RECTANGULAR LATTICES AS GEOMETRIC SHAPES

E.TAMAS SCHMIDT

1. RECTANGULAR LATTICES

Rectangular lattices were introduced by Gréatzer-Knapp [3] for planar semimod-
ular lattices. This notion is an important tool by the description of planar semi-
modular lattices. J(L) denotes the order of all nonzero join-irreducible elements of
L and Jo(K) is J(L) U 0.

Let X, Y be posets. The disjoint sum X +Y of X and Y is the set of all elements
in X and Y considered as disjoint. The relation < keeps its meaning in X and in
Y, while neither z >y nor x <y forallz € X,y € Y.

If R is a rectangular slim semimodular lattice then J(R) is the disjoint sum of two
chains C7 and C5 wich means that that z € Cy, x € Cs are incomparable. The width
w(P) of a (finite) order P is defined to be max{n: P has an n-element antichain}.
The width of J(L) is called the dimension of a semimodular lattice L and will be
denoted by dim(R). An other dimension concept is Dim(L). n = Dim(L) is
the greatest integer such that L contains a sublattice isomorphic to the 2"-element
boolean lattice. If L is a distributive lattice then dim(L) = Dim(L). On the other
hand Dim(M3) = 2 and dim(M3) = 3.

C, denotes an n-element chain. By G. Czédli, E. T. Schmidt, [2] dim(L) = 3
is equivalent to the condition: there 3 disjoint chains C,,C,, and C, J(R) =
Cn,UC), UCk, n <m < k such that R is the cover-preserving join-homomorphism
of G = Gr = C), x Cy, X Ck. In this case we say that R is of type (n.m, k). Two
dimensional semimodular lattices are the slim lattices. G is called the (lower) grid
of R.

Remark: the upper grid of a semimodular lattice L is G = C3, where C is
a chain which has the same length as L. By [2] L is the cover-preserving join-
homomorphic image of G.

Regularity can be defined for arbitrary dimension:

Definition 1. A rectangular lattice L is a finite semimodular lattice in which J(L)
is the disjoint sum of chains.

If you has a slim rectangular lattice R visually, this looks like to Figure 1, i.e. —
properly drawn — we see the contour in Figure 2.

If you has a planar semimodular lattice and if you draw properly then you get
Figure 2, in the non slim case the dimension is grater then 2, the lattice in Figure
2 has dimesion 5

Let R be a 3-dimensional rectangular semimodular lattice. If we have 3 disjoint
chains C,,,C,, and C} then rectangular means that J(R) is the disjoint sum of
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FIGURE 1. A rectangular slim semimodular lattice.

FIGURE 2. A rectangular planar semimodular lattice

these chains. How does it looks like R? The first answer is, visually we see Figure
3, if you draw ”properly”. The direct product G = C,, x C,,, x Cf is such a lattice,
which looks like to Figure 3. There is an other lattice of this type: this is M3[C,,],
see Figure 5 (here as patchwork of covering squares and Ms-s). It is interesting
that this is modular.

FI1GURE 3. The contour of a 3D rectangular semimodular lattice, a cuboid.

The expression ”it looks like” is not an exact property, to define this exactly we
introduce the following concept:
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FI1GURE 4. Improperly drawn 8-element boolean lattice.

FIGURE 5. M3[Cy] as patchwork.

Definition 2. The skeleton of a 3D semimodular lattice is an eight-element boolean
lattice which contains 0 and 1.

The skeleton of L will be denoted by Sk(L). The skeleton of a 2D semimodular
lattice is a four-element boolean lattice which contains 0 and 1.

That the 3-dimensional lattice R looks like to Figure 3 means that R contains
a skeleton, in this case this means that dim(R) = Dim(R). It is easy to see
that Sk(R) = Sk(Ggr) = Sk(GRr). In this paper we would like to describe the
3-dimensional rectangular lattices especially those which don’t contains a skeleton.

2. EXAMPLES

We consider first, some exemplars. The simplest case is that J(L) is the 3-
element antichain, i.e. L is join-generated by the following order P, see in Figure
6;

Then we have a lattice of type (1,1,1). Take the order P in Figure 6 this is
a chopped lattice, where a Ab = a Ac = bAc = 0. The semimodular lattices
join-generated by P are the eight-element boolean lattice and Mj3 the diamond.

If L is of type (2,2,2) the we have the order @, see in Figure 7. The cover-
preserving join-homomorphic images of Cy® (with more then 2 elements) are the
eight-element boolean lattice and Ms.
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FIGURE 6. The poset P and the join generated semimodular lattices.

a b c

F1GURE 7. The poset Q.

Then @ is a chopped lattice which join generates in the class of semimodular
lattices either Cs® this is a cube or M3[C3).

Remark. This is equivalent to the following: C5® has only one non trivial cover-
preserving join-congruence, which is where the dual atoms with 1 form a congruence
class.

These generates either Cy> or Ms [Cs].

M3[C5] is a cover-preserving join-homomorphic image of Co®. You can see this
lattice in the cover of Algebra Universalis. On the home page of E. T. Schmidt
there is a rotary example.

It follows that we can consider M3[C3] as the ”modular cube” .

Cy* and M3[Cs]- as geometric shapes have 6-6 flaps.

In Figure 5. we have a 3-dimensional patchwork of 8 monochromatic cubes.

3. THE SOURCE

To describe the cover-preserving join- congruences of C,,® we need the notion of
source elements.

