Polynomial automorphisms of lattices

E. TAMÁS SCHMIDT

Abstract. A polynomial automorphism of a lattice is a unary lattice polynomial \(f(x) \) for which the mapping \(x \rightarrow f(x) \) is an automorphism. It is proved that every bounded lattice with a finite automorphism group can be embedded as an ideal in a lattice \(K \) such that each automorphism of \(K \) is polynomial and there is a bijection between the automorphism groups of \(L \) and \(K \).

Keywords and phrases: Polynomial automorphism, automorphism group, lattice extension.
AMS-MOS subject classification: 06B15

1. Introduction. Ervin Fried and Harry Lakser [1] defined the concept of a polynomial automorphism of a lattice as a unary lattice polynomial \(f(x) \) for which the mapping \(x \rightarrow f(x) \) is an automorphism. They proved two theorems:

Theorem A. Each finite lattice \(L \) can be embedded in some finite lattice \(K \) such that the following three properties hold:

1. Each automorphism of \(K \) is polynomial;
2. Each automorphism of \(L \) extends to a unique automorphism of \(K \);
3. Each automorphism of \(K \) is the extension of an automorphism of \(L \).

For infinite lattices they could prove a weaker result:

Theorem B. Each lattice \(L \) can be embedded as a convex sublattice in some lattice \(K \) such that every automorphism of \(L \) is the restriction of a unary polynomial function on \(K \). If \(L \) has a \(0 \) then this embedding is an ideal.

In this paper first we prove a little stronger version of Theorem A; the proof is slightly shorter than the original proof.

Theorem 1. Each finite lattice \(L \) can be embedded as a maximal filter (or maximal ideal) in some finite simple and atomistic lattice \(K \) such that the properties (1), (2) and (3) of Theorem A hold.

The main result of this paper is the generalization of Theorem A for arbitrary lattice having finite automorphism group:

Theorem 2. Let \(L \) be a bounded lattice with a finite automorphism group. \(L \) can be embedded as an ideal in some lattice \(K \) such that the properties (1), (2) and (3) of Theorem A hold.

If \(\alpha \in \text{Aut} \ L \) then a congruence relation \(\theta \) of \(L \) is called \(\alpha \)-admissible if \(x \equiv y(\theta) \) implies \(x^\alpha \equiv y^\alpha(\theta) \) \((x^\alpha \) denotes the image of \(x \) under \(\alpha \)). Similarly if \(G \) is a subgroup of \(\text{Aut} \ L \), then \(\theta \) is called \(G \)-admissible if \(\theta \) is \(\alpha \)-admissible for every \(\alpha \in G \).

* Research supported by Hungarian National Foundation for Scientific Research grant. no. 1813.
G-admissible congruence relations of L from a $\{0, 1\}$-sublattice $\text{Con}_G(L)$ of $\text{Con}(L)$. Assume that L is a convex sublattice of some lattice K such that a given automorphism α of L is the restriction of a unary polynomial function $f(x)$. A polynomial function is compatible, consequently if $\theta \in \text{Con}(L)$ can be extended to K then θ is an α-admissible congruence relation of L. We prove the following:

Theorem 3. Let L be a lattice. L can be embedded as a convex sublattice in some lattice K such that the following properties hold:

1') Each automorphism of L is the restriction of a unary polynomial function of K;

2') Each automorphism of L extends to a unique automorphism of K;

3') Each automorphism of K is the extension of an automorphism of L;

4') Each Aut L-admissible congruence relation of L extends to a unique congruence relation of K;

5') Each proper congruence relation of K is the extension of a congruence relation of L.

2. Proof of Theorem 1. Let L be a finite lattice, with the zero element 0. We add a new zero element $\bar{0}$ to L (i.e. $\bar{0} < x$ for all $x \in L$), the resulting lattice is denoted by \bar{L}. Each automorphism of L extends uniquely to an automorphism of \bar{L} and each automorphism of \bar{L} is the extension of an automorphism of L. For every $n \geq 1$ we consider the following lattice $S(n)$ (Fig. 1.)

![Diagram](attachment:fig_1.png)

Fig. 1.

