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Introduction

In this file we give some proofs and slightly deeper
analysis of notions introduced in the first File.
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.
Notation

We study discrete time Markov chain X, on the
countable (finite or countably infinite) state space S with
transition matrix P = (p(/,j))ijes.

P, (A) =P (AX) = x).

E, notates the expected value for the probability P,.
We frequently use the hitting time:

T, =min{n>1:X,=y.}
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Notation (cont.)

The probability that the chain of starting at x will ever
get to y:
pry =Py (T, < 00)

Intuitively: we feel that pf,y is the probability of the event
that {starting from y, we will come back to y twice}
because we feel that whatever happens after we got back
to y first is independent of what had happened before.
To make this feeling precise we introduce the notion of
stopping time or Markov-time.
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Notation (cont.)

Definition 1.1 (Stopping time)

T is a stoppingtime if we can decide whether the event
{T = n} (we stop at time n) occur or does not occur by
looking at the values Xp, ..., X,.
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Stopping time

We can see easily that T, is a stopping time, because

{Ty:n}:{Xl#y,-.-,Xn_l#y,Xn:_)/}-

Example 1.2
@ | = k constant time is stopping time.
@ The first time when X, enters a given set A.
T(A) :=min{n: X, € A} is a stopping time.
@ For a fixed k: the first time when the process enters
into a given A C S set for the k™ time is also a
stopping time. (We will prove this later.)
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Stopping time (cont.)

Counter example: The last time when the process
enters a given set is not a stopping time because we
need to know the whole future to check it.

Lemma 1.3

The
@ sum
@ maximum
@ minimum

of two stopping times is stopping time.

The proof is trivial.
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Stopping time, Strong Markov property

Strong Markov property

Theorem 1.4

Let X, be Markov chain with transition matrix:

P = (p(i,j)) and T be a stopping time. Assuming that
T = n and X1 =y, every further piece of information
about Xy, ..., Xt is irrelevant for the future (to estimate
values of X7.) and for k > 0: X7, behaves like the
original Markov chain started from y.

In the case of T = k we get back the Markov property.
We only prove now that

(1) P(XT+1:Z|XT:y7T:n):p(y7z)'

Karoly Simon (TU Budapest) i 2020 File B 9/31




Stopping time, Strong Markov property

Strong Markov property (cont.)

For an arbitrary x = (xg, ..., x,), where x; € S, let
X§(x) be and event defined by

X3 (x) = {Xo=x0,...,Xn=Xpn} .
We define

V,:={x: X§(x) = (T =nand X7 =y)}.

In other words: V/, is the set of those x = (xg, . .., Xs),
for which:

X0:X0,...,Xn:Xn:> T:nandXT:y
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Stopping time, Strong Markov property

Strong Markov property (cont.)

]P)(XT+1:Z,XT:_)/,T:”) fd
= 2 P(Xop1 =2, X(x)) =

xeV,

= 2. P(Xon1 = 2[Xg(x)) P (X5'(x)) =

xeV,

p(y,z)

=p(y,z) > P(X7(x)) =

xeV,

= ply,z) - P(T=nXr=y).

We divide both sides by P (T = n, X7 = y) and this
yields (1).
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Transient and recurrent states

e Transient and recurrent states
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Recurrent and transient states

Let Ty1 .= T, and
TK = min {n > T}f(_l Xy, = y}

y

the time of the k" return to y. Because of the strong
Markov property

P, (Tyk < oo) = pﬁﬁy.
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Recurrent and transient states (cont.)

e If p,, <1, then the probability of the event that

the chain process comes back to y: p/y‘y — 0. Thus,
there's a time when the process no longer gets back
to y. These y states are called transient .

o If p,, =1. Then for Yk: pf, = 1. Thus the process
gets back to y infinitely many times. Then these y
states are called recurrent .
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Recurrent and transient states (cont.)

The following simple observation will be useful:

Lemma 2.1

IfP, (T, <k)>a>0Vx €S, then

P, (T, > nk) < (1—a)".

Namely, the probability that in the first n steps we have
not visited y is less than 1 — «, the same is true for the
subsequent n — 1 blocks of paths of length k.

Karoly Simon (TU Budapest) i 2020 File B 15/31



Recurrent and transient states (cont.)

