LATTICES GENERATED BY PARTIAL LATTICES

E.T. SCHMIDT

Dedicated to I. Rédei on his 75-th birthday

1. INTRODUCTION

Let M be a lattice and D be a distributive lattice with 0 and 1. If a/b is a prime quotient of M then we can define a partial lattice $M(aDb)$ as follows: $M(aDb)$ is the set-theoretical union of M and D, and we identify a with 1 and b with 0; M and D are sublattices and $m \lor d$, $m \land d$ ($m \in M$, $d \in D$) are defined only for $d \in M \cap D = \{a, b\}$. Shortly speaking we put the distributive lattice D into the prime quotient a/b of M. We will show that in every equational class \mathcal{X} containing M there exists a lattice which contains a relative sublattice isomorphic to $M(aDb)$. In this paper we define a special lattice $M[D]$ (an extension of M by D) containing the relative sublattice $M(aDb)$. The construction is a generalization of that given by R.W. Quackenbush [7] for the case if M is a bounded distributive lattice. Let M_3 be the five-element modular, non-distributive lattice, $M_3[D]$ was defined in [9] and later discussed by A. Mitschke and R. Wille [5]. Let $\tilde{M}(aDb)$ be the sublattice of $M[D]$ generated by $M(aDb)$. We prove that the quotient sublattice of a/b in $\tilde{M}(aDb)$ (and in $M[D]$) is isomorphic to D, and $\Theta(a/b)/\omega$ in $\tilde{M}(aDb)$
is isomorphic to \(\Theta(D) \). For modular \(M \), these results have been proved independently by R. Freese [3]. Finally we give a shorter proof of the main theorem of [5].

2. THE FINITE CASE

Let first \(D \) be a finite distributive lattice with the ultrafilters \(Q_1, Q_2, \ldots, Q_n \). (By the definition of the ultrafilter \(Q_i \neq D \)).

For an arbitrary lattice \(M \) we define a special subdirect power \(M[D] \) of \(M \) as follows: \(M[D] \) contains all \(d = (d_1, d_2, \ldots, d_n) \in M^n \) for which \(Q_i \supseteq Q_j \) implies \(d_i \supseteq d_j \). \(M[D] \) is obviously a sublattice of \(M^n \), hence a subdirect power of \(M \). Let \(X \) be the poset of all ultrafilters of \(D \). Then \(M[D] \) is the lattice of all monotone maps of \(X \) into the lattice \(M \).

Before we discuss some interesting properties of this lattice, let us take too examplars for \(M[D] \). Let \(D \) be the three-element chain \(3 \). We shall consider \(M = M_3 \) (with the elements \(0, a_1, a_2, a_3, 1 \)), and in the second case \(M = N_5 \), the five-element non-modular lattice (with the elements \(0, 1, a, b, c; a > b \)). The corresponding lattices \(M_3[3] \) and \(N_5[3] \) are:

\[
\begin{align*}
M_3[3] & \quad (1, 1) \\
& \quad (1, a) \\
& \quad (a, a) \\
& \quad (a, b) \\
& \quad (a, 0) \\
& \quad (b, b) \\
& \quad (0, 0)
\end{align*}
\]

\[
\begin{align*}
N_5[3] & \quad (1, 1) \\
& \quad (1, a) \\
& \quad (a, a) \\
& \quad (a, b) \\
& \quad (a, 0) \\
& \quad (b, b) \\
& \quad (0, 0)
\end{align*}
\]
If \(2 \) is the two-element distributive lattice then \(M[2] \cong M \). The correspondence
\[
m \mapsto f_m = (m, m, \ldots, m) \quad (m \in M)
\]
is the canonical embedding of \(M \) into \(M^n \) and by the definition of \(M[D] \) every \(f_m \) belongs to \(M[D] \). Let \(a/b \) a prime quotient of \(M \). We shall show that the corresponding quotient \(f_a/f_b \) of \(M[D] \) is isomorphic to \(D \). But by the Birkhoff – Stone representation theorem we have for every \(d \in D \) the correspondence \(d \mapsto g_d = (d_1, d_2, \ldots, d_n) \in 2^n \), where \(d_i = 1 \) if \(d \in Q_i \) and \(d_i = 0 \) if \(d \notin Q_i \). If \(d_i \neq d_j \) then \(d_i = 0, d_j = 1 \) hence \(d \not\in Q_j \), \(d \in Q_i \) and therefore \(Q_i \nsubseteq Q_j \); hence \(Q_i \nsubseteq Q_j \) implies \(d_i \nleq d_j \). We define \(g_d(a/b) = (y_1, y_2, \ldots, y_n) \in f_a/f_b \), where \(y_i = a \) if \(d_i = 1 \) and \(y_i = b \) otherwise. Then \(d \mapsto g_d(a/b) \in M[D] \) is an isomorphism between \(D \) and \(f_a/f_b \). The elements \(f_m \ (m \in M) \) and \(y \ (y \in f_a/f_b) \) form a relative sublattice isomorphic to \(M(aDb) \), hence

Proposition 1. \(M(aDb) \) is isomorphic to a relative sublattice of \(M[D] \).

