lor (S, K) \subseteq (I \lor S, I \lor K) \) which finishes the proof.

Now, we prove that standard sublattices have similar characterizations to those of standard ideals in [1].

THEOREM 1. The following four conditions are equivalent for each convex sublattice \(S \) of a lattice \(L \).

(a) \(S \) is a standard sublattice.

(b) Let \(K \subseteq L \) be any convex sublattice of \(L \) such that \(K \land S \neq \emptyset \). Then, to each \(x \in (S, K) \) there exist \(s_1, s_2 \in S, a_1, a_2 \in K \) such that:

\[
x = (x \land s_1) \lor (x \land a_1) = (x \lor s_2) \land (x \lor a_2).
\]

(b') Let \(K \) be as before. Then, for each \(S \) and to each elements \(x \in (S, K) \) and to each \(s_2, s_1 \in S \) there are elements \(s_1, s_2 \in S, a_1, a_2 \in K \) such that:

\[
x = (x \land s_1) \lor (x \land (a_1 \lor s_2)) = (x \lor (s_2 \land a_2) \land (x \lor (a_2 \land s_1))).
\]

(c) The relation \(\theta [S] \) on \(L \) defined by:

\[
\theta [S] (x, y) \iff x \lor (s \land y) \in (I \lor S, I \lor K)
\]
\[x \equiv y(\theta[S]) \text{ if and only if} \]
\[x \land y = ((x \land y) \lor t) \land (x \lor y) \quad \text{and} \quad x \lor y = ((x \lor y) \land s) \lor (x \land y) \]

with suitable \(t, s \) in \(S' \) is a congruence relation.

Proof. We will prove the equivalence of the four conditions cyclically.

(a) implies (β). Let \(K \cap S \neq \emptyset \) and let \(x \in \langle S, K \rangle \). For \(I = \{x\} \) the relation \(I \cap \langle S, K \rangle \) is satisfied. \(x \) is, clearly, the greatest element of \(I \cap \langle S, K \rangle \), i.e., by (2) the greatest element of \(\langle I \land S, I \land K \rangle \). Thus, \(x = (x \land s_1) \lor (x \land a_1) \) with suitable \(s_1 \in S, a_1 \in K \).

The dual property follows, similarly, from (3).

(β) implies (β'). Let \(K' = \langle s \rangle, K \rangle \) where \(s \) is an arbitrary element of \(S \). Then \(s \in K' \) implies \(S \cap K' \neq \emptyset \). Further, \(K \leq K' \leq \langle S, K \rangle \) yields \(\langle S, K \rangle = \langle S, K' \rangle \). Thus, for any \(x \in \langle S, K \rangle \) the equality
\[x = (x \land s_1) \lor (x \land a_1) \quad (s_1 \in S, a_1 \in K') \]
holds, by (β). However \(a_1 \leq a_1 \lor s (a_1 \in K) \) implies \(x \leq (x \land s_1) \lor (x \land (a_1 \lor s)) \leq x \lor x = x \), i.e.,
\[x = (x \land s_1) \lor (x \land (a_1 \lor s)). \]

(4)

We have dually, for an arbitrary \(s' \in S \) the equality
\[x = (x \lor s_2) \land (x \lor (a_2 \lor s')) \quad (s_2 \in S, a_2 \in K). \]

(5)

Remark. Substituting in (β') \(s_1, s_2', a_1, a_2 \) by \(s_3, s_4', a_3, a_4 \), respectively, where \(s_3 \geq s_1, s_4' \leq s_2', a_3 \geq a_1, a_4 \leq a_2 (s_3, s_4' \in S, a_3, a_4 \in K) \) we also get equality.

Proof. It is enough, by duality, to deal only with \(s_3 \) and \(a_3 \). Monotony implies:
\[x = (x \land s_1) \lor (x \land (a_1 \lor s_2)) \leq (x \land s_3) \lor (x \land (a_3 \lor s_2)) \leq x \lor x = x, \]
proving the statement.

