ON A REPRESENTATION OF DISTRIBUTIVE LATTICES

E. T. SCHMIDT (Budapest)

§ 1. Introduction

The characterization problem of congruence lattices of lattices can be reduced to the representation of distributive join-semilattices as special join-homomorphic images of Boolean lattices. First, we formulate this problem. Let D be an arbitrary finite distributive lattice and consider a finite Boolean lattice B containing D. Then D defines a closure operation $s : B \to B$ as follows:

$$s(x) = \land \{ y \in D ; y \geq x \}.$$

This closure operation has the additional property that for $x, y \in B$

$$s(x \lor y) = s(x) \lor s(y) \tag{1}$$

which means that s is a topological closure operation. The sublattice D is the set of all closed elements, i.e.,

$$D = s(B) = \{ s(x) ; x \in B \}.$$

Conversely, if s is a topological closure operation on B then the closed elements form a sublattice. We would like to represent all distributive (join-) semilattices on a "similar" way. If s is a topological closure operation on an arbitrary Boolean lattice B then it is easy to prove that $s(B)$ is a dual Heyting algebra, i.e., we cannot represent all distributive semilattices in this form. To overcome on this difficulties we follow a little modified way. (1) means that s is a join-homomorphism from B onto D. Let $h : B \to D$ be a join-homomorphism from the Boolean lattice B into a distributive semilattice D. Then h is called a distributive join-homomorphism if there is a family $\{ s_{i} ; i \in I \}$ of topological closure operations on B such that the congruence kernel $\text{ker } h$ of h is the join of the congruence kernels $\text{ker } s_{i}$, i.e.,

$$\text{ker } h = \lor \text{ker } s_{i}.$$

\textit{AMS (MOS) subject classifications} (1980). Primary 06D05; Secondary 06A12, 06E99.

\textit{Key words and phrases}. Distributive homomorphic images of Boolean lattices, distributive lattices, distributive semilattices.
In [2] I have proved the following:

Theorem. Every bounded distributive lattice is the distributive join-homomorphic image of a Boolean lattice.

In other words, if D is a bounded distributive lattice, then there exist a Boolean lattice B and a family $\{s_i; i \in I\}$ of topological closure operations on B such that

$$D \cong B/\bigvee \ker s_i.$$ \hspace{1cm} (2)

The theorem is true if D does not have a unit element, in this case B denotes a generalized Boolean lattice. The related representation for distributive semilattices is still open. H. Dobbittin [1] has proved that every locally countable distributive semilattice can be represented in the form (2). The given representation has his own interest, but the most important consequence is the following: if D can be represented in form (2) then the ideal lattice of D is isomorphic to the congruence lattice of a lattice.

In this paper I shall give a new, relative short proof of this theorem. The most important part is the construction of a Boolean algebra B which will be called the decomposition Boolean algebra of the given distributive lattice D.

§ 2. Some properties of free Boolean algebras

The decomposition Boolean algebra B of D is a special subalgebra of a free Boolean algebra which satisfies the property (2). First of all, we list some elementary, wellknown properties of the free Boolean algebras.

The free Boolean algebra $F(G)$ on a set G of n elements g_1, \ldots, g_n is isomorphic to 2^n and each element may be expressed uniquely in disjunctive normal form, i.e., as a finite join of so called minimal terms:

$$\bigvee_{e} \{ g_{e_1}^1 \land \ldots \land g_{e_n}^n \},$$ \hspace{1cm} (3)

where $g_{e_i}^i$ is g_i or g_i' (the complement of g_i) and e is a selection from the 2^n different distributions of dashes on the g's. The minimal terms are the atoms of $F(G)$. I resp. 0 denote the unit resp. zero element. Let $G' = \{ g': g \in G \}$ where $G \cap G' = \emptyset$ and $g \rightarrow g'$ is a bijection between G and G'. Let $(g')' = g'' = g$. For every natural number $k \leq n$ we define a subset of $F(G)$: $G_0 = = \{ 1 \}, G_1 = G \cup G'$ and

$$G_k = \{ x \in F(G), x = g_1^{e_1} \land \ldots \land g_n^{e_n} \}.$$
where \(g_1, \ldots, g_k \) are different elements of \(G \). For simplicity we can write \(x = g_1 \wedge \ldots \wedge g_k \), where \(g_1, \ldots, g_k \in G \) and assume that, for each \(i, j \), \(i \neq j \), \(g_i \neq g_j \). Further, let

\[
H = \bigcup_{i=0}^{n} G_i \cup \{0\}.
\]

Then \(H \) is closed under the meet operation of \(F(G) \). If we restrict the \(\vee \) operation to \(H \) on the usual way (i.e., for \(u, v, w \in H \) if \(u \vee v = w \) then we say that \(u \vee v \) is in \(H \) defined), we get a relative sublattice \(\langle H; \vee, \wedge \rangle \) of \(F(G) \).