Let \(\mathcal{X} \) be an equational class containing \(M \) (we assume that \(|M| > 1 \)).

Proposition 2. The free lattice \(F_{\mathcal{X}}(M(aDb)) \) over \(\mathcal{X} \) generated by \(M(aDb) \) exists.

Let \(\hat{M}(aDb) \) be the sublattice of \(M[D] \) generated by \(M(aDb) \). \(M[D] \) is a subdirect power of \(M \) hence

Proposition 3. Every congruence relation of \(a/b (= f_a/f_b) \) can be extended to \(\hat{M}(f_a/f_b) (= \hat{M}(aDb)) \), hence in \(\hat{M}(aDb) \) \(\Theta(a, b)/\omega \) is isomorphic to \(\Theta(D) \).

Let \(M \) be a bounded lattice. Then the \(g_d \) defined above can be taken as an element of \(M[D] \).

Proposition 4. If \(M \) is a bounded lattice then \(M[D] \) is generated by
\[
\{ f_m \mid m \in M \} \cup \{ g_d \mid d \in D \}.
\]
Proof. (See [4]). Let $h = (h_1, h_2, \ldots, h_n) \in M[D]$. Let $X_{h_i} = \{Q_j \mid h_j \geq h_i\}$. Then X_{h_i} is an increasing subset of X (a subset E of X is increasing if $x \in E$, $y \geq x$ imply $y \in E$). Hence there exists a unique element $e_i \in D$ such that $X_{h_i} = \{Q_j \mid e_i \in Q_j\}$ (e_i is the minimal element of the intersection $\cap Q_j$ of all $Q_j \in X_{h_i}$). We prove that $h = \bigvee_{i=1}^n (f_{h_i} \land g_{e_i})$. Let us take:

$$\bigvee_{i=1}^n (f_{h_i} \land g_{e_i})(Q_j) = \bigvee \{h_i \mid e_i \in Q_j\} =$$

$$= \bigvee \{h_i \mid Q_j \in X_{e_i}\} = \bigvee \{h_i \mid h_j \geq h_i\} = h_j.$$

3. THE GENERAL DEFINITION OF $M[D]$

D will denote the equational class of bounded distributive lattices. If $D \in D$, then the set X of all ultrafilters of D becomes a compact totally order disconnected space by identifying X with the set $\text{Hom}_D(D, 2)$ of homomorphism onto 2. Let M be an arbitrary lattice.

Definition. $\mathcal{C}(X, M)$ is the lattice of all continuous monotone maps of the compact totally order disconnected space X into the discrete space M.

If D is a finite distributive lattice then by the definition of $M[D]$ in the previous paragraph we obtain that $M[D] = \mathcal{C}(X, M)$. Therefore we define in the general case: $M[D]$ is the lattice $\mathcal{C}(X, M)$.

Remark. We give a motivation for the definition of $M[D]$. Let M be a bounded distributive lattice. In [7] R.W. Quackenbush has defined $M[D]$ as follows: $M[D]$ is the subalgebra of M^X generated by $\{f_m \mid m \in M\} \cup \{g_d \mid d \in D\}$, where for all $Q \in X$ $f_m(Q) = m$ and

$$g_d(Q) = \begin{cases} 1 & \text{if } d \in O, \\ 0 & \text{if } d \not\in Q. \end{cases}$$

- 346 -
Brian A. Davey [2] has shown, that (for distributive M) $M[D]$ is isomorphic to $\mathcal{C}_< (X, M)$. (The proof is essentially the same as the proof of Proposition 4). The proof does not use the distributivity of M, we have therefore

Proposition 5. If M is a bounded lattice, then $M[D]$ is the sublattice of M^X generated by

$$\{f_m \mid m \in M\} \cup \{g_d \mid d \in D\}.$$

The set $\{f_m \mid m \in M\}$ is a sublattice of $M[D]$ isomorphic to M. Let a/b be a prime quotient of M. Then $f_a/f_b \in M[D]$ is isomorphic to $\mathcal{C}_< (X, 2)$. By a theorem of H. A. Priestley [6] this last lattice is isomorphic to D, hence we have the following

Theorem 1. Let a/b be a prime quotient in a lattice M and let D be a bounded distributive lattice. Then there exists a lattice $M[D]$ containing the relative sublattice $M(aDb)$ such that the quotient a/b of $M[D]$ is isomorphic to D, and $\Theta(a, b)/\omega$ is isomorphic to $\Theta(D)$.