(β') implies (γ). Let \(\theta[S] \) be defined as follows: \(x \equiv y(\theta[S]) \), for \(x \geq y \), if and only if \(y = (y \lor t) \land x \) and \(x = (x \land s) \lor y \) hold for suitable \(s, t \) in \(S' \).

Let us mention, that we may choose \(s \) and \(t \) such that \(s \geq t \) holds, because of the monotony. It is not too hard to verify that \(\theta[S] \) is an equivalence relation (see [2] p. 24.). We shall prove, that \(x \land z \equiv y \land z(\theta[S]) \) and \(x \lor z \equiv y \lor z(\theta[S]) \) are also valid for every \(z \in L \). Since the definition of \(\theta[S] \) is self-dual it is enough to prove only the first statement.

\(y \leq x \) implies \(y \land z \leq x \land z \) thus the trivial inequality \(y \land z \leq t \lor (y \land z) \) gives us \(y \land z \leq (t \lor (y \land z)) \land (x \land z) \). On the other hand
\[(t \lor (y \land z)) \land (x \land z) \leq (t \lor y) \land x \land z = (t \lor (y \land x)) \land z = y \land z, \]
i.e.,
\[y \land z = ((y \land z) \lor t) \land (x \land z). \]

Now, let \(K \) be the convex sublattice \(\langle t \land y \land z, y \rangle \). We have \(s \land t \land y \land z \in \langle S, K \rangle \), for \(s \in S \), \(t \land y \land z \in K \). By the convexity of \(\langle S, K \rangle \) the inequalities

\[t \land y \land z \leq t \land y \leq t \land x \leq s \land x \leq s \]

imply \(s \land x \in \langle S, K \rangle \) yielding \(x = (s \land x) \lor y \in \langle S, K \rangle \). Thus, the convexity of \(\langle S, K \rangle \) and the inequalities

\[t \land y \land z \leq y \land z \leq x \land z \leq x \]

imply \(y \land z, x \land z \in \langle S, K \rangle \).

Since \(t \in S \), we have, by \((\beta')\), elements \(s' \in S \), \(a_t \in K \) such that

\[x \land z = ((x \land z) \land s') \lor (x \land z \land (a_t \lor t)). \]

As \(y \) is the greatest element of \(K \), we obtain, by the remark, that

\[x \land z = ((x \land z) \land s') \lor ((x \land z) \land (y \lor t)) = ((x \land z) \land s') \lor ((y \lor t) \land x) \land z = (x \land z) \land s' \lor (y \land z). \]

Hence, \(\theta[S] \) is a congruence relation.

\((\gamma)\) implies \((a)\). It is enough to prove \((2)\). \(S, K \leq \langle S, K \rangle \) implies \(\langle I \land S, I \land K \rangle \leq \langle I \land S, I \land K \rangle \), i.e. we have to prove \(I \land \langle S, K \rangle \leq \langle I \land S, I \land K \rangle \). First we prove that each \(u \in I \cap \langle S, K \rangle \) is contained in \(\langle I \land S, I \land K \rangle \). Let \(v \) be an element of the nonempty set \(S \cap K \). \(\langle S, K \rangle \) is, obviously, the set of all elements \(y \) with \(s_1 \land k_1 \leq y \leq s_2 \lor k_2 \) \((s_1, s_2 \in S, k_1, k_2 \in K)\). Moreover, monotonicity implies that we may also suppose \(s_1 \leq v \leq s_2 \) and \(k_1 \leq u \leq k_2 \). The same hold for \(u \), for it belongs to \(\langle S, K \rangle \). \(s_t \equiv s_t \theta[S] \) implies \(k_2 \lor s_2 \equiv k_2 \lor s_2 \theta[S] \). Then, there exists by \((\gamma)\) an \(s \in S \) such that

\[u = (u \land s) \lor (u \land k_2). \]

\[u \in I \Rightarrow u = (u \land s) \lor (u \land k_2) \in \langle I \land S, I \land K \rangle. \]