It is easy to see that $S(n)$ is an atomistic simple lattice and has no nontrivial automorphism. We fix n such that the length of $S(n)$ is greater than the length of \bar{L} and we denote this $S(n)$ shortly by S. For every $u \in L$, $u \neq 0$, let S_u be a lattice isomorphic to S, with the isomorphism $\varphi_u : S \rightarrow S_u$. Assume that $S_u \cap S_v = \emptyset$ if $u \neq v$ and $S_u \cap L = \emptyset$. We construct the extension K of L by gluing the lattices $S_u (u \in L)$ and \bar{L}: we identify the zero element of S_u with $\bar{0} \in \bar{L}$ and the unit element of S_u with $u \in \bar{L}$. Let K be $\bar{L} \cup \{S_u; u \in L, u \neq 0\}$. The ordering in $S_u \subseteq K$ and $\bar{L} \subseteq K$ is the original, all these are sublattices of K. For $x \in S_u$, $x \not\in \bar{L}$ and $y \in \bar{L}$, $y \not\in S_u$, $x \leq y$ iff $u \leq y$ in L; if $u \not\leq y$ then x and y are incomparable and $\text{sup}\{x, y\} = u \lor y$ (the join in L) and $\text{inf}\{x, y\} = \bar{0}$. If $x \in S_u$, $y \in S_v$, $u \neq v$ and $x, y \in \bar{L}$ then x, y are incomparable: $\text{sup}\{x, y\} = u \lor v$, $\text{inf}\{x, y\} = \bar{0}$. (See Fig. 2.)
L is the filter \([0]\), therefore \(L\) is a maximal filter of \(K\). Every element of \(S_u\) is the join of atoms, and these are atoms of \(K\), hence \(K\) is atomistic. Assume that \(\theta\) is a congruence relation of \(K\) and \(a = b(\theta), a \triangleright b\). We prove that \(\theta = \iota\) which means that \(K\) is simple. If \(a, b \in S_u\) for some \(u\) then the simplicity of \(S_u\) implies \(u = 0(\theta)\), therefore two different elements of \(\bar{L}\) are congruent. We may assume that \(a, b \in \bar{L}\). If \(a = 0\) let \(p\) be the element \(a\) (in this case \(b = 0\)). Otherwise let \(p\) be an atom of \(S_u\) and consider an arbitrary \(q \in S_1 \setminus \bar{L}\). Then \(a \equiv b(\theta)\) implies \(p = p \wedge a \equiv p \wedge b = 0(\theta)\), and \(1 = p \lor q \equiv 0 \lor q = q(\theta)\). \(S_1\) is simple, consequently \(1 = 0(\theta)\), i.e. \(\theta = \iota\).

By a theorem of Rudolf Wille [2] \(K\) is order–polynomially complete, i.e. every automorphism is polynomial which proves (1).

Let \(\alpha\) be an automorphism of \(L\) (i.e. of \(\bar{L}\)), and let \(x \in S_u, x \notin \bar{L}\). Then \(u = 0 \lor x, 0 = 0 \land x\). Assume that \(\alpha\) has an extension to \(K\), we denote one of this by the same letter. We conclude that \(u^\alpha = 0^\alpha \lor x^\alpha = 0 \lor x^\alpha\) and \(0 = 0^\alpha = 0 \land x^\alpha = 0 \land x^\alpha\) which imply \(x^\alpha \in S_u^\alpha\). Since \(S\) has no nontrivial automorphism \(x^\alpha\) is uniquely determined (i.e. \((\varphi_n(x))^\alpha = \varphi_n^\alpha(x))\). Conversely if we define \((\varphi_n(x))^\alpha = \varphi_n(x)\) for \(x \in S\) then we have an extension of \(\alpha\) to \(K\), which proves (2).

Finally let \(\beta\) be an automorphism of \(K\). 0 is an atom of \(K\), hence \(0^\beta\) must be an atom. By construction of \(K\) \(\text{length}(S) > \text{length}(L)\), which implies \(0^\beta \in \bar{L}\), i.e. \(0^\beta = 0\). If \(a \in L\) then \(a \geq 0\), thus \(a^\beta \geq 0^\beta = 0\), i.e. \(a^\beta \in L\). Consequently, the restriction of \(\beta\) to \(L\) is an automorphism \(L\) which proves (3).

3 Proof of Theorem 2. Let \(L\) be the given bounded lattice with the zero element \(u\) and unit element \(v\). Let \(\alpha\) be a fixed automorphism of \(L\). First we construct a lattice \(T_\alpha(L)\) such that \(L\) is an ideal of this lattice and \(L\) has a polynomial automorphism, which is an extension of \(\alpha\). We start with the following lattice \(T\), where the principal ideals \([a_i]\) and \([a_0]\) are isomorphic to \(S(2)\) resp. \(S(4)\) where \(S(n)\) denotes the lattice defined in the proof of Theorem 1. This lattice is a simple atomistic lattice.