It is easy to show that for incomparable \(u, v \in H \), \(u \vee v \) is defined if and only if there exist \(k \in \mathbb{N} \), \(w \in G_k \) and \(g \in G_1 \) such that \(u = w \wedge g \), \(v = w \wedge g' \). Then

\[
u \vee v = (w \wedge g) \wedge (w \wedge g') = w \wedge I = w.
\]

Obviously \(u, v \in G_{k-1} \). An ideal of a partial lattice is a nonvoid subset \(I \) such that

(i) if \(a, b \in I \) and \(a \vee b \) exists then \(a \vee b \in I \),

(ii) \(x \leq a \in I \) implies \(x \in I \).

It is easy to prove that \(F(G) \) is isomorphic to the lattice of all ideals of \(H \).

The description of the free Boolean algebra \(F(G) \) generated by an arbitrary (not necessarily finite) set \(G \) is similar, but in the infinite case there are no minimal terms (atoms) and therefore

\[
H = \bigcup_{i=0}^{\infty} G_i \cup \{0\}.
\]

In this case \(F(G) \) is the lattice of all finitely generated ideals of \(H \), and for every \(x \in F(G) \) there exists a smallest natural number \(n \) such that \(x \) has a uniquely representation in the from (3) with suitable \(g_1, \ldots, g_n \in G \). Obviously \(x \in F(\{g_1, \ldots, g_n\}) \).

We define a Boolean subalgebra of \(F(G) \) with a subset \(K \) of \(H \). Now, let us assume that \(K \) satisfies the following properties:

(4) \(0 \in K \) and if \(x, y \in K \) then \(x \wedge y \in K \).

(5) If \(u \in K \cap G_{k+1} \), then there exists a \(v \in K \cap G_{k+1} \), \(v \neq u \) such that \(u \vee v \) is defined in \(H \) and \(u \vee v \in K \).

Let \(A \) be the set of all those elements of \(F(G) \) which have a representation as a finite join of elements of \(K \). Then \(A \) is obviously a sublattice of \(F(G) \). If \(u \in K \cap G_{k+1} \), then by (5) we have a \(v \in K \cap G_{k+1} \) such that \(u \vee v \) exists in \(H \) and \(u \vee v \in K \cap G_k \). Consequently, there exists a \(g \in G_1 \) satisfying \(u = (u \vee v) \wedge g \), \(v = (u \vee v) \wedge g' \) which involves

\[
u \wedge v = (u \vee v) \wedge g \wedge g' = 0.
\]
This means that \(v \) is the relative complement of \(u \) in the interval \([0, u \lor v]\). Similarly to \(u \lor v \in K \cap G_k \), there exists a relative complement \(z \in K \) in \([0, u \lor v \lor z]\) such that \(u \lor v \lor z \in K \cap G_{k-1} \). Then \(v \lor z \in A \) is the relative complement of \(u \) in \([0, u \lor v \lor z]\). After a finite number of steps this process breaks of by \([0, 1]\), i.e., every \(u \in K \) has a complement in \(A \) say \(u' = \lor k_i, k_i \in K \). Let \(v \) be another element of \(K \) then \(v' = \lor h_j \) with suitable \(h_j \in K \). Thus
\[
(u \lor v') = u' \land v' = \lor k_i \land \lor h_j = \lor (k_i \land h_j).
\]
By our assumption, \(K \) is closed under \(\land \), hence \(k_i \land h_j \in K \), i.e., \(u' \land v' \in A \). This proves that \(A \) is complemented, i.e., we have the following:

Lemma 1. Let \(K \) be a subset of \(H (\subseteq F(G)) \) which satisfies (4) and (5). Then the sublattice \(A \) generated by \(K \) is a \(\{0, 1\} \)-Boolean sublattice of \(F(G) \).

