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1 We collect a lot of natural examples (see slide 297
for the collection of examples) which can be studied
by the theory of Markov chains.

2 We introduce the most important notions and most
important theorems without proofs. (Proofs come
in File BB.)

3 Compute the stationary distributions.
4 Recurrence properties of Markov chains.
5 We study the death and birth processes as a special

case of reversible Markov chains.
6 Exist distributions for absorbing Markov chains.
7 Branching processes.
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Examples of Markov chains

Gambler’s ruin
Example 1.1

We start with a gambling game, in which in every turn:
we win $1 with probability p = 0.4,
we lose $1 with probability 1− p = 0.6.

The game stops if we reach a fixed amount of N = $4 or
if we lose all our money.

We start at $X0, where X0 ∈ {1, 2, 3}.
Let Xn be the amount of money we have after n turns.
In this case
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Examples of Markov chains
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Xn has the ”Markov property” . That is:
if we know Xn, any other information about the past is
irrelevant for predicting the next state of Xn+1. Thus:

(1) P
(
Xn+1 = j

∣∣∣ Xn = i , Xn−1 = bn−1, . . . , X0 = b0
)

= P
(
Xn+1 = j

∣∣∣ Xn = i
)

,

which is 0.4, in the given example.
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Examples of Markov chains

Homogeneous discrete-time Markov chain
Definition 1.2
Let S be a finite or a countably infinite (we call it
countable) set. We say that Xn is a (time) homogeneous
discrete-time Markov chain on state space S, with
transition matrix P = p(i , j), if for any n, and any
i , j , bn−1, . . . , b0 ∈ S:

(2) P
(
Xn+1 = j

∣∣∣Xn = i , Xn−1 = bn−1, . . . , X0 = b0
)

= p(i , j)

We consider only time homogeneous Markov chains and
some times we abbreviate them MC. 6 / 299



Examples of Markov chains

Initial distribution
A Markov chain is determined by its initial distribution
and its transition matrix . The initial distribution
α = (αi)i∈S , (αi ≥ 0, ∑

i∈S
αi = 1) is the distribution of

the state from which a Markov chain starts. When we
insist that the Markov chain starts from a given i ∈ S (in
this case αi = 1 and αj = 0 for j ∈ S, j ̸= i) then all
probabilities and expectations are denoted by

Pi (·) ,Ei [·] .

In some cases, we write Pα (·) , Eα [·] or we specify the
initial distribution α in words, and then we write simply
P (·) ,E [·].
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Examples of Markov chains

In the Gambler’s ruin example, if N = 4 then the
transition matrix P is a 5× 5 matrix

0 1 2 3 4
0 1 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1

Here and many places later, the bold green numbers like
0, . . . , 4 are the elements of the state space. So, they are
NOT part of the matrix. They are the indices. The
matrix above is a 5× 5 matrix. For example: p(0, 0) = 1
and p(3, 4) = 0.4.
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Examples of Markov chains

A simulation with Mathematica

Figure: Gamblar’s ruin simulation
9 / 299



Examples of Markov chains

The Mathematica code for the previous
simulation
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Examples of Markov chains

Andrey Markov, 1856 – 1922
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Examples of Markov chains

Ehrenfest chain
Example 1.3

We have two urns (left and right urn), in which there are
a total of N balls. We pick a random ball and take it
into the other urn. Let Xn be the number of balls in the
left urn after the nth draw. Xn has the Markov-property,
because

p(i , i + 1) = N − i
N , p(i , i − 1) = i

N if 0 ≤ i ≤ N

and p(i , j) = 0 otherwise.
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Examples of Markov chains

N = 4, the corresponding graph and transition matrix:
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3
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4

1

0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0 13 / 299



Examples of Markov chains

A simulation with Mathematica

Figure: A simulation for Ehrenfest chain simulation14 / 299



Examples of Markov chains

Another simulation with Mathematica

Figure: Another simulation for Ehrenfest chain simulation
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Examples of Markov chains

The Mathematica code for the previous
two simulations
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Examples of Markov chains

Tatyana Pavlovna Ehrenfest (1876–1964)
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Examples of Markov chains

Compare the previous two chains I.
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Figure: Gambler’s ruin chain:
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Figure: Ehrenfest chain
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Examples of Markov chains