It is easy to see that \(T\) has no nontrivial automorphism. We glue one–one copies of \(L\) into the prime intervals \([0, a_i], [a_i+1, b_i]\), \(i = 0, 2, 4\), i.e. we identify 0 with \(u\) and \(a_i\) with \(v\) (and similarly \(a_i+1\) with \(u, b_i\), with \(v\)). We fix some isomorphisms \(\varphi_i : L \rightarrow [0, a_i], \varphi_i : L \rightarrow [a_i+1, b_i]\) and we identify \(L\) with \([0, a_0]\), i.e. \(\varphi_0\) is the identity map. Let \(T_\alpha(L)\) be the set \(T \cup \bigcup_{i=0,2,4} ([0, a_i] \cup [a_i+1, b_i])\). We define a partial ordering on \(T_\alpha(L)\).
which will be an extension of the ordering of \(T \).

\[
\varphi_0(x) \leq \Psi_4(z) \quad \text{iff} \quad x \leq y^\alpha \quad \text{in} \quad L,
\]

and in the other cases:

\[
\begin{align*}
\varphi_i(x) &\leq \Psi_i(y) \\
\varphi_{i+2}(x) &\leq \Psi_i(y)
\end{align*}
\]

iff \(x \leq y \quad \text{in} \quad L \).

Then the subsets \([0, a_i] \cup [a_i, b_i], [0, a_{i+1}] \cup [a_{i+1}, b_l] \) are all isomorphic to \(L \times 2 \). It is easy to see that \(T_\alpha(L) \) is a lattice and has the following schematic diagram (Fig. 4.).

Let the unary polynomials \(f, g, h \) be defined by setting

\[
f(x) = ((\ldots (x \land a_0) \lor a_1) \land a_2) \lor a_3) \lor a_4 \land a_5,
\]
\[g(x) = (\ldots (x \land a_2) \lor a_3) \land a_4) \lor a_5) \lor a_1) \land a_2, \]
\[h(x) = (\ldots (x \land a_4) \lor a_5) \land a_0) \lor a_1) \lor a_3) \land a_4. \]

By the definition of \(T_\alpha(L) \) for an arbitrary \(x \in L \) (i.e. \(x \leq a_0 \)) \(f(x) = x^\alpha \), consequently \(\alpha \in \text{Aut} \ L \) is the restriction of the unary polynomial function \(f(x) \). We extend \(f(x) \) to a polynomial automorphism of \(T_\alpha(L) \). Define the unary polynomial \(f_\alpha(x) \) in \(T_\alpha(L) \) by setting:

\[f_\alpha(x) = f(x) \lor (x \land a_2) \lor g(x) \lor (x \land a_3) \lor h(x) \lor (x \land a_5), \]

then \(f_\alpha(x) = f(x) \) if \(x \leq a_0 \) and similarly \(f_\alpha(x) = g(x) \) if \(x \leq a_2 \) and \(f_\alpha(x) = h(x) \) for \(x \leq a_4 \). The elements of \(T \subseteq T_\alpha(L) \) are all fixelements by \(f_\alpha(x) \).

Let \(\beta \) be an arbitrary automorphism of \(L \). We would like to extend \(\beta \) to \(T_\alpha(L) \), such that the elements of \(T \subseteq T_\alpha(L) \) remain fixed under the extension of \(\beta \). Then \((f(x))^{\beta} = f(x^{\beta}) \), consequently \(x^{\alpha \beta} = x^{\beta \alpha} (x \in L) \). That means: \(\beta \) can be extended to \(T_\alpha(L) \) if \(\alpha \) and \(\beta \) commute. In the other case \(x^{\beta} \) must be a "new" element, therefore we define an extension \(K_\alpha \) of \(T_\alpha(L) \), such that every polynomial automorphism of \(T_\alpha(L) \) can be extend to a polynomial automorphism of \(K_\alpha \).

Let \(C \) be the centralizer of \(\alpha \) in \(G = \text{Aut} \ L \). \(C = C_0, C_1, \ldots, C_n \) denote the right cosets of \(C \). For every \(C_i \) we consider an isomorphic copy \(M_i \) of \(T_\alpha(L) \) and we fix for every \(i \) an isomorphism \(r_i : T_\alpha(L) \rightarrow M_i \). We identify \(M_0 \) with \(T_\alpha(L) \). \(L \) is an ideal of \(T_\alpha(L) = M_0 \). Let \(L_i \) be the image of \(L \) by \(r_i \), then \(L_i \) is an ideal of \(M_i \). We glue together the lattices \(M_i (i = 0, 1, \ldots, n) \) by identifying the ideals \(L_i \). Then \(M_i \cap M_j = L \) if \(i \neq j \). Let \(1_i \) be the unit element of \(M_i \) and let \(1 \) be the unit of \(L \), then \(1_i \land 1_j = 1 \). Finally, we adjoin a new unit element \(I \) to the poset \(\cup M_i \). Let \(K_\alpha \) be the poset \(\{ I \} \cup \cup M_i \). This \(K_\alpha \) is obviously a lattice, every \(M_i \) is an ideal of \(K_\alpha \) and if \(x \in M_i, y \in M_j, x, y \not\in L \) then \(x \lor y = I \). (see Fig. 5).

