Stochastic processes

Károly Simon This lecture is based on Essentials of Stochastic processes book of Rick Durrett

Department of Stochastics Institute of Mathematics Budapest University of Technology and Economics www.math.bme.hu/~simonk

2020 File B

In this file we give some proofs and slightly deeper analysis of notions introduced in the first File.

1

Stopping time, Strong Markov property

Transient and recurrent states

References

Notation

We study discrete time Markov chain X_n on the countable (finite or countably infinite) state space S with transition matrix $P = (p(i,j))_{i,j\in S}$.

$$\mathbb{P}_{x}(A) := \mathbb{P}(A|X_{0} = x).$$

 \mathbb{E}_{x} notates the expected value for the probability \mathbb{P}_{x} . We frequently use the hitting time:

$$\frac{T_y}{T_y} := \min\{n \ge 1 : X_n = y.\}$$

Notation (cont.)

The probability that the chain of starting at x will ever get to y:

$$\frac{\rho_{xy}}{\Gamma_{y}} := \mathbb{P}_{x} \left(T_{y} < \infty \right)$$

Intuitively: we feel that ρ_{yy}^2 is the probability of the event that {starting from y, we will come back to y twice} because we feel that whatever happens after we got back to y first is independent of what had happened before. To make this feeling precise we introduce the notion of **stopping time** or **Markov-time**.

Notation (cont.)

Definition 1.1 (Stopping time)

T is a *stoppingtime* if we can decide whether the event $\{T = n\}$ (we stop at time *n*) occur or does not occur by looking at the values X_0, \ldots, X_n .

Stopping time

We can see easily that T_y is a stopping time, because

$$\{T_y = n\} = \{X_1 \neq y, \ldots, X_{n-1} \neq y, X_n = y\}.$$

Example 1.2

- $T \equiv k$ constant time is stopping time.
- The first time when X_n enters a given set A. $T(A) := \min \{n : X_n \in A\}$ is a stopping time.
- For a fixed k: the first time when the process enters into a given A ⊂ S set for the kth time is also a stopping time. (We will prove this later.)

Stopping time (cont.)

Counter example: The last time when the process enters a given set is not a stopping time because we need to know the whole future to check it.

Lemma 1.3

The

- sum
- maximum
- minimum

of two stopping times is stopping time.

The proof is trivial.

Strong Markov property

Theorem 1.4

Let X_n be Markov chain with transition matrix: $\mathbf{P} = (p(i, j))$ and T be a stopping time. Assuming that T = n and $X_T = y$, every further piece of information about X_0, \ldots, X_T is irrelevant for the future (to estimate values of X_{T+k}) and for $k \ge 0$: X_{T+k} behaves like the original Markov chain started from y.

In the case of $T \equiv k$ we get back the Markov property. We only prove now that

(1)
$$\mathbb{P}(X_{T+1} = z | X_T = y, T = n) = p(y, z).$$

Strong Markov property (cont.)

For an arbitrary $\mathbf{x} = (x_0, \dots, x_n)$, where $x_i \in S$, let $X_0^n(\mathbf{x})$ be and event defined by

$$X_0^n(\mathbf{x}) = \{X_0 = x_0, \dots, X_n = x_n\}.$$

We define

$$V_n := \{\mathbf{x} : X_0^n(\mathbf{x}) \Longrightarrow (T = n \text{ and } X_T = y)\}.$$

In other words: V_n is the set of those $\mathbf{x} = (x_0, \dots, x_n)$, for which:

$$X_0 = x_0, \ldots, X_n = x_n \Longrightarrow T = n \text{ and } X_T = y$$

Strong Markov property (cont.)

$$\mathbb{P}(X_{T+1} = z, X_T = y, T = n) = \\
= \sum_{\mathbf{x} \in V_n} \mathbb{P}(X_{n+1} = z, X_0^n(\mathbf{x})) = \\
= \sum_{\mathbf{x} \in V_n} \underbrace{\mathbb{P}(X_{n+1} = z | X_0^n(\mathbf{x}))}_{p(y,z)} \cdot \mathbb{P}(X_0^n(\mathbf{x})) = \\
= p(y, z) \sum_{\mathbf{x} \in V_n} \mathbb{P}(X_0^n(\mathbf{x})) = \\
= p(y, z) \cdot \mathbb{P}(T = n, X_T = y).$$

We divide both sides by $\mathbb{P}(T = n, X_T = y)$ and this yields (1).