Definition 2.2

We say that x communicates with y ( x ~~ y) if the
probability of reaching y from x in some (not necessarily
in one) steps is positive. In other words:

x ~ yif py =Py (T, < 00) > 0.

It follows from Markov property that

(2) If x ~» y and y ~» z then x ~» z.
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Recurrent and transient states (cont.)

Lemma 2.3

If psy >0 and p, <1, then x is transient.

This is trivial, because since the event {starting from x
we can get to y in finitely many steps} has positive
probability and the event {from y we don't get back to
x} also has positive probability. By Markov property:
{starting from x we never get back to x} has also
positive probability, so x is transient.
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Recurrence and transience

Unless we say otherwise, we do not assume that

#S < 00. Recall:

T)f‘ = min{n > TYk*1 ; X,,:y}

and p,, =P, (T, < 0).
From the strong Markov property:

(3) P, (Ty < 00) = pyy - py,

Let

N(y) =#{n>1:X,=y}.
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Recurrence and transience (cont.)

Obviously,

() )= Ky ={7f < oo}

Hence, whenever p,, < 1 (that is y is transient) we have

E.N(y) = EIPX(N(mZk):éPX{T;m}

= k-1 Pxy
_— pX p _—
g kgl Y 1-— Pyy
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Recurrence and transience (cont.)

So have obtained that

Px
(5) Py <1=EN(y)= y
1_Pyy

That's why E,N(y) < oo iff p,, < 1. On the other hand
we will prove hat

Lemma 2.4

EN(y) = 3 p'(x.).
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Recurrence and transience (cont.)

Proof.
N(y) = %1 1x,—,. Taking expected value:

n=1
p"(x,y)

E,N(y) = 2 B [lxoy] = 5 Po(Xo=y)

- ﬁiz_l)n()<’)/).

21/31

As a corollary of Lemma 2.4 and (5) we get:
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Recurrence and transience (cont.)

Theorem 2.5

An element y € S is recurrent if and only if:

(e.¢]

> p"(y,y) =E,[N(y)] = oo.

n=1
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Now we prove, using Theorem 2.5 that the
Simple Symmetric Random Walk (SSRW) on Z is

recurrent. Recall that SSRW is defined on Z by the
transition probability matrix:

1
p(i,i+1):p(i,i—1):§, for all i € Z.

Theorem 2.6

SSRW is null-recurrent on Z. (The same is true on 7.2,
but the SSRW is transient in Z¢ for d > 3.)

You can read more on this topic in [1]. We use
Stirling-formula in the proof:
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Transient and recurrent states

n!
6 1 < < el/i2n),
(6) V2rn - (nje)r =€

Hence we get

2n 2n

) )~ 2

m™n
where ~ means that the ratio of the two sides tends to 1.
Proof
First we prove that SSRW is recurrent on Z.
Remark: Starting from 0 we get to 0 in 2n steps iff we
make n steps to the right and n steps to the left. The
probability of each of these paths is (1/2)*" and the
number of these paths is (2:)'
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Proof (Cont.)
Hence,

3

0.0 = (*) a2

~Y

3~
:\p

where we used the formula given in (7). So,

> p"(0,0) > > p?"(0,0) = const - > Y2 = .
n=1 n=1 n=1

Now we use Theorem 2.5 to conclude that the simple

symmetric random walk on Z is recurrent.
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Transient and recurrent states

Proof (Cont.)

Now we prove null-recurrence: Let E; be the
expected number of steps required to reach k starting
from O for the first time. By definition, Eg is not zero
but the expected number of steps of the first return to O.
If we want to get into kK > 1 from 0, first we have to
reach 1, then 2, and so on; and the expected number of
getting from i to i 4+ 1 is the same for all i € Z. Hence,

Ex = KkE;.
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Proof (Cont.)
From the 1-step argument:

1 1
Et=1+--0+="E
1 + 2 + 2 2
because from —1 we can get into 1 in two steps. From
this:
E1:1+E150 E1:OO.

Then by the 1-step argumnet we get

1 1
Eh=1+—-E_ —E
0 +2 1+21,

So Ey = oo, thus the chain is null-recurrent.
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