\[\text{Fig. 5.} \]

We prove that \(K_\alpha \) satisfies the following three properties:

(i) \(\alpha \) is the restriction of a polynomial automorphism of \(K_\alpha \);

(ii) Each (polynomial) automorphism of \(L \) extends to a unique (polynomial) automorphism of \(K_\alpha \);

(iii) Each automorphism of \(K_\alpha \) is the extension of an automorphism of \(L \).
Using these properties the proof of the theorem is very easy. By our assumption \(G = \text{Aut} L \) is finite. Consider an \(\alpha \in G \), then we have extension \(K_\alpha \) of \(L \). \(\beta \in G \) can be extended to \(K_\alpha \), i.e. \(\beta \) is an automorphism of \(K_\alpha \). We apply the same construction starting with \(K_\alpha \) and we get the extension \((K_\alpha)_\beta \). By induction we have finally an extension \(K \) of \(L \) which satisfies (1)--(3). \(L \) is an ideal of \(K_\alpha \), hence \(L \) is an ideal of \(K \).

To prove (i) let \(f_\alpha \) be the polynomial automorphism of \(M_1 \) which corresponds to \(f_\alpha = f_\alpha^0 \) by the isomorphism \(\tau_1 : T_\alpha(L) \to M_1 \). Define \(F_\alpha(x) = \bigvee_{i=0}^n f_\alpha^i(x \wedge 1) \) then the restriction of \(F_\alpha(x) \) to \(M_1 \subseteq K_\alpha \) is \(f_\alpha^i \) consequently its restriction to \(L \subseteq M_0 \) is \(\alpha \) which proves (i).

We prove (ii). Every element \(y \notin \{1, \tau, s, t\} \) of \(T_\alpha(L) = M_0 \) has a unique representation in the following form:

\[
y = ((\ldots (x \wedge a_0) \lor a_1) \ldots) \lor a_k \quad \text{where} \quad x \in L, k \leq 5.
\]

If \(\beta \) has an extension to \(K_\alpha \) — we use same notation — then

\[
y^\beta = ((\ldots (x^\beta \wedge a_0^\beta) \lor a_1^\beta) \ldots) \lor a_k^\beta,
\]

which means that \(y^\beta \in C_i \) where \(\beta \in C_i \), hence \(y^\beta = \tau_i(y) \). Let \(\gamma \) be an arbitrary automorphism of \(L \), and let \(\beta \gamma \in C_j \). Then let \((y^\beta)^\gamma = \tau_j(y) \), which is an automorphism of \(K_\alpha \). This proves that \(\beta \) has a unique extension to \(K_\alpha \). (I is by the extension obviously a fixelement.)

Assume that \(\beta \) is a polynomial automorphism of \(L \). We prove that the extension of \(\beta \) — which will be denoted again by \(\beta \) — is a polynomial automorphism of \(K_\alpha \). \(T \) is a sublattice of \(T_\alpha(L) = M_0 \), i.e. we have the embedding \(\epsilon : T \to M_0 \). Applying the isomorphism \(\tau_1 : M_0 \to M_1 \) we get the sublattices \(T_i = \tau_1(T) \) of \(M_1 \). Obviously \(T_i \cap T_j = \{0, a_0\} \) if \(i \neq j \). Let \(T_{\alpha}^* \) be the sublattice \(\bigcup T_i \cup \{\} \) of \(K_\alpha \). This is a simple atomistic lattice, consequently by [2] every automorphism of \(T_{\alpha}^* \) is polynomial.