Stopping time, Strong Markov property

Transient and recurrent states

References

Recurrent and transient states

Let
$$T_y^1 := T_y$$
 and $T_y^k := \min\left\{n > T_y^{k-1} : X_n = y
ight\}$

the time of the k^{th} return to y. Because of the strong Markov property

$$\mathbb{P}_{y}\left(T_{y}^{k}<\infty\right)=\rho_{yy}^{k}.$$

- If $\rho_{yy} < 1$, then the probability of the event that the chain process comes back to $y: \rho_{yy}^k \to 0$. Thus, there's a time when the process no longer gets back to y. These y states are called transient.
- If $\rho_{yy} = 1$. Then for $\forall k: \rho_{yy}^k = 1$. Thus the process gets back to y infinitely many times. Then these y states are called recurrent.

The following simple observation will be useful: Lemma 2.1 If $\mathbb{P}_x (T_y \le k) \ge \alpha > 0 \ \forall x \in S$, then $\mathbb{P}_x (T_y > nk) \le (1 - \alpha)^n$.

Namely, the probability that in the first *n* steps we have not visited *y* is less than $1 - \alpha$, the same is true for the subsequent n - 1 blocks of paths of length *k*.

Definition 2.2

We say that x communicates with $y (x \rightsquigarrow y)$ if the probability of reaching y from x in some (not necessarily in one) steps is positive. In other words:

$$x \rightsquigarrow y \text{ if } \rho_{xy} = \mathbb{P}_x (T_y < \infty) > 0.$$

It follows from Markov property that

(2) If $x \rightsquigarrow y$ and $y \rightsquigarrow z$ then $x \rightsquigarrow z$.

Lemma 2.3

If $\rho_{xy} > 0$ and $\rho_{yx} < 1$, then x is transient.

This is trivial, because since the event {starting from xwe can get to y in finitely many steps} has positive probability and the event {from y we don't get back to x} also has positive probability. By Markov property: {starting from x we never get back to x} has also positive probability, so x is transient.

Recurrence and transience

Unless we say otherwise, we do not assume that $\#S < \infty$. Recall:

$$T_y^k = \min\left\{n > T_y^{k-1} : X_n = y\right\}$$

and
$$\rho_{xy} = \mathbb{P}_x (T_y < \infty).$$

From the strong Markov property:

(3)
$$\mathbb{P}_{x}\left(T_{y}^{k}<\infty\right)=\rho_{xy}\cdot\rho_{yy}^{k-1}$$

$$N(y) := \# \{ n \ge 1 : X_n = y \}.$$

Károly Simon (TU Budapest)

Obviously,

(4)
$$\{N(y) \geq k\} = \{T_y^k < \infty\}.$$

Hence, whenever $ho_{yy} < 1$ (that is y is transient) we have

$$\mathbb{E}_{x} \mathcal{N}(y) = \sum_{k=1}^{\infty} \mathbb{P}_{x} \left(\mathcal{N}(y) \ge k \right) = \sum_{k=1}^{\infty} \mathbb{P}_{x} \left\{ T_{y}^{k} < \infty \right\}$$

$$\stackrel{(3)}{=} \rho_{xy} \sum_{k=1}^{\infty} \rho_{yy}^{k-1} = \frac{\rho_{xy}}{1 - \rho_{yy}}$$

So have obtained that

(5)
$$\rho_{yy} < 1 \Longrightarrow \mathbb{E}_x N(y) = \frac{\rho_{xy}}{1 - \rho_{yy}}$$

That's why $\mathbb{E}_{y}N(y) < \infty$ iff $\rho_{yy} < 1$. On the other hand we will prove hat

Lemma 2.4

$$\mathbb{E}_{x}N(y)=\sum_{n=1}^{\infty}p^{n}(x,y).$$

Proof.

$$N(y) = \sum_{n=1}^{\infty} \mathbb{1}_{X_n = y}$$
. Taking expected value:

$$\mathbb{E}_{x}N(y) = \sum_{n=1}^{\infty} \mathbb{E}_{x} \left[\mathbb{1}_{X_{n}=y}\right] = \sum_{n=1}^{\infty} \underbrace{\mathbb{P}_{x}\left(X_{n}=y\right)}_{p^{n}(x,y)}$$
$$= \sum_{n=1}^{\infty} p^{n}(x,y).$$

