On splitting modular lattices

E. T. Schmidt

1. Introduction

A finite subdirectly irreducible algebra is splitting in a variety if there is a largest subvariety of this variety not containing it. The splitting lattices are those subdirectly irreducible lattices which are the bounded homomorphic images of finitely generated free lattices (R. McKenzie [2]). This result does not supply necessary and sufficient conditions for a splitting lattice in subvarieties of the variety of all lattices. Let \mathcal{M} be the variety of all modular lattices. The description of splitting lattices in \mathcal{M}, i.e. of splitting modular lattices is an open problem. In this paper we give a necessary condition for a lattice S to be splitting modular.

2. Preliminaries, result

We denote the five element modular non-distributive lattice by M_5; M_5 with an additional atom is called M_4, etc. We call an ordered five-tuple (v, x, y, z, u) of elements from a modular lattice a diamond if these elements form a copy of M_5 with v and u as the bottom and the top elements, respectively. Two quotients a/b and c/d of a lattice L are transposes if either $a = b \lor c$ and $d = b \lor c$ or $c = a \lor d$ and $b = a \lor d$. The quotient a/b is said to be projective to c/d — in symbol $a/b \approx c/d$ — if there exists a sequence of quotients $a/b = a_0/b_0, a_1/b_1, \ldots, a_n/b_n = c/d$ such that a_0/b_0 and a_{k+1}/b_{k+1} are transposes for every $0 \leq k < n$. A sublattice K of L is called an isometric sublattice if a prime quotient in K is a prime quotient in L. An element $a \in L$ is double-irreducible if it is join- and meet-irreducible. If a is double-irreducible then $L_a = L \setminus \{a\}$ is a sublattice of L.

Theorem. Let (v, x, y, z, u) be an isometric diamond of a splitting modular lattice S. If y is double-irreducible then the quotients x/v and z/v are not projective in the sublattice $S_y = S \setminus \{y\}$.
This theorem implies

Corollary 1 (A. Day, C. Herrmann and R. Wille [1]). \(M_4 \) is not splitting modular.

Corollary 2. The lattice represented by Fig. 1 is not splitting modular.

![Fig. 1.](image)

3. Function lattices

Let \(L \) be a lattice and let \(P \) be a partially ordered set. \(L^P \) denotes the lattice of all order-preserving maps of \(P \) to \(L \) partially ordered by \(f \leq g \) if and only if \(f(x) \leq g(x) \) for each \(x \in P \). \(L^P \) is called function lattice and this concept is a powerful tool by the construction given in this paper. If \(a \in L \) then \(\bar{a} \) denotes the corresponding constant mapping, i.e. \(\bar{a}(x) = a \) for each \(x \in P \). If \(a/b \) is a prime quotient of \(L \) then the corresponding quotient \(\bar{a}/\bar{b} \) of \(L^P \) is isomorphic to \(2^P \), where \(2 \) denotes the two element lattice. \(2^P \) is a distributive lattice. Obviously \(L^P \) is a subdirect power of \(L \). The constant mappings form a sublattice of \(L^P \) which is isomorphic to \(L \); we can identify \(L \) with this sublattice.

Consider the chain \(N \) of non-negative integers, the corresponding ordinal is denoted by \(\omega \). Similarly, \(\omega^* \) is the ordinal corresponding to the chain of non-positive integers. Then using the well-known ordinal sum we get the ordinals \(\omega + 1 \), \(1 + \omega^* \), \(\omega + 2 \) where \(\omega + 2 \) corresponds to

\[
0 < 1 < 2 < \ldots < d < \infty, \quad \omega + 1 \text{ corresponds to } 0 < 1 < \ldots < \infty, \quad \text{and } 1 + \omega^* \text{ corresponds to } 0 > -1 > -2 > \ldots > -\infty. \quad \text{Trivially } \omega + 1 \equiv 2^\omega \text{ and } \omega + 2 \equiv 2^{1+\omega^*}.
\]

Let \(D \) be a filter of \(1 + \omega^* \) and let \(L \) be a finite lattice. If \(f \in L^D \) then there exists a \(-k \in D \) such that \(f(-k) \equiv f(n) \) for every \(-n \in D \). We define \(f \in L^{1+\omega^*} \) as follows: \(f(-n) = f(n) \) if \(-n \in D \) and \(f(t) = f(-k) \) if \(t \in D \). Then \(f+\bar{f} \) is obviously the canonical embedding of \(L^D \) into \(L^{1+\omega^*} \). If \(D \) is the filter \(\omega^* \) then we get an embedding \(L^{\omega^*} \rightarrow L^{1+\omega^*} \). The chain \(k = \{0, -1, \ldots, -k\} \) is a filter of \(1 + \omega^* \) hence we get again an embedding \(L^k \rightarrow L^{1+\omega^*} \).