Consider the elements \(a_i(i = 0, 1, \ldots, 5) \) of \(T \) (see Fig. 3.). Let \(\gamma \) be an arbitrary automorphism of \(K_\alpha \), then \(a_i^\gamma \in T_k \subseteq M_k \) for some \(k \). If we apply the automorphism \(\beta \) then \(a_i^\gamma \beta \in T_{l} \subseteq M_l \) for some \(l \). We discuss two different cases. First assume, that \(i = 0, 2 \) or 4. The intervals \([0, a_0]\) and \([0, a_1]\) are projective in \(T_\alpha(L) \), consequently \([0, a_1^\gamma]\) and \([0, a_1^{\gamma\beta}]\) are projective in \(K_\alpha \). That means, we have a unary polynomial which transposes \([0, a_0]\) onto \([0, a_1^{\gamma\beta}]\). Now, let \(i = 1, 3 \) or 5. Then the principal ideals \([a_i]\) belong to \(T \) i.e. \([0, a_i]\), \([0, a_i^{\gamma\beta}]\) are contained in \(T_{\alpha}^* \). But every automorphism of \(T_{\alpha}^* \) is polynomial, i.e. we have again a unary polynomial which transposes \([0, a_i]\) onto \([0, a_i^{\gamma\beta}]\). This proves that \(\beta \) is a polynomial automorphism of \(K_\alpha \).

Finally we prove (iii). Let \(\gamma \) be an arbitrary automorphism of \(K_\alpha \). The unit element, \(1 \in L \) must be a fixelement of \(\gamma \) (1 is the intersection of dual atoms). Consequently the restriction of \(\gamma \) to \([1] = L \) is an automorphism.

4. Proof of Theorem 3. The proof is similar to the proof of Theorem 2, but we start with an other lattice \(T \):

The principal ideals \(a_2 \) and \(a_4 \) are isomorphic to \(S(2) \) resp \(S(4) \) where \(S(n) \) is the lattice defined in the proof of Theorem 1. \(T \) has only the trivial automorphism and
has exactly one non trivial congruence relation with the congruence classes \(\{a_i, b_i\} \), \(i = 0, \ldots, 5 \). Let \(L \) be the given bounded lattice, with zero element \(u \) and unit element \(v \). We glue one–one copies of \(L \) into the prime intervals \([a_i, b_i]\) \((i = 0, \ldots, 5) \) identifying \(u \) with \(a_i \) and \(v \) with \(b_i \). We fix the isomorphisms \(\varphi_i : L \to [a_i, b_i] \), \(\varphi_0 \) is the identify map i.e. \(L = [a_0, b_0] \). Let \(\alpha \) be an automorphism of \(L \). The ordering relation is defined as follows

\[
\begin{align*}
\varphi_2(x) &\leq \varphi_{i+1}(y) \quad \text{iff } x \leq y \quad \text{in } L \\
\varphi_1(x) &\geq \varphi_{i+1}(y) \quad \text{iff } y \leq x \quad \text{in } L \\
\varphi_0(x) &\leq \varphi_2(y) \quad \text{iff } x \leq y^\alpha \quad \text{in } L
\end{align*}
\]

We denote this poset by \(T_\alpha(L) \). It is easy to see that \(T_\alpha(L) \) is a lattice. If

\[f(x) = ((\ldots (x \land b_0) \lor a_1) \land b_2) \lor a_3 \cdots \lor a_5 \land b_0 \]

then its restriction to \(L \) is \(\alpha \). This \(f \) is obviously not a polynomial automorphism of \(T_\alpha(L) \).

As in the construction given in the proof of Theorem 2 we extend \(T_\alpha(L) \) to a lattice \(K_\alpha \). Let \(C \) be the centralizer of \(\alpha \) in \(G = Aut L \), and let denote \(C = C_0, \ldots, C_n \) the right cosets. For every \(i \) we consider an isomorphic copy \(M_i \) of \(T_\alpha(L) \) with a fixed isomorphism \(r_i : T_\alpha(L) \to M_i \). Finally we identify \(M_0 \) with \(T_\alpha(L) \) i.e. \(r_0 \) is the identify map. \(L \) is a convex subset of \(M_0 \). The image of \(L \) by \(r_i \) is a convex sublattice \(L_i \) of \(M_i \). We glue together the lattices \(M_i (i = 0, \ldots, n) \) by identifying the sublattices \(L_i \), then \(M_i \cap M_j = L \) if \(i \neq j \). Finally we adjoin a new unit \(I \) and a new zero \(0 \) to the poset \(\bigcup M_i \). Let \(K_\alpha \) be the poset \(\{ I, 0 \} \cup \bigcup M_i \). It is easy to see that \(K_\alpha \) is a lattice and every \(M_i \) is a convex sublattice of \(K_\alpha \). Similar to the proof of Theorem 2 we can show:

(i') \(\alpha \) is the restriction of a unary polynomial function;

(ii') Each automorphism of \(L \) extends to an automorphism of \(K_\alpha \).

(iii') Each automorphism of \(K_\alpha \) is the extension of an automorphism of \(L \).

In \(K_\alpha \) every non unit congruence relation is determined by its restriction to \(L = [a_0, b_0] \) which proves (4') and (5') in the theorem.
REFERENCES