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1. Rectangular lattices

Rectangular lattices were introduced by Grätzer-Knapp [3] for planar semimod-
ular lattices. This notion is an important tool by the description of planar semi-
modular lattices. J(L) denotes the order of all nonzero join-irreducible elements of
L and J0(K) is J(L) ∪ 0.

Let X, Y be posets. The disjoint sum X +Y of X and Y is the set of all elements
in X and Y considered as disjoint. The relation ≤ keeps its meaning in X and in
Y , while neither x ≥ y nor x ≤ y for all x ∈ X, y ∈ Y .

If R is a rectangular slim semimodular lattice then J(R) is the disjoint sum of two
chains C1 and C2 wich means that that x ∈ C1, x ∈ C2 are incomparable. The width
w(P ) of a (finite) order P is defined to be max{n: P has an n-element antichain}.
The width of J(L) is called the dimension of a semimodular lattice L and will be
denoted by dim(R). An other dimension concept is Dim(L). n = Dim(L) is
the greatest integer such that L contains a sublattice isomorphic to the 2n-element
boolean lattice. If L is a distributive lattice then dim(L) = Dim(L). On the other
hand Dim(M3) = 2 and dim(M3) = 3.

Cn denotes an n-element chain. By G. Czédli, E. T. Schmidt, [2] dim(L) = 3
is equivalent to the condition: there 3 disjoint chains Cn, Cm and Ck, J(R) =
Cn ∪Cm ∪Ck , n ≤ m ≤ k such that R is the cover-preserving join-homomorphism
of G = GR = Cn × Cm × Ck. In this case we say that R is of type (n.m, k). Two
dimensional semimodular lattices are the slim lattices. GR is called the (lower) grid
of R.

Remark: the upper grid of a semimodular lattice L is G = C3, where C is
a chain which has the same length as L. By [2] L is the cover-preserving join-
homomorphic image of G.

Regularity can be defined for arbitrary dimension:

Definition 1. A rectangular lattice L is a finite semimodular lattice in which J(L)
is the disjoint sum of chains.

If you has a slim rectangular lattice R visually, this looks like to Figure 1, i.e. –
properly drawn – we see the contour in Figure 2.

If you has a planar semimodular lattice and if you draw properly then you get
Figure 2, in the non slim case the dimension is grater then 2, the lattice in Figure
2 has dimesion 5

Let R be a 3-dimensional rectangular semimodular lattice. If we have 3 disjoint
chains Cn, Cm and Ck then rectangular means that J(R) is the disjoint sum of
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Figure 1. A rectangular slim semimodular lattice.

Figure 2. A rectangular planar semimodular lattice

these chains. How does it looks like R? The first answer is, visually we see Figure
3, if you draw ”properly”. The direct product G = Cn ×Cm ×Ck is such a lattice,
which looks like to Figure 3. There is an other lattice of this type: this is M3[Cn],
see Figure 5 (here as patchwork of covering squares and M3-s). It is interesting
that this is modular.

Figure 3. The contour of a 3D rectangular semimodular lattice, a cuboid.

The expression ”it looks like” is not an exact property, to define this exactly we
introduce the following concept:
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Figure 4. Improperly drawn 8-element boolean lattice.

Figure 5. M3[C4] as patchwork.

Definition 2. The skeleton of a 3D semimodular lattice is an eight-element boolean
lattice which contains 0 and 1.

The skeleton of L will be denoted by Sk(L). The skeleton of a 2D semimodular
lattice is a four-element boolean lattice which contains 0 and 1.

That the 3-dimensional lattice R looks like to Figure 3 means that R contains
a skeleton, in this case this means that dim(R) = Dim(R). It is easy to see
that Sk(R) = Sk(GR) = Sk(GR). In this paper we would like to describe the
3-dimensional rectangular lattices especially those which don’t contains a skeleton.

2. Examples

We consider first, some exemplars. The simplest case is that J(L) is the 3-
element antichain, i.e. L is join-generated by the following order P , see in Figure
6;

Then we have a lattice of type (1, 1, 1). Take the order P in Figure 6 this is
a chopped lattice, where a ∧ b = a ∧ c = b ∧ c = 0. The semimodular lattices
join-generated by P are the eight-element boolean lattice and M3 the diamond.

If L is of type (2, 2, 2) the we have the order Q, see in Figure 7. The cover-
preserving join-homomorphic images of C2

3 (with more then 2 elements) are the
eight-element boolean lattice and M3.
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P

a b c

0

Figure 6. The poset P and the join generated semimodular lattices.

P

a b c

0

Figure 7. The poset Q.

Then Q is a chopped lattice which join generates in the class of semimodular
lattices either C3

3 this is a cube or M3[C3].
Remark. This is equivalent to the following: C2

3 has only one non trivial cover-
preserving join-congruence, which is where the dual atoms with 1 form a congruence
class.

These generates either C2
3 or M3[C3].

M3[C3] is a cover-preserving join-homomorphic image of C2
3. You can see this

lattice in the cover of Algebra Universalis. On the home page of E. T. Schmidt
there is a rotary example.

It follows that we can consider M3[C3] as the ”modular cube” .
C2

3 and M3[C3]- as geometric shapes have 6–6 flaps.
In Figure 5. we have a 3-dimensional patchwork of 8 monochromatic cubes.

3. The source

To describe the cover-preserving join- congruences of Cn
3 we need the notion of

source elements.
Let Θ be a cover-preserving join-congruence of a distributive lattice G (which is

not necessarily the grid).
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Figure 8. A semimodular lattice of type (2, 2, 2) with J0(K).