Any pair \((p, q), p \neq q\) of elements of a Boolean lattice \(B \) defines a closure operation \(C_{p,q} \) as follows:
\[
C_{p,q}(x) = \begin{cases}
 x \lor q & \text{if } x \geq p \\
 x & \text{otherwise}.
\end{cases}
\]

It is easy to show that \(C_{p,q} \) is topological if and only if \(p \) is an atom. In a finite Boolean lattice a topological closure operation \(s(x) \) is determined by the closures of the atoms, consequently \(s(x) \) is the join of closure operations in the form \(C_{p,q}(x) \), where \(p \) and \(q \) are atoms. We need a special topological closure operation on \(F(G) \) which replace \(C_{p,q} \). Let \(p, q \in G_n \) for some \(n \) and let \(g \in G_1 \). Then
\[
p = (p \land g) \lor (p \land g'), q = (q \land g) \lor (q \land g')
\]
imply that
\[
C_{p,q} = C_{p\land g,q} \lor C_{p,q\land g'},
\]
hence
\[
C_{p,q}(x) \geq C_{p\land g,q}(x)
\]
for all \(x \) with \(x \neq C_{p,q}(x) \). This implies that the operation on \(F(G) \) defined by
\[
s_{p,q} = \lor \{ C_{p\land t,q\land t} \}_{t \in H}
\]
where \(p \land t, q \land t \neq 0 \) is a closure operation. (6) implies that \(s_{p,q} \) is topological.

§ 3. The decomposition Boolean algebra

Let \(D \) be a bounded distributive lattice. We construct from \(D \) a Boolean algebra \(B \), the decomposition Boolean algebra of \(D \). First of all we define the set \(G \) of generators of a free Boolean algebra \(F(G) \) and then we define a subset \(K \) of the corresponding relative sublattice \(H \subseteq F(G) \).
1 resp. 0 denote the unit resp. zero element of D. Let G be a subset of $D \times D$ which contains no pairs (a, a) and which contains to each two elements $a \neq b$ exactly one of the two pairs (a, b) and (b, a). If $g = (a, b) \in G$ then $g' = (b, a) \in G'$. Further, G' and H are defined as before, in § 2.

Let h be a mapping from G_1 onto D defined by

$$h((a, b)) = a \in D.$$

Every nonunit and nonzero element of H has a unique representation as a meet of elements from G_1. Therefore we can extend h to H as follows: if $0 \neq x = g_1 \wedge \ldots \wedge g_k$ then

$$h(x) = h(g_1) \wedge \ldots \wedge h(g_k).$$

Further, let $h(1) = 1$ and $h(0) = 0$. In general, h is not a join-homomorphism of the partial lattice H, e.g., if $(a, b) \in G_1$ and $a \lor b \neq 1$ in D then $1 = (a, b) \lor \lor (b, a)$ in H but

$$h(1) = 1 \neq a \lor b = h((a, b)) \lor h((b, a)).$$

We shall define the "greatest" relative-sublattice K of H such that the restriction of h to K will be a join-homomorphism.

The definition of K: First of all $0, 1 \in K$. Let $u \in G_k$, $k > 0$. Then $u \in K$ if and only if there exist $w \in K \cap G_{k-1}$ and $g = (a, b) \in G_1$ such that $u = w \wedge g$ and $h(u) \leq a \lor b$.

This definition implies that $g = (a, b) \in K$ iff $a \lor b = 1$.

First, we show that K satisfies (4), i.e., it is closed under the \wedge-operation.

Let $T_k = K \cap \bigcup_{i=0}^k G_i$. We prove by induction on k that $u_1, u_2 \in T_k$ implies $u_1 \wedge u_2 \in K$. If $u_1, u_2 \in T_i$ then we may assume that $u_1 \neq 1 \neq u_2$, i.e., $u_1 = (a_1, b_1)$, $u_2 = (a_2, b_2)$. Then $u_1, u_2 \in K$ means that $a_1 \lor b_1 = a_2 \lor b_2 = 1$. Consequently, $h(u_1) = a_1 \leq a_2 \lor b_2$, i.e., $u_1 \cup u_2 \in K$. Assume that our statement for T_k is proved. If $u_1, u_2 \in T_{k+1}$ then $u_1 = w_1 \wedge g_1$, $u_2 = w_2 \wedge g_2$ where $g_i = (a_i, b_i)$ and w_1, w_2 are suitable elements of T_k such that $h(w_i) \leq a_i \lor b_i$. By the assumption $w_1 \wedge w_2 \in K$. Then