For modular lattices this theorem was proved independently by R. Freese [3].

Corollary 1. If \mathcal{X} is an equational class containing M, then $F_{\mathcal{X}}(M(aDb))$ exists.

Let $\tilde{M}(aDb)$ denote the sublattice of $M[D]$ generated by $M(aDb)$ (more precisely by $M(f_a D f_b)$). Then $\tilde{M}(aDb)$ has the following characterization

Corollary 2. $\tilde{M}(aDb)$ is the sublattice of $M[D]$ generated by

$$\{f_m \mid m \in M\} \cup \{h_d \mid d \in D\}$$

where

$$h_d(Q) = \begin{cases} a & \text{if } d \in Q, \\ b & \text{if } d \notin Q. \end{cases}$$
4. FINITE MODULAR LATTICES

If M is a simple modular lattice then obviously $\tilde{M}(aDb) = M[D]$. The lattice given by the first diagram is also $\tilde{M}_3(a_1D0)$. Another characterization for $M_3[D]$ was given in [8], [9]: let L be the poset of all triples (x, y, z) $(x, y, z \in D)$ with the property $x \land y = y \land z = x \land z$, ordered by the rule: $(x, y, z) \leq (x', y', z')$ iff $x \leq x'$, $y \leq y'$, $z \leq z'$. The lattice operations of L are:

$$(x_1, y_1, z_1) \land (x_2, y_2, z_2) = (x_1 \land x_2, y_1 \land y_2, z_1 \land z_2)$$

and

$$(x_1, y_1, z_1) \lor (x_2, y_2, z_2) = (x_1 \lor x_2) \lor [(y_1 \lor y_2) \land (z_1 \lor z_2)],$$

$$(y_1 \lor y_2) \land [(x_1 \lor x_2) \land (z_1 \lor z_2)],$$

$$(z_1 \lor z_2) \lor [(x_1 \lor x_2) \land (y_1 \lor y_2)].$$

Let a_1, a_2, a_3 denote the atoms of M_3, then the injections $a_1 \to (1, 0, 0)$, $a_2 \to (0, 1, 0)$, $a_3 \to (0, 0, 1)$, $d \to (d, 0, 0)$ $(d \in D)$ defines an embedding of $M(a_1D0)$ into L. In [8], [9] it was proved that the congruence lattices of D and L are isomorphic, moreover every congruence relation of D can be extended to L. This yields that L is a subdirect power of M_3. Let P_i be a ultrafilter of D, then we denote by $\Theta[P_i]$ the extension of the congruence relation $\Theta[P_i]$ to L. Let u be an element of L, then we can take the mapping $\tilde{u}: \tilde{u}: X \to M_3$ where X is the set of ultrafilters of D for which $\tilde{u}(P_i)$ is the image of a_1 by the natural homomorphism $\varphi: L \to L/\Theta[P_i]$ $(L/\Theta[P_i]$ is isomorphic to M_3). We get

Proposition 6. L is isomorphic to $M_3[D]$.

The given representation of $M_3[3]$ is shown by the next diagram (the elements of 3 are $0, 1, 1$).
Problem. Is it possible to give a similar characterization for $M[D]$ if M is a finite simple complemented modular lattice?

Let p_1, p_2, \ldots, p_n be the atoms of M. An element (x_1, x_2, \ldots, x_n) of D^n is called normal if $p_i \lor p_j \trianglerighteq p_k$ implies $x_i \land x_j = x_i \land x_k = x_j \land x_k$. Conjecture: $M[D]$ is the poset of all normal elements.

5. THE CHARACTERISATION OF $F_{\mathcal{M}}(M_3(0D_1))$.

(\mathcal{M} denotes the equational class of modular lattices.) In this section we give a simple proof for the main theorem of [5]. The proof is based on an interesting property of M_3.

Proposition 7. Let M_3 be a sublattice of a modular lattice L. If $f(x)$ and $g(x)$ are unary algebraic functions over M_3 then $f(0) = g(0)$ and $f(a_1) = g(a_1)$ imply $f(x) = g(x)$ for every $x \in L$ ($x \in a_1 / 0$).