Compare the previous two chains II.
First, we consider the Gambler’s ruin case. Let us say we
start from state 2. In the gambler’ ruin case with
probability 0.16 we reach state 4 in two steps, and with
probability 0.36 we reach state 0 and then we stay there
forever. Therefore the states 0 and 4 are absorbing
states . That is the probability that starting from 2 we
ever return to 2 at least one more time is less than
p := 0.48 = 1− (0.16 + 0.36). Then after the first
return, everything starts as before independently. So, the
probability that we return to 2 at least twice is less than
p2, and similarly, the probability that we return to 2 at
least n times is less than pn.
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Examples of Markov chains

Compare the previous two chains III.

So, the probability that we return to 2 infinitely many
times is limn→∞ pn = 0. That is starting from 2, we visit 2
only finitely many times almost surely. We call those
states where we return only finitely many times almost
surely, transient states . Since the same reasoning
applies for states 1, 3 we can see that in the Gambler’s
ruin example, states 1, 2, 3 are transient. The states
where we return infinitely many times almost surely are
called recurrent . Every state is either transient or
recurrent.
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Examples of Markov chains

Compare the previous two chains IV.
We spend only finite time at each transient states. So, if
the state space S is finite, then we spend finite time
altogether at all transient states together. This implies
that
for a finite state MC we always have recurrent states .
Clearly the absorbing states {0, 4} are always recurrent
states. The following interesting questions will be
answered later. To answer the first of the following two
problems we need to learn about the so-called
exit distributions (see Section 10.1) and to answer the
second one we need to study the so-called exit times
(see Section 10.2).
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Examples of Markov chains

Compare the previous two chains V.
Problem 1.4

Starting from 2 what the probability that the gambler
eventually wins is? That is she gets to 4?

We answer this on slide 202, see also slide 45.
Problem 1.5

Starting from 2, what is the expected number of steps
until the gambler gets to either 0 (ruin) or to 4
(success)?

We answer this question on slide 238.
22 / 299



Examples of Markov chains

Compare the previous two chains VI.
Now we turn to the Ehrenfest chain:
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Figure: Ehrenfest chain

We consider the case again when we start from state 2.
Then with 1/2-1/2 probability, we jump to either state 1
or 3.
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Examples of Markov chains

Compare the previous two chains VII.
The probability that we do not return to 2 in any of the
next 2n steps is (1/4)n. So, the probability that we
actually never return to state 2 is limn→∞

(1
4
)n = 0. So we

return to 2 almost surely. But when we are at 2 then the
whole argument repeats. So we obtain that we return to
2 infinitely many times almost surely. This means that 2
is a recurrent state. With a very similar argument, one
can show that the same holds for all the other states.
This means that all of the states are recurrent. In this
case, we can reach from every state to every state with
positive probability (after some steps). In such a
situation we say that the MC is irreducible .
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Examples of Markov chains

Compare the previous two chains VII.
Here we can ask the following question:
Problem 1.6

What is the expected number of steps so that starting
from i ∈ {0, . . . , 4} we get back to i for the first time?

The answer is the reciprocal of the i-th component of
the so-called stationary distribution which is a probability
vector π = (πi)i∈S , πi ≥ 0, ∑

i∈S
πi = 1 satisfying:

(3) πT · P = πT

This is computed in a more general case, on slide 155.
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Examples of Markov chains

Mathematica code for the stationary
distribution
In this special case we use Mathematica we get
π =

( 1
16 , 1

4 , 3
8 , 1

4 , 1
16
)

.
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Finding Stationary distributions (simple cases)
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Finding Stationary distributions (simple cases)

Weather chain
Let Xn be the weather on day n on a given island, with

(4) Xn :=
 1, if day n is rainy;

2, if day n is sunny

1 2

0.4

0.6 0.8

0.2

1 2
1 0.6 0.4
2 0.2 0.8

Question: What is the long-run fraction of sunny days?
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Finding Stationary distributions (simple cases)

π for the Weather chain

For weather chain: P =
 0.6 0.4

0.2 0.8

 We are looking for

a random vector πππ = (π1, π2) for which:

(π1, π2) ·
 0.6 0.4

0.2 0.8

 = (π1, π2).