Definition 3. An element s ∈ G is called a source element of Θ if there is a t, t ≺ s
such that s ≡ t (Θ) and for every prime quotient u/v if s/t ↘ u/v, s 6= u imply
u 6≡ v (Θ). The set SΘ of all source elements of Θ is the source of Θ.

Lemma 1. Let x be an arbitrary lower cover of a source element s of Θ. Then
x ≡ s (Θ). If s/x ↘ v/z, s 6= v, then v 6≡ z (Θ).

Proof. Let s be a source element of Θ then s ≡ t (Θ) for some t, t ≺ s. If x ≺ s
and x 6= t then {x ∧ t, x, t, s} form a covering square. Then x 6≡ x ∧ t (Θ). This
implies x ∧ t 6≡ t (Θ). By Lemma 1 we have x ≡ s (Θ).

To prove that v 6≡ z (Θ), we may assume that v ≺ s. Take t, t ≺ s, then we
have three (pairwise different) lower covers of s, namely .x, v, t. These generate an
eight-element boolean lattice in which s ≡ t (Θ), s ≡ x (Θ) and s ≡ v (Θ). By
the choice of t we know that v 6≡ v ∧ t (Θ), x 6≡ x ∧ t (Θ) and z 6≡ x ∧ t ∧ v (Θ).
It follows that x 6≡ t (Θ), otherwise by the transitivity x 6≡ v (Θ). This implies
t∧x 6≡ t∧x∧v (Θ) . Take the covering square {x∧v∧ t, z, t∧x, x} then by Lemma
1 z 6≡ x (Θ), which implies z 6≡ v (Θ). �

The following results are proved in [4]. The source S satisfies an independence
property:

Definition 4. Two elements s1 and s2 of a distributive lattice are s-independent
if x ≺ s1, y ≺ s2 then s1/x, s2/y are not perspective, s1/x 6∼ s2/y. A subset S is
s-independent iff every pair {s1, s2} is s-independent.

G = Cn × Cm × Ck can be considered as a 3D hypermatrix, this has a row and
two colums. G contains covering cubes, these are called cells. the source elements
are top element of the sources., see Figure 9.

Lemma 2. Every row/column contains at most one source element.
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Figure 9. The representation of a (2, 2, 2)- type lattice

Lemma 3. Two elements s1 and s2 of a distributive lattice are s-independent if
one of the following is satisfied:

(1) s1 and s2 are incomparable,
(2) s1 < s2 and t ≺ s2 implies t ≥ s1, i.e. s1 ≤ s2

∗.

Proof. It is clear that for an incomparable pair s1, s2 if u ≺ s1 and v ≺ s2 then
s1/u and s2/v cannot be projective. On the other case, if s1 < s2 then t||s1 would
imply that s2/t and s1/t ∧ s1 are perspective. This means that t ≥ s1. �

It is easy to prove that every s-independent subset S generate a cover-preserving
join-congruence Θ. The semimodular lattice L is characterized by (G, Θ) or (G, S),
where S is an s-independent subset. We write:

L = L(G, S).

Theorem. A rectangular 3D semimodular lattice R of type (n, m, k) has a 3-
skeleton if and only if the source S of R has less then n elements.

Proof. Let R be a rectangular 3D semimodular lattice of type (n, m, k), (n ≤ m ≤
k).

Then we have the grid G = Cn × Cm × Ck a cover-preserving join-congruence
Θ and the source S of Θ such that R ∼= G/Θ. Then G has a skeleton Sk(G) =
{0, a, b, c, p, q, r, 1}, see in Figure 10 (in this example the type is of type (2, 2, 2)).
Take the ideal generated by a = (cn, 0, 0) of G (in Figure 10 the yellow line, this is
the leading line). [(cn−1, 0, 0), (cn, cm, ck)] is the first row of the ”matrix” G.

If every row contains a source element, i.e. we have n source elements then
p ≡ 1(Θ). This implies that Sk(G)/Θ is not a boolean lattice, i.e. R has no
skeleton.

Assume that we have rows without source elements. then p 6≡ 1(Θ). Then the
image of Sk(G) by the cover-preserving join-homomorphism ϕ : G → R is the
skeleton Sk(R) of R.

�
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Take M3, then J(M3) is the three-element antichain, i.e. G = C2
3. G has only

one cell, the unit elemet is a source element. Let Θ be the corresponding cover-
preserving join-congrurnce. The facor lattice is G/Θ = M3. If R = N7 then rhe
grid is G = C3

2 the matrix is not invertible and R and R has a skeleton.

0

0

p

1

r

q

c
b

a=c

c1

2

Figure 10. The skeleton of a G.

4. Some more examples

Example 1.
We would like to describe all lattices of type (1, 2, 2). If R is such a lattice, then

the grid is G = C2 × C3 × C3. This has 4 cells, one row and two columns.
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Figure 11. The skeleton G = C2 × C3 × C3.

Example 2.

5. Important rectangular lattices: patch latices

5.1. Patch lattices. Let R be a 3D semimodular lattice of type (n, n, n).
R is called a patch lattice if in every row and column s except the last row and

last (two) columns is a source elements. The patch lattices were introduced in [2]
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Figure 12. S15 of type (1, 2, 2)

for the two dimensional semimodular lattices, these are the building stones. Every
path lattice R has a skeleton Sk(R). The dual atoms of Sk(R) are dual atoms
of R.

5.2. The matrix representation. . Take the grid G of R. This can be considered
as a hypermatrix. If the cell is labeled by a source element then we write as entry 1
into this cell. otherwise we write 0. then we have a (0, 1)-hypermatrix, see Figure
12.

From Theorem 1 it follows that the condition R has no skeleton is equivalent to
the condition ”the hypermatrix is invertible”.

0

00000 s

1
0

Figure 13. A cell labeled by a source element s.
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