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Introduction

In this file we give some proofs and slightly deeper
analysis of notions introduced in the first File.
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Stopping time, Strong Markov property

Notation

We study discrete time Markov chain Xn on the
countable (finite or countably infinite) state space S with
transition matrix P = (p(i , j))i ,j∈S .

Px (A) := P (A|X0 = x) .

Ex notates the expected value for the probability Px .
We frequently use the hitting time:

Ty := min {n ≥ 1 : Xn = y .}
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Stopping time, Strong Markov property

Notation (cont.)

The probability that the chain of starting at x will ever
get to y :

ρxy := Px (Ty <∞)

Intuitively: we feel that ρ2
yy is the probability of the event

that {starting from y , we will come back to y twice}
because we feel that whatever happens after we got back
to y first is independent of what had happened before.
To make this feeling precise we introduce the notion of
stopping time or Markov-time.
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Stopping time, Strong Markov property

Notation (cont.)

Definition 1.1 (Stopping time)

T is a stoppingtime if we can decide whether the event
{T = n} (we stop at time n) occur or does not occur by
looking at the values X0, . . . ,Xn.
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Stopping time, Strong Markov property

Stopping time
We can see easily that Ty is a stopping time, because

{Ty = n} = {X1 6= y , . . . ,Xn−1 6= y ,Xn = y} .

Example 1.2
T ≡ k constant time is stopping time.
The first time when Xn enters a given set A.
T (A) := min {n : Xn ∈ A} is a stopping time.
For a fixed k : the first time when the process enters
into a given A ⊂ S set for the k th time is also a
stopping time. (We will prove this later.)
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Stopping time, Strong Markov property

Stopping time (cont.)
Counter example: The last time when the process
enters a given set is not a stopping time because we
need to know the whole future to check it.
Lemma 1.3

The
sum
maximum
minimum

of two stopping times is stopping time.

The proof is trivial.
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Stopping time, Strong Markov property

Strong Markov property
Theorem 1.4
Let Xn be Markov chain with transition matrix:
P = (p(i , j)) and T be a stopping time. Assuming that
T = n and XT = y, every further piece of information
about X0, . . . ,XT is irrelevant for the future (to estimate
values of XT+k) and for k ≥ 0: XT+k behaves like the
original Markov chain started from y.

In the case of T ≡ k we get back the Markov property.
We only prove now that

(1) P (XT+1 = z |XT = y ,T = n) = p(y , z).
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Stopping time, Strong Markov property

Strong Markov property (cont.)
For an arbitrary x = (x0, . . . , xn), where xi ∈ S, let
X n

0 (x) be and event defined by

X n
0 (x) = {X0 = x0, . . . ,Xn = xn} .

We define

Vn := {x : X n
0 (x) =⇒ (T = n and XT = y)} .

In other words: Vn is the set of those x = (x0, . . . , xn),
for which:

X0 = x0, . . . ,Xn = xn =⇒ T = n and XT = y
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Stopping time, Strong Markov property

Strong Markov property (cont.)

P (XT+1 = z ,XT = y ,T = n) =
=

∑
x∈Vn

P (Xn+1 = z ,X n
0 (x)) =

=
∑

x∈Vn

P (Xn+1 = z |X n
0 (x))︸ ︷︷ ︸

p(y ,z)

·P (X n
0 (x)) =

= p(y , z)
∑

x∈Vn

P (X n
0 (x)) =

= p(y , z) · P (T = n,XT = y) .

We divide both sides by P (T = n,XT = y) and this
yields (1).
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Transient and recurrent states

Recurrent and transient states

Let T 1
y := Ty and

T k
y := min

{
n > T k−1

y : Xn = y
}

the time of the k th return to y . Because of the strong
Markov property

Py
(
T k

y <∞
)

= ρk
yy .
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Transient and recurrent states

Recurrent and transient states (cont.)

If ρyy < 1 , then the probability of the event that
the chain process comes back to y : ρk

yy → 0. Thus,
there’s a time when the process no longer gets back
to y . These y states are called transient .
If ρyy = 1 . Then for ∀k : ρk

yy = 1. Thus the process
gets back to y infinitely many times. Then these y
states are called recurrent .
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Transient and recurrent states

Recurrent and transient states (cont.)

The following simple observation will be useful:
Lemma 2.1

If Px (Ty ≤ k) ≥ α > 0 ∀x ∈ S, then

Px (Ty > nk) ≤ (1− α)n .

Namely, the probability that in the first n steps we have
not visited y is less than 1− α, the same is true for the
subsequent n − 1 blocks of paths of length k .
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Transient and recurrent states

Recurrent and transient states (cont.)

Definition 2.2
We say that x communicates with y ( x  y) if the
probability of reaching y from x in some (not necessarily
in one) steps is positive. In other words:

x  y if ρxy = Px (Ty <∞) > 0.

It follows from Markov property that

(2) If x  y and y  z then x  z .
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Transient and recurrent states

Recurrent and transient states (cont.)

Lemma 2.3

If ρxy > 0 and ρyx < 1, then x is transient.