The solution is πππ = (1
3 , 2

3). This follows from the general
result about the stationary distribution of two-states MC:
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Finding Stationary distributions (simple cases)

Stationary state for general two states MC

Lemma 2.1

A two-state MC’s transition matrix can be written in the
following way:

P =
 1− a a

b 1− b


Then the stationary distribution is πππ =

( b
a+b , a

a+b
)
.

The proof is trivial.
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Finding Stationary distributions (simple cases)

Social mobility chain
Let Xn be a family’s social class in the nth generation, if
lower class:1 middle class:2 upper class:3

1

2

30.7

0.
2

0.1

0.
3

0.5

0.2

0.2

0.4

0.4

1 2 3
1 0.7 0.2 0.1
2 0.3 0.5 0.2
3 0.2 0.4 0.4

Question: Do the fractions of people in the three
classes stabilize after a long time?
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Finding Stationary distributions (simple cases)

For the social mobility chain

For the social mobility chain P =


0.7 0.2 0.1
0.3 0.5 0.2
0.2 0.4 0.4

 the

equation of πππT · P = πππT is

0.7π1 + 0.3π2 + 0.2π3 = π1
0.2π1 + 0.5π2 + 0.4π3 = π2
0.1π1 + 0.2π2 + 0.4π3 = π3

The 3rd equation gives us no more information than we
have already known. So, we can throw it away, and we
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)
replace it with the condition that the sum of the
components of πππ equals to 1. We obtain after this
replacement:

(5)
0.7π1 + 0.3π2 + 0.2π3 = π1
0.2π1 + 0.5π2 + 0.4π3 = π2

π1 + π2 + π3 = 1
After straightforward algebraic manipulations we get:

(6)
−0.3π1 + 0.3π2 + 0.2π3 = 0

0.2π1 + −0.5π2 + 0.4π3 = 0
π1 + π2 + π3 = 1
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

πππT · A = (0, 0, 1),
where πππT is a row vector and

A :=


−0.3 0.2 1

0.3 −0.5 1
0.2 0.4 1


So

(7) πππT = (0, 0, 1) · A−1

Steps of computing vector πππ:
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

1 Start with the transition matrix P,
2 subtract 1 from its diagonal elements,
3 replace the last column with the vector whose all

elements are equal to 1.
4 The matrix that we obtained is called A.
5 By formula (7): The last row of matrix A−1 is πππ.
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

In the case of the social mobility chain:

A−1 =


−90

47
20
47

70
47

−10
47 −

50
47

60
4722

47
16
47

9
47

 .

And from it: πππ =
(22

47 , 16
47 , 9

47
)

.

36 / 299



Chapman-Kolmogorov equation

1 Examples of Markov chains

2 Finding Stationary distributions (simple cases)

3 Chapman-Kolmogorov equation

4 The most important notions and the main theorems without proofs
The most important notions

5 Canonical from of non-negative matrices
Definitions
Path diagram
An example

6 Limit Theorems
Limit theorems for countable state space
Limit theorems for finite state space

7 Linear algebra
What if not irreducible?
Further examples
What if not aperiodic?
Doubly stochastic Markov Chains

8 Recurrence in case of countable infinite state space

9 Detailed balance condition and related topics
Detailed balance condition and Reversible Markov Chains
Birth and death processes

10 Absorbing Chains
Exit distributions through examples
Exit time through examples
Summary and the general theory
Application to Irreducible chains
All of these with Mathematica

11 Branching Processes
Generator functions
Branching Processes

12 References

37 / 299



Chapman-Kolmogorov equation

Multistep transition probabilities

Let pm(i , j) be the probability that the Markov chain
with transition matrix P = p(i , j), starting from state i
is in state j after m steps .

(8) pm(i , j)
in general
̸= p(i , j) · · · p(i , j)︸ ︷︷ ︸

m
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

We would like to compute the m-step transition matrix
with P.
First observe that

(9) pm+n(i , j) = ∑
k

pm(i , k) · pn(k , j) .

This is called the Chapman-Kolmogorov equation.
The proof is obvious from the following Figure:
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

Figure: The Figure is from [3]
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

Theorem 3.1

The m-step transition probability P (Xn+m = j |Xn = i) is
the (i , j)-th element of the m-th power of the transition
matrix.

