1. Rectangular lattices

Rectangular lattices were introduced by Grätzer-Knapp [3] for planar semimodular lattices. This notion is an important tool by the description of planar semimodular lattices. \(J(L) \) denotes the order of all nonzero join-irreducible elements of \(L \) and \(J_0(K) \) is \(J(L) \cup 0 \).

Let \(X, Y \) be posets. The disjoint sum \(X + Y \) of \(X \) and \(Y \) is the set of all elements in \(X \) and \(Y \) considered as disjoint. The relation \(\leq \) keeps its meaning in \(X \) and in \(Y \), while neither \(x \geq y \) nor \(x \leq y \) for all \(x \in X, y \in Y \).

If \(R \) is a rectangular slim semimodular lattice then \(J(R) \) is the disjoint sum of two chains \(C_1 \) and \(C_2 \) which means that that \(x \in C_1, x \in C_2 \) are incomparable. The width \(w(P) \) of a (finite) order \(P \) is defined to be \(\max\{n: P \text{ has an } n \text{-element antichain}\} \). The width of \(J(L) \) is called the dimension of a semimodular lattice \(L \) and will be denoted by \(\text{dim}(R) \). An other dimension concept is \(\text{Dim}(L) \). \(n = \text{Dim}(L) \) is the greatest integer such that \(L \) contains a sublattice isomorphic to the \(2^n \)-element boolean lattice. If \(L \) is a distributive lattice then \(\text{dim}(L) = \text{Dim}(L) \). On the other hand \(\text{Dim}(M_3) = 2 \) and \(\text{dim}(M_3) = 3 \).

\(C_n \) denotes an \(n \)-element chain. By G. Czédli, E. T. Schmidt, [2] \(\text{dim}(L) = 3 \) is equivalent to the condition: there 3 disjoint chains \(C_n, C_m \) and \(C_k \), \(J(R) = C_n \cup C_m \cup C_k, n \leq m \leq k \) such that \(R \) is the cover-preserving join-homomorphism of \(G = G_R = C_n \times C_m \times C_k \). In this case we say that \(R \) is of type \((n, m, k) \). Two dimensional semimodular lattices are the slim lattices. \(G_R \) is called the (lower) grid of \(R \).

\textbf{Remark:} the upper grid of a semimodular lattice \(L \) is \(\overline{G} = C^3 \), where \(C \) is a chain which has the same length as \(L \). By [2] \(L \) is the cover-preserving join-homomorphic image of \(\overline{G} \).

Regularity can be defined for arbitrary dimension:

\textbf{Definition 1.} A rectangular lattice \(L \) is a finite semimodular lattice in which \(J(L) \) is the disjoint sum of chains.

If you has a slim rectangular lattice \(R \) visually, this looks like to Figure 1, i.e. – properly drawn – we see the contour in Figure 2.

If you has a planar semimodular lattice and if you draw properly then you get Figure 2, in the non slim case the dimension is grater then 2, the lattice in Figure 2 has dimensión 5.

Let \(R \) be a 3-dimensional rectangular semimodular lattice. If we have 3 disjoint chains \(C_n, C_m \) and \(C_k \) then rectangular means that \(J(R) \) is the disjoint sum of...
these chains. How does it looks like R? The first answer is, visually we see Figure 3, if you draw "properly". The direct product $G = C_n \times C_m \times C_k$ is such a lattice, which looks like to Figure 3. There is an other lattice of this type: this is $M_3[C_n]$, see Figure 5 (here as patchwork of covering squares and M_3-s). It is interesting that this is modular.

The expression "it looks like" is not an exact property, to define this exactly we introduce the following concept:
Definition 2. The skeleton of a 3D semimodular lattice is an eight-element boolean lattice which contains 0 and 1.

The skeleton of L will be denoted by $\text{Sk}(L)$. The skeleton of a 2D semimodular lattice is a four-element boolean lattice which contains 0 and 1.

That the 3-dimensional lattice R looks like to Figure 3 means that R contains a skeleton, in this case this means that $\text{dim}(R) = \text{Dim}(R)$. It is easy to see that $\text{Sk}(R) = \text{Sk}(G_R) = \text{Sk}(\overline{G_R})$. In this paper we would like to describe the 3-dimensional rectangular lattices especially those which don’t contains a skeleton.