Proof. The product of two unary algebraic functions f_1 and f_2 is defined by $f_1f_2(x) = f_1(f_2(x))$. Let us take the following special unary algebraic functions over M_3. $f_i = x \lor a_i$, $g_i(x) = x \land a_i$, $i(x) = x$ ($= x \lor 0 = = x \land 1$). Let f be a unary algebraic function such that $f(0) \neq f(a_1)$.
Then f is obviously the product of these special functions. Let x be an element of $a_1/0$. Then for $u, v \in \{a_1, a_2, a_3\}$, $u \neq v$ we have:

(1) $f_u g_v f_u (x) = f_u (x)$ and $g_v f_u g_v (x) = g_v (x)$.

If u, v, w are three distinct elements of $\{a_1, a_2, a_3\}$ then we prove:

(2) $f_u g_v f_w (x) = f_u g_w f_v (x)$ and $g_u f_v g_w = g_u f_w g_v$.

Take $f_u g_v f_w (x) \lor f_u g_w f_v (x)$. We can assume that $x \leq a_1$, since for other x (2) is obviously satisfied. By the modularity we get

\[
f_u g_v f_w (x) \lor f_u g_w f_v (x) = \{(x \lor w) \land v \} \lor \{(x \lor v) \land w \} \lor u =
\]

\[
= \{(x \lor w) \land v \lor (x \lor v) \land w \} \lor u = \{(x \lor v) \land w \} \lor (u \lor x) =
\]

\[
= \{(x \lor v) \land w \} \lor u = f_v g_w f_u (x).
\]

By the symmetry of v and w we get (2). Using (1) and (2) a simple discussion proves our lemma.

Theorem 2 (A. Mitschke and R. Wille [5]). *Let N be a modular lattice and let $M_3(ODa_1)$ be a relative sublattice of N. The following statements are equivalent:*

(a) N is generated by $M_3(ODa_1)$;

(b) N is isomorphic to $E_{\#}(M_3(ODa_1))$;

(c) N is isomorphic to the subdirect power of M_3 containing all quasi-real, continuous mappings of the Stone space $S(D)$ into the T_0-space M_3 with the subbasis $\{\{x\} | x \in M_3\}$. (For the notion see [4]).

Proof of Theorem 1. Let $M_3(ODa_1)$ be a relative sublattice of the modular lattice L, and denote by N the sublattice generated by $M_3(ODa_1)$. We prove that N is isomorphic to N_0, where N_0 is the lattice obtained from D by taking all (x, y, z) $(x, y, z \in D)$ with $x \land y = x \land z = y \land z$. Put $D' = \{x \in L | x = (d \lor a_3) \land a_2 \lor a_1, d \in D\}$. Then D' is a distributive sublattice of $a_1 \lor a_2 / a_1$ isomorphic to D.

– 350 –
(i) For \(x \in N \) we set \(x_1 = x \wedge a_1 \), \(x_2 = ((x \wedge a_2) \vee a_3) \wedge a_1 \),
\(x_3 = ((x \wedge a_3) \vee a_2) \wedge a_1 \). By the modularity of \(N \) we have \(x_1 \wedge x_2 =
= (x \wedge a_1) \wedge ((x \wedge a_2) \vee a_3) \wedge a_1 = [(x \wedge a_2) \vee (x \wedge a_3)] \wedge a_1 = [(x \wedge a_2) \vee
\vee (x \wedge a_3)] \wedge a_1 \). By the symmetry of \(a_2 \) and \(a_3 \) we get \(x_1 \wedge x_3 =
= x_1 \wedge x_2 \). Finally, \(x_2 \wedge x_3 = [(x \wedge a_2) \vee a_3] \wedge a_1 = [(x \wedge a_2) \vee (x \wedge a_3)] \wedge a_1 \).
Thus \(x_1 \wedge x_2 = x_1 \wedge x_3 =
= x_2 \wedge x_3 \), hence using the distributivity of \(D \):

\[
(3) \quad \text{if } x_1, x_2, x_3 \in D \text{ then } x_1 = (x_1 \vee x_2) \wedge (x_1 \vee x_3).
\]

(ii) Put \(x^{(1)} = a_1 \vee (x \wedge a_2) \vee (x \wedge a_3) \), \(x^{(2)} = a_2 \vee (x \wedge a_1) \vee
\vee (x \wedge a_3) \), \(x^{(3)} = a_3 \vee (x \wedge a_1) \vee (x \wedge a_2) \).