Since \(I \land \langle S, K \rangle \) is the smallest convex sublattice containing all elements of the form \(i \land y \) \((i \in I, y \in \langle S, K \rangle)\), it is enough to prove that all of these elements are in \(\langle I \land S, I \land K \rangle \). Since \(I \cap \langle S, K \rangle \neq \emptyset \) it contains an element \(u \). We may choose \(s_1 \in S, k_1 \in K \) such that \(s_1 \land k_1 \leq y \) as we have seen. Thus:

\[i \land (s_1 \land k_1) \leq i \land y \leq (i \lor u) \land (y \lor u). \]

It is enough to prove, by convexity, that

\[i \land (s_1 \land k_1) \in \langle I \land S, I \land K \rangle \quad \text{and} \quad i \land y \in \langle I \land S, I \land K \rangle \quad \text{for} \quad u \leq i, u \leq y, \]
since
\[u \in I \cap \langle S, K \rangle \quad \text{implies} \quad i \lor u \in I, y \lor u \in \langle S, K \rangle. \]

\[i \land (s_1 \land k_1) = (i \land s_1) \land (i \land k_1) \] proves that this element belongs to \(\langle I \land S, I \land K \rangle \).

\[u \leq i \lor y \leq i \quad \text{and} \quad u \leq i \land y \leq y \] imply that \(i \land y \in I \cap \langle S, K \rangle \), i.e., \(i \land y \) is an element of \(\langle I \land S, I \land K \rangle \). Hence, the theorem is proven.

COROLLARY 1. If \(S \) is a standard sublattice then \(S \) is a congruence class by the congruence relation \(\theta[S] \).

Proof. Let \(x \equiv y(\theta[S]), x > y \). We have to prove that if one of these elements belongs to \(S \) then both of them are in \(S \). By the self-dual definition of standard sublattice we may assume \(y \in S \). By condition (\(\gamma \)) \(y = (y \lor t) \land x \) and \(x = (x \land s) \lor y \) with suitable \(s, t \in S \). Then \(x = (x \land s) \lor y \leq (x \land (y \lor s)) \lor y \leq x \), i.e., \(x = (x \land (y \lor s)) \lor y \). Trivially \(y \leq x \land (y \lor s) \leq y \lor x \) and \(y, y \lor s \in S \). Hence, by the convexity of \(S, x \land (y \lor s) \in S \) yielding \(x = (x \land (y \lor s)) \lor y \in S \).

Let \(S \) be a standard sublattice of the lattice \(L \). Then \(L/S \) denotes the lattice \(L/\theta[S] \).

COROLLARY 2. Let \(S \) and \(T \) be two standard sublattices. Then \(S \cap T \) is either a standard sublattice or it is empty.

Proof. We may assume that \(S \cap T \) contains an element \(u \). Let us suppose that \(x \equiv y(\theta[S]) \) and \(x \equiv y(\theta[T]) \) where \(x > y \). Then we have \(x = (s_1 \land x) \lor y \) with a suitable \(s_1 \in S \) which may be supposed to be greater then \(u \). On the other hand \(x \equiv y(\theta[T]) \) implies \(s_1 \land x \equiv s_1 \land y \) by the monotony. Hence, (\(\gamma \)) implies \(s_1 \land x = (t_1 \land (s_1 \land x)) \lor (s_1 \land y) \) with a \(t_1 \geq u \) in \(T \). Consequently \(x = (s_1 \land x) \lor y = ((t_1 \land s_1) \land x) \lor y \). But \(t_1, s_1 \geq u \) yield \(t_1 \land s_1 \geq u \), i.e., \(t_1 \land s_1 \in T \cap S \). The duality finishes the proof.

COROLLARY 3. The meet of a standard ideal and a standard dual ideal is a standard sublattice.

Proof. By Proposition 2 and by the duality all standard ideals and standard dual ideals are standard sublattices. Corollary 2 completes the proof.