This is trivial, because since the event {starting from x
we can get to y in finitely many steps} has positive
probability and the event {from y we don’t get back to
x} also has positive probability. By Markov property:
{starting from x we never get back to x} has also
positive probability, so x is transient.
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Transient and recurrent states

Recurrence and transience
Unless we say otherwise, we do not assume that
#S <∞. Recall:

T k
y = min

{
n > T k−1

y : Xn = y
}

and ρxy = Px (Ty <∞).
From the strong Markov property:

(3) Px
(
T k

y <∞
)

= ρxy · ρk−1
yy

Let
N(y) := # {n ≥ 1 : Xn = y} .
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Transient and recurrent states

Recurrence and transience (cont.)

Obviously,

(4) {N(y) ≥ k} =
{

T k
y <∞

}
.

Hence, whenever ρyy < 1 (that is y is transient) we have

Ex N(y) =
∞∑

k=1
Px (N(y) ≥ k) =

∞∑
k=1

Px
{

T k
y <∞

}
(3)= ρxy

∞∑
k=1

ρk−1
yy = ρxy

1− ρyy
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Transient and recurrent states

Recurrence and transience (cont.)
So have obtained that

(5) ρyy < 1 =⇒ Ex N(y) = ρxy

1− ρyy
.

That’s why Ey N(y) <∞ iff ρyy < 1. On the other hand
we will prove hat
Lemma 2.4

Ex N(y) =
∞∑

n=1
pn(x , y).
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Transient and recurrent states

Recurrence and transience (cont.)
Proof.
N(y) =

∞∑
n=1

1Xn=y . Taking expected value:

Ex N(y) =
∞∑

n=1
Ex [1Xn=y ] =

∞∑
n=1

Px (Xn = y)︸ ︷︷ ︸
pn(x ,y)

=
∞∑

n=1
pn(x , y).

As a corollary of Lemma 2.4 and (5) we get:
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Transient and recurrent states

Recurrence and transience (cont.)

Theorem 2.5

An element y ∈ S is recurrent if and only if:
∞∑

n=1
pn(y , y) = Ey [N(y)] =∞.
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Transient and recurrent states

Now we prove, using Theorem 2.5 that the
Simple Symmetric Random Walk (SSRW) on Z is
recurrent. Recall that SSRW is defined on Z by the
transition probability matrix:

p(i , i + 1) = p(i , i − 1) = 1
2 , for all i ∈ Z.

Theorem 2.6

SSRW is null-recurrent on Z. (The same is true on Z2,
but the SSRW is transient in Zd for d ≥ 3.)

You can read more on this topic in [1]. We use
Stirling-formula in the proof:
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Transient and recurrent states

(6) 1 < n!√
2πn · (n/e)n < e1/(12n).

Hence we get

(7)
2n

n

 ∼ 22n
√
πn ,

where ∼ means that the ratio of the two sides tends to 1.
Proof
First we prove that SSRW is recurrent on Z.
Remark: Starting from 0 we get to 0 in 2n steps iff we
make n steps to the right and n steps to the left. The
probability of each of these paths is (1/2)2n and the
number of these paths is

(2n
n
)
.
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Transient and recurrent states

Proof (Cont.)
Hence,

p2n(0, 0) =
2n

n

 (1/2)2n

∼ 1√
πn ,

where we used the formula given in (7). So,

∞∑
n=1

pn(0, 0) ≥
∞∑

n=1
p2n(0, 0) = const ·

∞∑
n=1

n−1/2 = ∞.

Now we use Theorem 2.5 to conclude that the simple
symmetric random walk on Z is recurrent.
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Transient and recurrent states

Proof (Cont.)
Now we prove null-recurrence: Let Ek be the
expected number of steps required to reach k starting
from 0 for the first time. By definition, E0 is not zero
but the expected number of steps of the first return to 0.
If we want to get into k > 1 from 0, first we have to
reach 1, then 2, and so on; and the expected number of
getting from i to i + 1 is the same for all i ∈ Z. Hence,

Ek = kE1.
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Transient and recurrent states

Proof (Cont.)
From the 1-step argument:

E1 = 1 + 1
2 · 0 + 1

2 · E2,

because from −1 we can get into 1 in two steps. From
this:

E1 = 1 + E1 so E1 =∞ .

Then by the 1-step argumnet we get

E0 = 1 + 1
2E−1 + 1

2E1,

So E0 =∞ , thus the chain is null-recurrent.
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Károly Simon (TU Budapest) 2020 File B 2020 File B 29 / 31

http://www2.math.uu.se/~sea/kurser/stokprocmn1/slumpvandring_eng.pdf
http://www2.math.uu.se/~sea/kurser/stokprocmn1/slumpvandring_eng.pdf
http://www.math.bme.hu/~balazs/vsz1jzetb-t.pdf
http://www.math.bme.hu/~balazs/vsz1jzetb-t.pdf


References

R. Durrett
Essentials of Stochastic Processes, Second edition
Springer, 2012. Click here for the almost-ready
version.
S. Karlin, H.M. Taylor
Sztochasztikus Folyamatok
Gondolat, Budapest, 1985
G. Lawler
Intoduction to Stochastic Processes
Chapman & Hall 1995.
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