From (1) we get

\[
(4) \quad a_1 \wedge x^{(2)} \wedge x^{(3)} = (a_1 \wedge x^{(2)}) \wedge (a_1 \wedge x^{(3)}) =
= [a_1 \wedge (a_2 \vee (x \wedge a_1) \vee (x \wedge a_3))] \wedge [a_1 \wedge (a_3 \vee (x \wedge a_1)) \vee
\vee (x \wedge a_2))] = [(x \wedge a_1) \vee (a_1 \wedge (a_2 \vee (x \wedge a_3)))] \wedge [(x \wedge a_1) \vee
\vee (a_1 \wedge (a_3 \vee (x \wedge a_2))] = (x_1 \vee x_3) \wedge (x_1 \vee x_2) = x_1.
\]

Obviously \((x \wedge a_2) \vee (x \wedge a_3) \leq x^{(2)} \) and \(x^{(3)} \), i.e. \((x \wedge a_2) \vee
\vee (x \wedge a_3) \leq x^{(2)} \wedge x^{(3)} \). Applying (2), from these inequalities, we get

\[
(5) \quad \text{if } x \in N \text{ and } x_i \in D \quad (i = 1, 2, 3) \quad \text{then } x = (x \wedge a_1) \vee (x \wedge a_2) \vee (x \wedge a_3)
\text{implies } x = (x \vee a_1) \wedge (x \vee a_2) \wedge (x \vee a_3).
\]

(iii) Let \(A \) be the set \(\{x; \; x = (x \wedge a_1) \vee (x \wedge a_2) \vee (x \wedge a_3),
x_1, x_2, x_3 \in D\} \). If \(x, y \in A \) then \(((x \vee y) \wedge a_1) \vee ((x \vee y) \wedge a_3) \vee
\vee ((x \vee y) \wedge a_3) = x \vee y \), i.e. \(A \) is a join semilattice.

(iv) By Proposition 7 if \(x \in A \) then

\[
-351-
\]
\(x \lor a_1 = (x \land a_2) \lor (x \land a_3) \lor a_1, \ (x \lor a_2) \land a_3 \lor a_1, \ (x \lor a_3) \land a_2 \lor a_1 \) are in \(D' \) hence from (5) it follows that

If \(x \in N \) and

\[
x \lor a_1, ((x \lor a_2) \land a_3) \lor a_1, ((x \lor a_3) \land a_2) \lor a_1 \in D'
\]

(5')

then \(x = (x \lor a_1) \land (x \lor a_2) \land (x \lor a_3) \)

implies \(x = (x \land a_1) \lor (x \land a_2) \lor (x \land a_3) \).

\(A \) is therefore a meet semilattice too. \(A \) contains obviously the relative sublattice \(M_3(0Da_1) \). The representation \(x = x_1 \lor ((x_2 \lor a_3) \land a_2) \lor (x_3 \lor a_2) \land a_3 \) implies that \(A \) is generated by this partial lattice, hence \(A \) and \(N \) are isomorphic.

(v) Finally we prove that \(N \) and \(N_0 \) are isomorphic too. Let us take the correspondence \(x \rightarrow (x_1, x_2, x_3) \). But \(x_1 \land x_2 = x_1 \land x_3 = x_2 \land x_3 \), i.e. \((x_1, x_2, x_3) \in N_0 \). Conversely let \((u, \nu, \omega) \in N_0 \) and set \(x = u \lor [(\nu \lor a_3) \land a_2] \lor [(\omega \lor a_2) \land a_3] \). It is easy to verify that \(x_1 = u \), \(x_2 = \nu \), and \(x_3 = \omega \), the given correspondence is a one-to-one order preserving mapping. Thus \(N \cong N_0 \). The conditions (a) and (b) are also equivalent. For the proof of the equivalence of (a) and (c) we refer to [5].

Let \(L \) be a lattice from the equational class \(\mathcal{X} \), \(A \) prime quotient \(a/b \) of \(L \) is called \(\mathcal{X} \)-pure if for every extension \(M \in \mathcal{X} \) of \(L \) and for any two unary algebraic functions \(f(x) \), \(g(x) \) over \(L \) the conditions \(f(a) = g(a) \), \(f(b) = g(b) \) imply \(f(x) = g(x) \) for every \(x \in a/b, x \in M \). The finite lattice \(L \) is \(\mathcal{X} \)-pure if every prime quotient is \(\mathcal{X} \)-pure. By Proposition 7 \(M_3 \) is \(\mathcal{M} \)-pure.

Problem. Is it true that \(\tilde{M}(aDb) \cong \tilde{F}_{\mathcal{M}}(aDb) \) for \(M \in \mathcal{M} \) if and only if \(M \) is \(\mathcal{M} \)-pure?
REFERENCES

E.T. Schmidt
Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15.