Remark. The converse of Corollary 3 is not true. For example in \(N_4 \) there are one-element subsets which are not the meet of a standard ideal and of a standard dual ideal. Proposition 1 proves our statement. We can prove more. We define on the set \(\{a_0, ..., a_n; b_0, ..., b_m; c_0, ..., c_p\} \) the following partial order:

\[a_0 < b_0, \quad a_{i+1} < a_i, \quad b_i < b_{i+1}, \quad a_{i+1} < c_i < b_{i+1}. \]

It is easy to see that we have a subdirectly irreducible lattice, where \(\theta(a_0, b_0) \) is the smallest congruence. This lattice has neither 0 nor 1, i.e., for each standard ideal or
standard dual ideal the congruence class containing a_0 must also contain b_0. Thus the standard sublattice \{$a_0\}$ is not even the meet of two congruence-classes generated by a standard ideal and by a dual standard ideal.

2. Properties of standard sublattices

Firstly, we prove two Lemmas.

LEMMA 2. Let S be a standard sublattice and I be an arbitrary convex sublattice of the lattice L such that $I \cap S \neq \emptyset$. Then $I \cap S$ is a standard sublattice of the lattice I.

Proof. $I \cap S$ is obviously a convex sublattice of I. To prove that $I \cap S$ is standard we use condition (β). Each convex sublattice K of I is, clearly, a convex sublattice of L itself. Thus, by (β) each $x \in \langle S \cap I, K \rangle$ is to be written in the form

$$x = (x \wedge s) \vee (x \wedge a) \quad (s \in S, a \in K),$$

since $K \cap S = (K \cap I) \cap S = K \cap (I \cap S)$ is not empty.

We may assume, by monotony, that both $s \geq u$ and $a \geq u$, where u is a given element of $K \cap (S \cap I)$. Then we have for $s' = (x \vee u) \wedge s$:

$$u = (x \vee u) \wedge u \leq s'; \quad s' \leq x \vee u; \quad s' \leq s.$$

$u \in S \cap I, x \vee u \in I, s' \in S$ imply $s' \in S \cap I$. Hence, by $x \wedge s' = x \wedge (x \vee u) \wedge s = x \wedge s$,

$$x = (x \wedge s') \vee (x \wedge a) \quad (s' \in S \cap I, a \in K)$$

yields (β) in I. The duality finishes the proof.

LEMMA 3. Let $x \rightarrow x'$ be a homomorphism of L onto L' and let S be a standard sublattice of L. The homomorphic image S' of S is a standard sublattice of L'.

Proof. We shall prove (β) for S'. The coimage K of an arbitrary convex sublattice K' of L' is, obviously, a convex sublattice of L. $K' \cap S' \neq \emptyset$ implies $K \cap S \neq \emptyset$. Each $y' \in \langle S', K' \rangle$ has, clearly, a coimage $x \in \langle S, K \rangle$ for which, by (β)

$$x = (x \wedge s) \vee (x \wedge a) \quad (s \in S, a \in K)$$

holds. Then, $x' = y', s' \in S', a' \in K'$ proves the first statement of (β) for S'. The proof is completed by duality.

THEOREM 2. (The first isomorphism theorem). Let L be a lattice, S a standard
sublattice and I a convex sublattice of L such that $S \cap I \neq \emptyset$. Then $S \cap I$ is a standard sublattice of I and:

$$\langle I, S \rangle / S \cong I / (I \cap S).$$

Proof. The first statement was proved in Lemma 2. Using the first isomorphism theorem for universal algebras it remains to prove that every congruence class of $\langle I, S \rangle$ may be represented by an element of I. Indeed, if $x \in \langle I, S \rangle$ then, by (β), $x = (x \land s_1) \lor (x \land a_1) = (x \lor s_2) \land (x \lor a_2)$ ($s_1, s_2 \in S, a_1, a_2 \in I$) and choosing any u in $S \cap I$ we may suppose that $s_2 \leq u \leq s_1, a_2 \leq u \leq a_1$. Then,

$$x = (x \land s_2) \lor (x \land a_1) \equiv (x \land s_2) \lor (x \land a_1) = x \land a_1(\theta[S]), \text{ for } s_2 \leq a_1,$$

and, similarly, $x = x \lor a_2(\theta[S])$. For $y = (x \land a_1) \lor a_2$ we have $a_2 \leq y \leq a_1$ yielding $y \in I$ and $x \equiv x \lor a_2 \equiv (x \land a_1) \lor a_2 = y(\theta[S])$ proving the theorem.