Let © be a cover-preserving join-congruence of a distributive lattice G (which is
not necessarily the grid).
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FIGURE 8. A semimodular lattice of type (2,2,2) with Jo(K).

Definition 3. An element s € G is called a source element of © if there is at,t < s
such that s =t (©) and for every prime quotient u/v if s/t \, u/v,s # u imply
uZzv (0). The set 8o of all source elements of © is the source of ©.

Lemma 1. Let x be an arbitrary lower cover of a source element s of ©. Then
x=s (0). If s/x\ v/z, s # v, thenv #£ z (O).

Proof. Let s be a source element of © then s =t (0) for some ¢, t < s. If v < s
and x # t then {x At,z,t,s} form a covering square. Then z #Z x At (©). This
implies z At Zt (©). By Lemma 1 we have x = s (O).

To prove that v # z (O), we may assume that v < s. Take ¢, t < s, then we
have three (pairwise different) lower covers of s, namely .z, v,t. These generate an
eight-element boolean lattice in which s =t (0), s =z (0) and s = v (©). By
the choice of ¢ we know that v Zv At (©), z Zx At (©)and z Z At Av (O).
It follows that « # t (©), otherwise by the transitivity  # v (©). This implies
tAxz ZtAxAv (O) . Take the covering square {z AvAt, z,t Az, z} then by Lemma
1 z # x (), which implies z Z v (©). O

The following results are proved in [4]. The source 8 satisfies an independence
property:

Definition 4. Two elements s1 and sy of a distributive lattice are s-independent
if © < 81,y < S2 then s1/x,s2/y are not perspective, s1/x ¢ sa/y. A subset S is
s-independent iff every pair {s1, s2} is s-independent.

G = C, x Cy, x Cf can be considered as a 3D hypermatrix, this has a row and
two colums. GG contains covering cubes, these are called cells. the source elements
are top element of the sources., see Figure 9.

Lemma 2. Every row/column contains at most one source element.
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FIGURE 9. The representation of a (2,2, 2)- type lattice

Lemma 3. Two elements s1 and s2 of a distributive lattice are s-independent if
one of the following is satisfied:

(1) s1 and sz are incomparable,
(2) s1 < 89 and t < s implies t > 81, i.e. 81 < S2*.

Proof. Tt is clear that for an incomparable pair si,s2 if u < s; and v < s then
s1/u and so/v cannot be projective. On the other case, if s; < s then t||s; would
imply that so/t and s1/t A s1 are perspective. This means that ¢ > s;. O

It is easy to prove that every s-independent subset S generate a cover-preserving
join-congruence ©. The semimodular lattice L is characterized by (G, ©) or (G, 8),
where § is an s-independent subset. We write:

L=L(G,8).

Theorem. A rectangular 8D semimodular lattice R of type (n,m,k) has a 3-
skeleton if and only if the source S of R has less then n elements.

Proof. Let R be a rectangular 3D semimodular lattice of type (n,m, k), (n <m <

Then we have the grid G = C,, x C,, x C}, a cover-preserving join-congruence
© and the source S of © such that R = G/O. Then G has a skeleton Sk(G) =
{0,a,b,¢,p,q,r, 1}, see in Figure 10 (in this example the type is of type (2,2,2)).
Take the ideal generated by a = (¢,,0,0) of G (in Figure 10 the yellow line, this is
the leading line). [(¢n-1,0,0), (¢n,em, ck)] is the first row of the "matrix” G.

If every row contains a source element, i.e. we have n source elements then
p = 1(©). This implies that Sk(G)/O is not a boolean lattice, i.e. R has no
skeleton.

Assume that we have rows without source elements. then p Z 1(©). Then the
image of Sk(G) by the cover-preserving join-homomorphism ¢ : G — R is the
skeleton Sk(R) of R.

O
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Take Ms, then J(Ms3) is the three-element antichain, i.e. G = Co®. G has only
one cell, the unit elemet is a source element. Let © be the corresponding cover-
preserving join-congrurnce. The facor lattice is G/© = M5. If R = Ny then rhe
grid is G = C3? the matrix is not invertible and R and R has a skeleton.

FIGURE 10. The skeleton of a G.

4. SOME MORE EXAMPLES

Example 1.
We would like to describe all lattices of type (1,2,2). If R is such a lattice, then
the grid is G = Cy x C5 x C5. This has 4 cells, one row and two columns.

FIGURE 11. The skeleton G = Cy x C3 x Cj.

Example 2.

5. IMPORTANT RECTANGULAR LATTICES: PATCH LATICES

5.1. Patch lattices. Let R be a 3D semimodular lattice of type (n,n,n).
R is called a patch lattice if in every row and column s except the last row and
last (two) columns is a source elements. The patch lattices were introduced in [2]
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FIGURE 12. Sp5 of type (1,2,2)

for the two dimensional semimodular lattices, these are the building stones. Every

path lattice R has a skeleton Sk(R). The dual atoms of Sk(R) are dual atoms
of R.

5.2. The matrix representation. . Take the grid G of R. This can be considered
as a hypermatrix. If the cell is labeled by a source element then we write as entry 1
into this cell. otherwise we write 0. then we have a (0, 1)-hypermatrix, see Figure
12.

From Theorem 1 it follows that the condition R has no skeleton is equivalent to
the condition ”the hypermatrix is invertible”.

FIGURE 13. A cell labeled by a source element s.
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