2. EXAMPLES

We consider first, some exemplars. The simplest case is that $J(L)$ is the 3-element antichain, i.e. L is join-generated by the following order P, see in Figure 6;

Then we have a lattice of type $(1, 1, 1)$. Take the order P in Figure 6 this is a chopped lattice, where $a \land b = a \land c = b \land c = 0$. The semimodular lattices join-generated by P are the eight-element boolean lattice and M_3 the diamond.

If L is of type $(2, 2, 2)$ the we have the order Q, see in Figure 7. The cover-preserving join-homomorphic images of C_2^3 (with more then 2 elements) are the eight-element boolean lattice and M_3.

Figure 4. Improperly drawn 8-element boolean lattice.

Figure 5. $M_3[C_4]$ as patchwork.
Then Q is a chopped lattice which join generates in the class of semimodular lattices either C_3^3 this is a cube or $M_3[C_3]$.

Remark. This is equivalent to the following: C_2^3 has only one non trivial cover-preserving join-congruence, which is where the dual atoms with 1 form a congruence class.

These generates either C_2^3 or $M_3[C_3]$.

$M_3[C_3]$ is a cover-preserving join-homomorphic image of C_2^3. You can see this lattice in the cover of Algebra Universalis. On the home page of E. T. Schmidt there is a rotary example.

It follows that we can consider $M_3[C_3]$ as the "modular cube".

C_2^3 and $M_3[C_3]$- as geometric shapes have 6–6 flaps.

In Figure 5. we have a 3-dimensional patchwork of 8 monochromatic cubes.

3. **The source**

To describe the cover-preserving join-congruences of C_n^3 we need the notion of source elements.

Let Θ be a cover-preserving join-congruence of a distributive lattice G (which is not necessarily the grid).
Figure 8. A semimodular lattice of type \((2, 2, 2)\) with \(J_0(K)\).

Definition 3. An element \(s \in G\) is called a source element of \(\Theta\) if there is a \(t, t \prec s\) such that \(s \equiv t\ (\Theta)\) and for every prime quotient \(u/v\) if \(s/t \not\downarrow u/v, s \neq u\) imply \(u \neq v\ (\Theta)\). The set \(S_\Theta\) of all source elements of \(\Theta\) is the source of \(\Theta\).

Lemma 1. Let \(x\) be an arbitrary lower cover of a source element \(s\) of \(\Theta\). Then \(x \equiv s\ (\Theta)\). If \(s/x \not\downarrow v/z, s \neq v\), then \(v \neq z\ (\Theta)\).

Proof. Let \(s\) be a source element of \(\Theta\) then \(s \equiv t\ (\Theta)\) for some \(t, t \prec s\). If \(x \prec s\) and \(x \neq t\) then \(\{x \wedge t, x, t, s\}\) form a covering square. Then \(x \neq x \wedge t\ (\Theta)\). This implies \(x \wedge t \neq t\ (\Theta)\). By Lemma 1 we have \(x \equiv s\ (\Theta)\).

To prove that \(v \neq z\ (\Theta)\), we may assume that \(v \prec s\). Take \(t, t \prec s\), then we have three (pairwise different) lower covers of \(s\), namely \(x, v, t\). These generate an eight-element boolean lattice in which \(s \equiv t\ (\Theta)\), \(s \equiv x\ (\Theta)\) and \(s \equiv v\ (\Theta)\). By the choice of \(t\) we know that \(v \neq v \wedge t\ (\Theta)\), \(x \neq x \wedge t\ (\Theta)\) and \(z \neq x \wedge t \wedge v\ (\Theta)\). It follows that \(x \neq t\ (\Theta)\), otherwise by the transitivity \(x \neq v\ (\Theta)\). This implies \(t \wedge x \neq t \wedge x \wedge v\ (\Theta)\). Take the covering square \(\{x \vee v \wedge t, z, t \wedge x, x\}\) then by Lemma 1 \(z \neq x\ (\Theta)\), which implies \(z \neq v\ (\Theta)\). \(\square\)

The following results are proved in [4]. The source \(S\) satisfies an independence property:

Definition 4. Two elements \(s_1\) and \(s_2\) of a distributive lattice are \(s\)-independent if \(x \prec s_1, y \prec s_2\) then \(s_1/x, s_2/y\) are not perspective, \(s_1/x \not\sim s_2/y\). A subset \(S\) is \(s\)-independent iff every pair \(\{s_1, s_2\}\) is \(s\)-independent.

\[G = C_n \times C_m \times C_k\] can be considered as a 3D hypermatrix, this has a row and two columns. \(G\) contains covering cubes, these are called cells. The source elements are top element of the sources., see Figure 9.