THEOREM 3 (Second isomorphism theorem). Let L be a lattice S a convex sublattice and T a standard sublattice of L such that $T \leq S$. Then S is standard in L if and only if S / T is standard in L / T and in this case the isomorphism $L / S \cong (L / T) / (S / T)$ holds.

Proof. If S is standard then S / T is standard in L / T by Lemma 3. The converse is proved in the same way as it is in [1] for standard ideals. The second isomorphism theorem for universal algebras finishes the proof.

It has been proved (see [1]) that L is a distributive lattice whenever every ideal of it is standard. A similar statement holds for standard sublattices.

THEOREM 4. Let u be an element of the lattice L. If every convex sublattice containing u is standard then L is a distributive lattice.

Proof. We shall prove that distributivity is implied whenever the ideals and the dual ideals containing u are standard. Let, namely, $L_1 = L/[u]$ and $L_2 = L/[u]$. The condition and Lemma 3 imply that each ideal of L_1 and each dual ideal of L_2 is standard. Thus, both L_1 and L_2 are distributive. If $a \leq b$ have the same image both in L_1 and in L_2 then exist $p \leq u \leq q$ such that $b = a \lor p$ and $a = b \land q$, since both $[u]$ and $[u]$ are standard. Thus,

$$a = b \land q = b \land ((b \land q) \lor q) = b \land (a \lor q) \geq b \land (a \lor p) = b \land b = b,$$

proving that L is a subdirect product of the two distributive lattices L_1 and L_2. Hence, L is itself distributive.

THEOREM 5. In a relatively complemented lattice every congruence class is a standard sublattice.
Proof. Let L be a relatively complemented lattice and let θ be a congruence relation on L. Let, further, S denote the congruence class containing a given element a of L.

For $x \leq y$, $x \equiv y(\theta)$ let x' denote the relative complement of x in the interval $[x \land a, y]$ and let y' denote the relative complement of y in the interval $[x, a \lor y]$. From $x \equiv y(\theta)$ follows $x \land a = x \land x' \equiv y \land x' = y'(\theta)$ yielding $a = a \lor (x \land a) \equiv a \lor x'(\theta)$. Hence, $t = a \lor x'$ is an element of S and so is, dually, the element $s = a \land y'$. Further, $x' \leq y \land (a \lor x') = y \land t$ implies $y = x' \lor x \leq (y \land t) \lor x \leq y$ proving $y = (y \land t) \lor x$. We get $x = (x \lor s) \land y$ dually. Thus, condition (γ) of Theorem 1 is satisfied for S, i.e., S is standard.

Each standard sublattice is a class of a congruence relation. If the lattice is relatively-complemented this relation is unique and all classes are standard sublattices, i.e., $\theta[S] = \theta$ holds for each congruence class S of θ.

In the following example we will give a congruence θ of a lattice L such that $\theta[S] = \theta$ holds for each congruence class S of θ though none of these classes are standard.

Let $N^{(n)}$ denote a family of lattices isomorphic to N_5 for each integer n. The elements of $N^{(n)}$ will be denoted by o_n, a_n, b_n, c_n, i_n, respectively, where o is the smallest element i is the greatest element and $a < b$. There is an amalgam L of these lattices such that $o_n = c_{n-1}$ and $a_n = i_{n-1}$ and L contains no further elements. Now, the classes $S_n = \{o_n, a_n, b_n\}$ are classes of a congruence relation having the desired property.

REFERENCES

Eötvös Loránd University
Budapest
Hungary

Mathematical Institute
Hungarian Academy of Science
Budapest
Hungary