$$h(w_1 \wedge w_2) \leq h(w_1) \leq a_1 \lor b_1$$

yields $w_1 \wedge w_2 \wedge g_1 \in K$. Similarly,

$$h(w_1 \wedge w_2 \wedge g_1 \wedge g_2) \leq h(w_2) \leq a_2 \lor b_2$$

implies

$$w_1 \wedge w_2 \wedge g_1 \wedge g_2 = u_1 \wedge u_2 \in K.$$
K satisfies (5). Let $u \in K \cap G_{k+1}$. By the definition of K there exist $w \in K \cap G_k$ and $g = (a, b) \in G_1$ such that $u = w \wedge g$ and $h(w) \leq a \vee b$. Let v be the element $w \wedge g'$ where $g' = (b, a)$. Then again by the definition of K we have $v \in K \cap G_{k+1}$ and $u \vee v = w$ is defined in K. This proves (5).

K can be considered as a relative sublattice of H. The mapping $h: H \to D$ can be restricted to K, $h|_K: K \to D$. We prove:

Lemma 2. $h|_K: K \to D$ is a join-homomorphism onto D.

Proof. If u and v are incomparable elements of K and $u \vee v$ is defined then

$u = g_1 \wedge \ldots \wedge g_{n-1} \wedge g$, $v = g_1 \wedge \ldots \wedge g_{n-1} \wedge g'$, $w = u \vee v = g_1 \wedge \ldots \wedge g_{n-1}$

where $g_1, \ldots, g, g' \in G_1$. We have to prove that $h(u \vee v) = h(u) \vee h(v)$. By the definition of K there is a permutation of the elements g_1, \ldots, g_{n-1}, g, say

$g_1, g_2, \ldots, g_i, g, g_{i+1}, \ldots, g_{n-1}$

such that if $g = (a, b)$ then

$a \vee b \preceq h(g_1 \wedge \ldots \wedge g_i)$.

Consequently,

$a \vee b \preceq h(g_1 \wedge \ldots \wedge g_{n-1})$

and hence we conclude:

$h(u) \vee h(v) = (h(g_1 \wedge \ldots \wedge g_{n-1}) \wedge h(g)) \vee (h(g_1 \wedge \ldots \wedge g_{n-1}) \wedge h(g')) =

= (h(g_1 \wedge \ldots \wedge g_{n-1}) \wedge a) \vee (h(g_1 \wedge \ldots \wedge g_{n-1}) \wedge b) =

= h(g_1 \wedge \ldots \wedge g_{n-1}) \wedge (a \vee b) = h(g_1 \wedge \ldots \wedge g_{n-1}) = h(u \vee v)$.

This proves our lemma.

By Lemma 2 we have a join-homomorphism $h|_K: K \to D$. $(a, 1) \in K$ and $h((a, 1)) = a$ which means that $h|_K$ is onto mapping. On the other hand the conditions of Lemma 1 are satisfied for K, thus the sublattice of $F(G)$ generated by K is a Boolean lattice. We denote this by B. It is easy to see, that $h|_K: K \to D$ can be extend to a join-homomorphism $h: B \to D$, and h is determined by its restriction to K, i.e., by $h|_K$.

We have to prove that h is a distributive join-homomorphism. Assume that for $p \in K \cap G_K$ and $q \in K$, $p \neq q$ and $h(p) \geq h(q)$, i.e., $h(p \vee q) = h(q)$. Then in the free Boolean algebra $F(G)$

$s_{p,q}(p) = p \vee q (= C_{p,q}(p))$
and, for an arbitrary \(r \in K \cap G_K \), \(s_{pq}(r) = r \). Let us consider \(K \cap G_{K+1} \). If \(p \wedge q \in K \cap G_{K+1} \) for some \(g = (a, b) \) then, by the definition of \(K \), we have \(a \vee b \geq h(p) \). By our assumption, \(h(p) \geq h(q) \), thus \(a \vee b \geq h(q) \). This implies \(g \wedge g \in K \) and \((p \wedge g) \vee (q \wedge g) \in B \). But

\[
C_{pqg}(p \wedge g) = (p \wedge g) \vee (q \wedge g),
\]

hence

\[
s_{pq}(p \wedge g) = C_{pqg}(p \wedge g) \in B.
\]

Thus \(s_{pq}(x) \in B \) for every \(x \in B \); i.e., \(s_{pq} \) is a topological closure operation on \(B \), and \(\ker h \supseteq \ker s_{pq} \). Consequently, \(\ker h = \vee \ker s_{pq} \), i.e., \(h \) is distributive.

REFERENCES

(Received January 13, 1985)