41 / 299



Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

In the Gambler’s ruin example, where the transition
matrix was:

P 0 1 2 3 4
0 1 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

The limn→∞Pn limit also exists, and we will see that it
equals to:

limn→∞Pn 0 1 2 3 4
0 1 0 0 0 0
1 57/65 0 0 0 8/65
2 45/65 0 0 0 20/65
3 27/65 0 0 0 38/65
4 0 0 0 0 1
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Chapman-Kolmogorov equation

In the Ehrenfest chain example, where the transition
matrix was:

0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0

The limn→∞Pn limit also exists, and we will see that it is
the matrix on the next slide. Namely, the limit is a 5× 5
matrix such that all of its rows are the stationary
distribution vector π cf. slide 26.
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)
limn→∞Pn 0 1 2 3 4

0 1
16

1
4

3
8

1
4

1
16

1 1
16

1
4

3
8

1
4

1
16

2 1
16

1
4

3
8

1
4

1
16

3 1
16

1
4

3
8

1
4

1
16

4 1
16

1
4

3
8

1
4

1
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The most important notions and the main theorems without proofs
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The most important notions and the main theorems without proofs The most important notions

A square matrix P is a stochastic matrix if all
elements are non negative and all the row-sums are
equal to 1.
For a stochastic matrix P we obtain the
corresponding adjacency matrix AP by replacing all
non-zero elements of P by 1. So, if

P =


0 0.5 0.5

0.2 0.1 0.7
0.7 0.3 0

 then AP =


0 1 1
1 1 1
1 1 0
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The most important notions and the main theorems without proofs The most important notions

We are given a Markov Chain (MC) Xn with (finite
or countably infinite) state space S and transition
matrix P = (p(i , j))i ,j∈S (which is always a
stochastic matrix).
We write

Px(A) := P (A|X0 = x) .

Ex notates the expected value for the probability
Px .
The time of the first visit to y :

Ty := min {n ≥ 1 : Xn = y}
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The most important notions and the main theorems without proofs The most important notions

So, even if we start from y , Ty ̸= 0.
Let i , j ∈ S , where S is the state space. We say
that i and j communicate if there exists an n and
an m such that pn(i , j) > 0 and pm(j , i) > 0.
Observe that ”communicates with” is an
equivalence relation. The classes of the
corresponding partition of S are called
communication classes or simply classes .
If there is only one communication class (everybody
communicates with everybody) then we say that the
Markov Chain (MC) is irreducible .
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The most important notions and the main theorems without proofs The most important notions

Consider the MC with S := {1, 2, 3, 4} and

P :=


0 0.4 0 0.6

0.5 0 0.5 0
0 0.3 0 0.7

0.1 0 0.9 0

. Then

P2 =


0.26 0. 0.74 0.
0. 0.35 0. 0.65

0.22 0. 0.78 0.
0. 0.31 0. 0.69

 This chain is

irreducible because for every i , j ∈ S either
p(i , j) > 0 or p2(i , j) > 0 (here p2(i , j) is the
(i , j)-th element of P2.
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The most important notions and the main theorems without proofs The most important notions

The corresponding adjacency matrices for every n
are:

AP2n−1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , AP2n =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


For the chain above the greatest common divisor
(gcd):

(10) gcd {n : pn(i , i) > 0} = 2 for ∀i ∈ S.
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The most important notions and the main theorems without proofs The most important notions

Then we say that the period of every state is 2. In
general, the period of state i is

di := gcd {n : pn(i , i) > 0} .

We will see that in a communication class all
elements have the same period. So, for an
irreducible MC all elements have the same period. If
this period is equal to 1 then we say that the
irreducible chain is aperiodic .
We say that a state i ∈ S is transient if the MC
returns to i finitely many times almost surely.
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The most important notions and the main theorems without proofs The most important notions

We say that a state i ∈ S is recurrent if the MC
returns to i infinitely many times almost surely.
Every state is either recurrent or transient.
If an element of a communication class is recurrent
then all other elements of this class are also
recurrent. These classes are the recurrent classes ,
while the other classes are the transient classes .
If a communication class is closed (no arrow goes
out of the class) then it is recurrent class. The
non-closed communication classes are the transient
class.
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The most important notions and the main theorems without proofs The most important notions