Lemma 1. Let \(L \) be a finite lattice. The ideal lattice \(I(L^{\omega^*}) \) is isomorphic to \(L^{1+\omega^*} \).

698
Proof. We have the canonical embedding \(f \to f \) of \(L^{0*} \) into \(L^{1+0*} \). Let \(g \in L^{1+0*} \) and take all \(f \in L^{0*} \) for which \(f \leq g \). All these \(f \)'s form an ideal \(I_g \) of \(L^{0*} \). It is easy to show that the correspondence \(g \to I_g \) is an isomorphism between \(L^{1+0*} \) and \(I(L^{0*}) \).

4. Gluing of lattices

Let \(A \) and \(B \) be two lattices with isomorphic sublattices \(C \cong C' \) where \(C \subseteq A \) and \(C' \subseteq B \). We assume that \(A \) and \(B \) are disjoint. The set-theoretical union \(L = A \cup B \) with \(C \) and \(C' \) identified can be made into a poset by defining \(x \equiv y \) if and only if one of the following conditions is satisfied:

(i) \(x \equiv y \) in \(A \) or in \(B \);

(ii) \(x \equiv c \) in \(A \) and \(c' \equiv y \) in \(B \) for some \(c \in A \) where \(c \) and \(c' \) are corresponding elements under the isomorphism \(C \cong C' \);

(iii) \(x \equiv c' \) in \(B \) and \(c \equiv y \) in \(A \) where \(c, c' \) are corresponding elements.

In general, \(L \) need not be a lattice. If \(L \) is a lattice then \(L \) is the lattice obtained by gluing together \(A \) and \(B \) by \(C \cong C' \). In the following we give a special condition for the sublattices \(C \) and \(C' \) such that \(L \) is a lattice.

A subchain \(C \) of a lattice \(L \) is called an \(m \)-subchain if the following conditions are satisfied:

1. If \(t \equiv c \) where \(t \in L \), \(c \in C \) then there exists a least \(t_i \in C \) such that \(t_i \equiv c \).

Similarly, if \(c \equiv t \) (\(c \in C \)) then we have a greatest \(t \in C \) such that \(c \equiv t \); \(t \);\(\equiv t \);

2. \(a \equiv b, \ a = b \) imply \(a = b \);

3. Let \(c_1 = c_2, \ c_1, \ c_2 \in C \). If \(c \equiv t \) then \(c_1 \vee t \equiv c_2 \vee t \) and dually \(c_1 \equiv t \) implies \(c_1 \wedge t \equiv c_2 \wedge t \);

4. \(r \equiv s, \ c \equiv t, \ r \equiv c \) imply that either \(r \vee c_1 \equiv s \vee c_1 \) or \(r \wedge c_1 \equiv s \wedge c_1 \);

5. \(\ell \equiv \ell, \ r \equiv s, \ c \equiv t \) imply \(c \equiv r \equiv s \) and dually.

A \(\{0, 1\} \)-subchain of a bounded lattice \(L \) is a subchain containing the 0 and 1 of \(L \).

Lemma 2. Let \(A \) and \(B \) be two modular lattices with isomorphic subchains \(C \cong C' \). Let \(C \) be an \(m \)-subchain of \(A \) and let \(C' \) be a \(\{0, 1\} \) \(m \)-subchain of \(B \). Then the poset \(L = A \cup B \) is a modular lattice.

Proof. First we show that \(L \) is a lattice. Take two elements \(a \in A, b \in B, a, b \in C \). Then we have a \(b \in C \), \(b \equiv b \). If \(a \equiv b \) then \(a \vee b = a \). If \(a \equiv b \) in \(A \) then by (1) we have \(a \equiv c \) such that \(a \leq a \equiv b \). Take the join \(a \vee b \) in \(B \) then this element is obviously the least upper bound of \(a \) and \(b \) in \(L \). If \(a \leq b \) then \(b \leq a \) hence the join \(a \vee b \) of \(a \) and \(b \) in \(A \) is the least upper bound of \(a \) and \(b \) in \(L \).
Similarly we can prove the existence of the greatest lower bound of a and b, i.e. L is a lattice.

Let us assume that L is not modular, i.e. that L contains a pentagon with the elements $o \prec s \prec r \prec i$, $o \prec t \prec i$. We distinguish several cases. A and B are modular lattices, hence $r, s, t \in A$ and similarly $r, s, t \in B$ is impossible.