As a corollary of Lemma 2.4 and (5) we get:

Károly Simon (TU Budapest)

Theorem 2.5

An element $y \in S$ is recurrent if and only if:

$$\sum_{n=1}^{\infty} p^n(y,y) = \mathbb{E}_y \left[N(y) \right] = \infty.$$

Now we prove, using Theorem 2.5 that the **Simple Symmetric Random Walk (SSRW)** on \mathbb{Z} is recurrent. Recall that SSRW is defined on \mathbb{Z} by the transition probability matrix:

$$p(i,i+1) = p(i,i-1) = \frac{1}{2},$$
 for all $i \in \mathbb{Z}.$

Theorem 2.6

SSRW is null-recurrent on \mathbb{Z} . (The same is true on \mathbb{Z}^2 , but the SSRW is transient in \mathbb{Z}^d for $d \ge 3$.)

You can read more on this topic in [1]. We use **Stirling-formula** in the proof:

Károly Simon (TU Budapest)

(6)
$$1 < \frac{n!}{\sqrt{2\pi n} \cdot (n/e)^n} < e^{1/(12n)}.$$

Hence we get

7)
$$\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}},$$

where \sim means that the ratio of the two sides tends to 1. Proof

First we prove that SSRW is recurrent on \mathbb{Z} .

Remark: Starting from 0 we get to 0 in 2n steps iff we make *n* steps to the right and *n* steps to the left. The probability of each of these paths is $(1/2)^{2n}$ and the number of these paths is $\binom{2n}{n}$.

Proof (Cont.) Hence,

$$p^{2n}(0,0) = {\binom{2n}{n}} (1/2)^{2n} \ \sim rac{1}{\sqrt{\pi n}},$$

where we used the formula given in (7). So,

$$\sum_{n=1}^{\infty} p^{n}(0,0) \geq \sum_{n=1}^{\infty} p^{2n}(0,0) = \text{const} \cdot \sum_{n=1}^{\infty} n^{-1/2} = \infty.$$

Now we use Theorem 2.5 to conclude that the simple symmetric random walk on $\ensuremath{\mathbb{Z}}$ is recurrent.

Károly Simon (TU Budapest)

2020 File B 25 / 31

Proof (Cont.)

Now we prove null-recurrence: Let E_k be the expected number of steps required to reach k starting from 0 for the first time. By definition, E_0 is not zero but the expected number of steps of the first return to 0. If we want to get into k > 1 from 0, first we have to reach 1, then 2, and so on; and the expected number of getting from i to i + 1 is the same for all $i \in \mathbb{Z}$. Hence,

$$E_k = kE_1.$$

Proof (Cont.)

From the 1-step argument:

$$E_1 = 1 + rac{1}{2} \cdot 0 + rac{1}{2} \cdot E_2,$$

because from -1 we can get into 1 in two steps. From this:

$$E_1=1+E_1$$
 so $E_1=\infty$.

Then by the 1-step argumnet we get

$$E_0 = 1 + \frac{1}{2}E_{-1} + \frac{1}{2}E_1,$$

So $E_0 = \infty$, thus the chain is null-recurrent.

Stopping time, Strong Markov property

Transient and recurrent states

References

SVEN ERICK ALM Sven Erick Alm Simple random walk. Click here for the online version.

BALÁZS MÁRTON, TÓTH BÁLINT Valószínűségszámítás 1. jegyzet matematikusoknak és fizikusoknak (Probability 1 notes for mathematicians and physicists) Márton Balzs's website, 2012. Click here for the online version.

- R. DURRETT Essentials of Stochastic Processes, Second edition Springer, 2012. Click here for the almost-ready version.
- S. Karlin, H.M. Taylor Sztochasztikus Folyamatok Gondolat, Budapest, 1985
- G. LAWLER Intoduction to Stochastic Processes Chapman & Hall 1995.

TÓTH BÁLINT Sztochasztikus folyamatok jegyzet (Stochastic processes notes) Click here for the Bálint Tóth notes.