Let i ∈ S be a recurrent state. We say that i is
positive recurrent if the expected time of the first

return to i (starting from i) is finite.
Let i ∈ S be a recurrent state. We say that i is
null recurrent if the expected time of the first
return to i (starting from i) is infinite.
A state i ∈ S is ergodic if i aperiodic and positive
recurrent.
A Marov chain is ergodic if all of it states are
ergodic. In particular, a Markov chain is ergodic if
there is an N0 such that for every m ≥ N0 for every
i , j ∈ S the state j can be reached from i in m steps.
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The most important notions and the main theorems without proofs The most important notions

A state i ∈ S is absorbing if pii = 1 (we cannot go
anywhere from this state, it is a trap).
A Markov Chain is absorbing if every state can
reach an absorbing state.
Stationary distribution π is a probability measure
on S (π(i) ≥ 0 and ∑

i∈S
π(i) = 1) which satisfies:

(11) πT · P = πT

Convention: every vector is a column vector. When
I need a row vector, I write transpose of the vector
as above.
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The most important notions and the main theorems without proofs The most important notions

An example of irreducible classes
Example 4.1

1 2 3 4 5 6 7
1 0.7 0 0 0 0.3 0 0
2 0.1 0.2 0.3 0.4 0 0 0
3 0 0 0.5 0.3 0.2 0 0
4 0 0 0 0.5 0 0.5 0
5 0.6 0 0 0 0.4 0 0
6 0 0 0 0 0 0.2 0.8
7 0 0 0 1 0 0 0
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The most important notions and the main theorems without proofs The most important notions

An example of irreducible classes (cont.)

Figure: The graph corresponding to Example 4.1
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The most important notions and the main theorems without proofs The most important notions

An example of irreducible classes (cont.)

Let us create a graph whose vertices are the elements of
state space S = {1, . . . , 7} and it has directed edge (i , j)
if p(i , j) > 0. A ⊂ S is closed if it is impossible to get
out. So

i ∈ A and j ̸∈ A then p(i , j) = 0.

In the example above: sets {1, 5} and {4, 6, 7} are
closed, so is their union, and even {1, 5, 4, 6, 7, 3} and S
itself are closed too.
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The most important notions and the main theorems without proofs The most important notions

An example of irreducible classes (cont.)

B ⊂ S is irreducible if any two of its elements
communicate with one another: ∀i , j ∈ B, i ⇝ j . So,
in the graph that is shown above (slide 57) we can get
from every element of B to any other through directed
edges; and the irreducible and closed sets are: {1, 5} and
{4, 6, 7}. That is the irreducible classes are: {1, 5} and
{4, 6, 7}.
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Canonical from of non-negative matrices
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Canonical from of non-negative matrices Definitions

Definitions I
Here we follow Senata’s book [8, Section 1.2]. For a
k ≥ 1 we use the shorthand notation

[k] := {1, . . . , k} .

We consider here only square matrices with non-negative
elements. If we replace all positive elements of such a
matrix to get its adjacency matrix . That is the
adjacency matrix is a 0− 1 matrix. Let A = (ai ,j)n

i ,j=1 be
an n × n adjacency matrix. Then ai ,j ∈ {0, 1}.
We say that i , i1, . . . , ik−1, j is a chain of length of k
between i and j if

ai ,i1 · ai1,i2 · · · aik−1j = 1.
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Canonical from of non-negative matrices Definitions

Definitions II

We can associate a directed graph GA = (E , V ) with
the adjacency matrix A such that

1 the set of vertices V = [n] and
2 the set of edges E is defined as follows: there is

directed edge between vertices i , j if and only if
ai ,j = 1.

In this way i , i1, . . . , ik−1, j is a chain of length of k
between i and j if and only if i , i1, . . . , ik−1, j is a chain of
length of k in the directed graph GA.
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Canonical from of non-negative matrices Definitions

Definitions III
Definition 5.1
We write

1 i → j if there is a chain between i and j . Then i
and j communicate. If i ̸→ j then i and j does not
communicate.

2 i ↔ j if i → j and j → i .
3 i is transient if ∃j such that i → j but j ̸→ i
4 recurrent states are does which are NOT transient.
5 For a C ⊂ [n] we say that

1 C is irreducible if i ↔ j for all i , j ∈ [n].
2 C is closed if ∀i , j ∈ [n] i ∈ C , j ̸∈ C implies that i ̸→ j .
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Canonical from of non-negative matrices Definitions

If i is a recurrent state and i ↔ j then j is also a
recurrent state.