Lemma 2. Every row/column contains at most one source element.
Lemma 3. Two elements \(s_1 \) and \(s_2 \) of a distributive lattice are \(s \)-independent if one of the following is satisfied:

1. \(s_1 \) and \(s_2 \) are incomparable,
2. \(s_1 < s_2 \) and \(t < s_2 \) implies \(t \geq s_1 \), i.e. \(s_1 \leq s_2^* \).

Proof. It is clear that for an incomparable pair \(s_1, s_2 \) if \(u \prec s_1 \) and \(v \prec s_2 \) then \(s_1/u \) and \(s_2/v \) cannot be projective. On the other case, if \(s_1 < s_2 \) then \(t|s_1 \) would imply that \(s_2/t \) and \(s_1/t \wedge s_1 \) are perspective. This means that \(t \geq s_1 \). \(\square \)

It is easy to prove that every \(s \)-independent subset \(S \) generate a cover-preserving join-congruence \(\Theta \). The semimodular lattice \(L \) is characterized by \((G, \Theta)\) or \((G, S)\), where \(S \) is an \(s \)-independent subset. We write:

\[
L = \mathcal{L}(G, S).
\]

Theorem. A rectangular 3D semimodular lattice \(R \) of type \((n, m, k)\) has a 3-skeleton if and only if the source \(S \) of \(R \) has less then \(n \) elements.

Proof. Let \(R \) be a rectangular 3D semimodular lattice of type \((n, m, k)\), \((n \leq m \leq k)\).

Then we have the grid \(G = C_n \times C_m \times C_k \) a cover-preserving join-congruence \(\Theta \) and the source \(S \) of \(\Theta \) such that \(R \cong G/\Theta \). Then \(G \) has a skeleton \(\text{Sk}(G) = \{0, a, b, c, p, q, r, 1\} \), see in Figure 10 (in this example the type is of type \((2, 2, 2)\)). Take the ideal generated by \(a = (c_n, 0, 0) \) of \(G \) (in Figure 10 the yellow line, this is the leading line). \([(c_{n-1}, 0, 0), (c_n, c_m, c_k)] \) is the first row of the “matrix” \(G \).

If every row contains a source element, i.e. we have \(n \) source elements then \(p \equiv 1(\Theta) \). This implies that \(\text{Sk}(G)/\Theta \) is not a boolean lattice, i.e. \(R \) has no skeleton.

Assume that we have rows without source elements. then \(p \not\equiv 1(\Theta) \). Then the image of \(\text{Sk}(G) \) by the cover-preserving join-homomorphism \(\varphi : G \to R \) is the skeleton \(\text{Sk}(R) \) of \(R \). \(\square \)
Take M_3, then $J(M_3)$ is the three-element antichain, i.e. $G = C_2^3$. G has only one cell, the unit element is a source element. Let Θ be the corresponding cover-preserving join-congruence. The face lattice is $G/\Theta = M_3$. If $R = N_7$ then the grid is $G = C_3^2$ the matrix is not invertible and R and R has a skeleton.

![Figure 10. The skeleton of a G.](image)

4. SOME MORE EXAMPLES

Example 1.
We would like to describe all lattices of type $(1, 2, 2)$. If R is such a lattice, then the grid is $G = C_2 \times C_3 \times C_3$. This has 4 cells, one row and two columns.

![Figure 11. The skeleton $G = C_2 \times C_3 \times C_3$.](image)

Example 2.

5. IMPORTANT RECTANGULAR LATTICES: PATCH LATTICES

5.1. Patch lattices. Let R be a 3D semimodular lattice of type (n, n, n).

R is called a patch lattice if in every row and column s except the last row and last (two) columns is a source element. The patch lattices were introduced in [2].
for the two dimensional semimodular lattices, these are the building stones. Every path lattice R has a skeleton $\text{Sk}(R)$. The dual atoms of $\text{Sk}(R)$ are dual atoms of R.

5.2. The matrix representation. Take the grid G of R. This can be considered as a hypermatrix. If the cell is labeled by a source element then we write as entry 1 into this cell. otherwise we write 0. then we have a $(0,1)$-hypermatrix, see Figure 12.

From Theorem 1 it follows that the condition R has no skeleton is equivalent to the condition ”the hypermatrix is invertible”.

References

Mathematical Institute of the Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1521 Budapest, Hungary
E-mail address, E. T. Schmidt: schmidt@math.bme.hu
URL: http://www.math.bme.hu/~schmidt/