(a) $r \in A$, $r \in B$, $s, t \in B$. Then $i = s \lor t$, $s, t \in B$ imply $i \in B$. From (1) we get the existence of the elements $\bar{r}, \bar{r} \in C$ for which $s \leq \bar{r} \prec t$. By the modularity of B we get $s \lor (\bar{r} \land t) = \bar{r} \land (s \lor t) = \bar{r}$, i.e. $r \lor (\bar{r} \land t) = \bar{r}$, a contradiction to (3).

(b) $r, s \in A$, $t \in B$, $r, s, t \in C$. Then we have the following possibilities:

(ba) $a, i \notin B$. Using (1) we get $c_1 = i$ and $c_2 = t$ for which $i \succ c_1 \succ t > c_2 \succ o$. From (4) we conclude that either $r \lor c_1 > s \lor c_1$ or $r \land c_2 > s \land c_2$, which is a contradiction to the assumption that a, r, s, t, i form a pentagon.

(bb) $a \notin B$, $i \in B$. Then we have $c_1 = \bar{r}$, $c_2 = \bar{r}$ for which $r \prec c_1 \equiv i$, $o \prec c_2 \prec t$. If $\bar{r} \succ \bar{s}$ then using the modularity of B we get $s \lor (\bar{r} \land t) = \bar{r} \land i = \bar{r}$, $\bar{r} \lor t$, a contradiction to (3), i.e. $\bar{r} \equiv \bar{s}$. Then $c_2 \equiv r, s$, by (5) $r \lor c_2 > s \land c_2$, contradiction.

(ba) $a \notin B$. Let $c_1 = \bar{r}$, $c_2 = \bar{s}$, then $r \prec c_1 \equiv i$ and $s \succ c_2 \equiv a$. From (2) we get that either $\bar{r} \succ \bar{s}$ or $\bar{r} \succ \bar{a}$. Let us assume that $\bar{r} \succ \bar{s}$. Then by the modularity of B we get $s \lor (\bar{r} \land t) = \bar{r} \land (s \lor t) = \bar{r} \land i = \bar{r}$, hence by (3) $\bar{r} \land t \in C$. But C is a chain thus $\bar{r} \equiv \bar{r} \land t$, i.e. $\bar{r} \equiv t$, contradiction.

5. Proof of the theorem

Let S be a finite subdirectly irreducible modular lattice with an isometric diamond (r, x, y, z, u) such that y is a double-irreducible element. Let us assume that the quotients x/y and z/y are projective in the sublattice $S_y = S \setminus \{y\}$. We have to prove that S is not splitting modular.

First we take the function lattice $A = S^f_+ + w^*$. Then the quotient u/x is a chain isomorphic to $\omega + 2$, say

$$x = x_0 < x_1 < x_2 < \ldots < x_d < x_\omega = u.$$

Similarly u/z is the following chain:

$$z = z_0 < z_1 < z_2 < \ldots < z_d < z_\omega = u.$$

Let us take the elements: $w_0 = x_1 \land z_0$, $w_1 = x_2 \land z_1$, ..., $w_k = x_{k+1} \land z_k$, ..., $w_d = x_d \land z_d$, $w_\omega = u$. These elements form an m-subchain C of A.

Let B be a subdirect product of two copies of $\omega + 2$, containing all $(a, b) \in \omega + 2 \times \omega + 2$ for which $a \equiv b$. Then the elements $w'_0 = (0, 0), w'_1 = (1, 1), \ldots, w'_k = (k, k), \ldots, w'_d = (d, d), w'_\omega = (\omega, \omega)$ form a $\{0, 1\}$ m-subchain C' of B and C is isomorphic to C'. The lattices A and B are illustrated in Fig. 2.
B' will denote the principal ideal (w'_0) of B.

Let \tilde{M} be the lattice obtained by gluing together A and B identifying the corresponding elements under the isomorphism $C \cong C'$. By Lemma 2 \tilde{M} is a modular lattice. We define some sublattices of \tilde{M}.

If we omit all elements (k, ∞) $(k < \infty)$ from \tilde{M} we get the sublattice M of \tilde{M}. In other words, M is the lattice obtained by gluing together A and B' identifying w_0 and w'_0, w'_0 and w'_k $(k = 0, 1, \ldots)$.

The next step is to define the finite sublattices M_k $(k = 0, 1, 2, \ldots)$ of \tilde{M}.