1 The recurrent states form classes in which
everybody communicates with everybody and a
member of such a clas does not communicate to
anyone out of the clas. These classes are the
recurrent self-communication classes.

2 Those transient states which communicate with
some other states can be divided into transient
classes such that any two member of such a class
communicate. These are the transient
communication classes.

3 There can be transient states that do not
communicate with any one. They together form a
class let us call it inessential class. 64 / 299



Canonical from of non-negative matrices Path diagram

Path-diagram I
The path diagram for the incidens matrix A = (ai ,j)n

i ,j=1:
1 Start with index 1. This is the first stage , and

determine all j for which a1,j = 1 . These j ’s form
the second stage .

2 Starting from all such j repeat the previous
procedure to form stage 3 and so on.

3 Stop when an index appears second time.
4 The diagram terminates when every index which

appears in the diagram has been repeated.
5 If some indices were left over start with any of them

and draw a similar diagram regarding the indices of
the previous diagrams as ”occoured in a previous
stage”. 65 / 299



Canonical from of non-negative matrices Path diagram

Path-diagram III
Now we follow all of these on an axample:
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Canonical from of non-negative matrices Path diagram

Path-diagram IV
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Canonical from of non-negative matrices Path diagram

Path-diagram V
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Canonical from of non-negative matrices Path diagram

Recurrent and tarnsient
self-communication classes

1 Diagram 1 =⇒ {3, 7} recurrent class, {1, 2}
transient class.

2 Diagram 2 =⇒ {4, 9} recurrent class,
3 Diagram 3 =⇒ {5} recurrent class,
4 Diagram 4 =⇒ {6} transient class,
5 Diagram 5 =⇒ {8} transient class,

The recurrent self-communication classes:
{5} , {4, 9} {3, 7} .
The transient self-communication classes:
{1, 2} , {6} , {8} .
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Canonical from of non-negative matrices Path diagram

Canonical form I
So, the canonical form of the matrix on the left-hand
side is the matrix on the righ-hand side.
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Canonical from of non-negative matrices Path diagram

Canonical form II

Assume that a matrix T has canonical form:
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Canonical from of non-negative matrices Path diagram

Canonical form III

Then the k-th power T k of T is of the form:
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Canonical from of non-negative matrices An example

Example 5.2

A =

1 2 3 4 5 6 7
1 1

4
1
4

1
4

1
4 0 0 0

2 0 5
6 0 0 1

6 0 0
3 1

2 0 1
8

1
8

1
8

1
8 0

4 0 0 0 1 0 0 0
5 0 1

3 0 0 2
3 0 0

6 0 1
8 0 1

8
1
8

1
2

1
8

7 0 0 0 1
2 0 1

2 0

1

2

3

4

5

6

7
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Canonical from of non-negative matrices An example

1

1

2

3

4

2

5

1

3

4

5

6

4

2

5

2

4

5

6

7

4

6

74 / 299



Canonical from of non-negative matrices An example

Recurrent Classes: {2, 5} and {4}

Transient Classes: {1, 3} and {6, 7}

T =

4 2 5 6 7 3 1
4 1 0 0 0 0 0 0
2 0 5

6
1
6 0 0 0 0

5 0 1
3

2
3 0 0 0 0

6 1
8

1
8

1
8

1
2

1
8 0 0

7 1
2 0 0 1

2 0 0 0
3 1

8 0 1
8

1
8 0 1

8
1
2

1 1
4

1
4 0 0 0 1

4
1
4

=
 U 03,4

V W
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Canonical from of non-negative matrices An example

That is

U =


1 0 0
0 5

6
1
6

0 1
3

2
3

 , V =


1
8

1
8

1
81

2 0 0
1
8 0 1

81
4

1
4 0

 , W =


1
2

1
8 0 0

1
2 0 0 0
1
8 0 1

8
1
2

0 0 1
4

1
4

 ,

and 03,4 =


0 0 0 0
0 0 0 0
0 0 0 0

. Let I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, and

04,4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
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Canonical from of non-negative matrices An example

π :=
(

1 2 3 4 5 6 7
7 2 6 1 3 4 5

)
, π−1 :=

(
1 2 3 4 5 6 7
4 2 5 6 7 3 1

)

Π =



0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


, Π−1 =



0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0


.