For a finite cardinal k we define A_k to be $S^k + 1$. Then by the canonical embedding defined in section 3, A_k is a sublattice of A. The quotient u/x is a $k + 2$ element chain

$$x = x_0 < x_1 < x_2 < \ldots < x_k < x_m = u;$$

hence the elements $w_0, w_1, \ldots, w_{k-1}$ are contained in A_k. Let B_k be the principal ideal (w'_k) of B. Then M_k is the lattice obtained by gluing together A_k and B_k identifying the corresponding elements of the subchains $C_k = \{w_0, w_1, \ldots, w_{k-1}\}$ and $C'_k = \{w'_0, w'_1, \ldots, w'_{k-1}\}$. The corresponding diagram is given by Fig. 3.
Every M_k is a sublattice of M, hence $M^* = \bigcup_{k=0}^\infty M_k$ is a sublattice of M.
By Lemma 1, the ideal lattice of M^* is the lattice M, i.e. $I(M^*) = M$.

Lemma 3. S is contained in the variety generated by the lattices M_k for $1 \leq k < \infty$.

Proof. Let \mathcal{K} be the variety generated by the lattices M_k for $1 \leq k < \infty$.
Then $M^* = \bigcup_{k=0}^\infty M_k$ is in \mathcal{K}. This implies that the ideal lattice of M^* is contained in \mathcal{K}, i.e. $M \in \mathcal{K}$. We will prove that S is an epimorphic image of M. Therefore $S \in \mathcal{K}$.

Let θ be the congruence relation of $\omega + 2$ which has exactly two congruence classes, $\{0, 1, 2, \ldots\}$ and $\{d, \infty\}$. The factor lattice is the two element lattice.

Let a/b be a prime quotient of S. Then there exists a natural isomorphism $e_{ab}: \omega + 2 \rightarrow a/b$, where a/b is the corresponding quotient of S. Then $A = S_{\omega + \omega}^+$ has a congruence relation θ_A such that the factor lattice A/θ_A is isomorphic to S and the restriction of θ_A to a/b is the congruence relation which corresponds to θ by the isomorphism e_{ab}.

In the same way we get a congruence relation θ_B on B' such that θ_B has the classes $\{w_d'\}$, $\{x; x \in B', x \equiv w_i' \text{ for some } i < d\}$ and $\{(k, d); k < d\}$. Let us take the chain $\{w_0, w_1, \ldots, w_d\} \subseteq A$. The restriction of θ_A to this chain has two classes: $\{w_0, w_1, \ldots\}$ and $\{w_d\}$. The restriction of θ_B to $\{w_0', w_1', \ldots, w_d'\} \subseteq B'$ has also the classes $\{w_0', w_1', \ldots, w_d'\}$ and $\{w_d'\}$. Let θ be the transitive extension of θ_A and θ_B to M. Then by the previous remark $\theta|A = \theta_A$ and $\theta|B = \theta_B$, $A/\theta_A \cong S$, $B'/\theta_B \cong 2$. Thus we get that M/θ is isomorphic to S, which proves our Lemma.

Let $\{M_k\}^*$ be the variety generated by M_k. The subdirectly irreducible lattices of a variety generated by a finite lattice F are epimorphic images of sublattices of F. To prove that S is not splitting we need to prove

Lemma 4. S is not contained in the variety generated by M_k.

Proof. Let us take the quotient u/v of S and the corresponding quotient u/v of M_k. It can be easily seen that u/v is not an epimorphic image of a sublattice of u/v, using the assumption that x/v and y/v are projective in S. (See [1]). This involves that M_k doesn’t contain a sublattice T such that S is an epimorphic image of T.

6. Planar lattices

Let \mathcal{K} be a variety of lattices. A lattice L in \mathcal{K} is called finitely \mathcal{K}-projected if for any surjective $f: A \rightarrow L$ in \mathcal{K} there is a finite sublattice of A whose image under f is L. In [3] the finitely projected planar modular lattices are characterized. From this characterization we get, using the concept of the diamond circle [4]:

702
Corollary 3. A subdirectly irreducible planar modular lattice S is splitting modular if and only if S does not contain a diamond circle or a sublattice isomorphic to M_4.

A planar modular lattice is 2-distributive. If S is 2-distributive then the lattice \overline{M} is again 2-distributive. Hence we have

Corollary 4. A subdirectly irreducible planar modular lattice S is splitting in the variety of all 2-distributive lattices if and only if S does not contain a diamond circle or a sublattice isomorphic to M_4.

Remark. The same proof gives the following generalization of our Theorem:

Let (v, x, y, z, u) be an isometric diamond of a splitting modular lattice S and let $t \in S$ be such that $u \wedge t = v$, y is \vee-irreducible and $y \vee t$ is \wedge-irreducible. Then $S' = \{x \in S; x \not\subseteq y \cup t\}$ is a sublattice of S and x/v, z/v are not projective in this sublattice.

References

Mathematical Institute of the Hungarian Academy of Sciences,
H-1053 Budapest,
Reáltanoda u. 13–15.

Received February 1, 1978
revised August 15, 1978

703