In the matrix Π in the i-th row the 1 is at the position π(i). With
this notation:
(12) T (i , j) = A(π−1(i), π−1(j)), A(i , j) = T (π(i), π(j)).
By the definition of matrix products we get

(13) T = Π−1 · A · Π .
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Canonical from of non-negative matrices An example

We know that

(14) T n =
 Un 03,4

Sn W n

 .

Moreover,
1 Using that the matrix W corresponds to the

transient states we get that limn→∞W n = 0.

2 We learned that limn→∞Un =


1 0 0
0 2

3
1
3

0 2
3

1
3

 =: B .

So T∞ := limn→∞T n =
 B 03,4

X 04,4

 , where X = limn→∞ Sn .
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Canonical from of non-negative matrices An example

Using that U 0
V W

 ·
 B 03,4

X 04,4

 = T ·T∞ = T∞ =
 B 03,4

X 04,4


We get that
(15) V · B + W · X = X = I · X .

On slide 76 we defined the matrices W , I , V , B we can
compute:

(16) X = (W − I)−1 · (−V · B) =


3
7

8
21

4
215

7
4
21

2
2158

119
122
357

61
35759

119
40
119

20
119

.
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Canonical from of non-negative matrices An example

Hence,

T∞ =
 B 03,4

X 04,4

 =



1 0 0 0 0 0 0
0 2

3
1
3 0 0 0 0

0 2
3

1
3 0 0 0 0

3
7

8
21

4
21 0 0 0 0

5
7

4
21

2
21 0 0 0 0

58
119

122
357

61
357 0 0 0 0

59
119

40
119

20
119 0 0 0 0


.

Finally we get for A∞ := limn→∞An that
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Canonical from of non-negative matrices An example

A∞ = Π · T∞ · Π−1 =



0 40
119 0 59

119
20
119 0 0

0 2
3 0 0 1

3 0 0
0 122

357 0 58
119

61
357 0 0

0 0 0 1 0 0 0
0 2

3 0 0 1
3 0 0

0 8
21 0 3

7
4
21 0 0

0 4
21 0 5

7
2
21 0 0


,

where the permutation matrices Π and Π−1 were defined
on slide 77. This implies for example that starting from 5
after very many steps, the probability that we are at 2 is
appriximately 2

3 and that we are at 5 is approximately 1
3 .
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Limit Theorems

On the following slides we state the limit theorems.
One of the important consequence of the following
theorems is that under some not restrictive conditions,
the same thing happens as on slide 45. That is limn→∞Pn

exists and equal to a matrix whose all rows are equal to
π.
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Limit Theorems Limit theorems for countable state space

Limit Theorems (Preparation)
Given a Markov Chain (Xn) on a
state space S (finite or countably infinite)
transition matrix P = (p(i , j))i ,j∈S .
pm(i , j) : the probability that starting from i we will
be in j after m steps.

Definition 6.1 (Abbreviations used below)

I: irreducible,
A: aperiodic,
R: all states are recurrent,
S: ∃π stationary distribution.

84 / 299



Limit Theorems Limit theorems for countable state space

The Limit theorems below hold for countable state
spaces. This means that the state space S is either
countably infinite of finite.
Theorem 6.2 (Convergence Theorem)

I and A and S implies that Then
(a) The MC is positive recurrent,
(b) limn→∞ pn(i , j) = πππ(j), ∀i , j
(c) ∀j , πππ(j) > 0.
(d) The stationary distribution is unique.
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Limit Theorems Limit theorems for countable state space

Theorem 6.3 (Asymptotic frequency)

I and R =⇒ limn→∞
#{k≤n:Xk=j}

n = 1
Ej [Tj ] , ∀j ∈ S,

where Ej [Tj ] is the expected time of the first return to j,
starting from j.

Theorem 6.4 (π is unique)

I and S =⇒ π(j) = 1
Ej [Tj ] , ∀j ∈ S.

In particular, π is unique.
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Limit Theorems Limit theorems for countable state space

Theorem 6.5
Let f : S → R, s.t. ∑

i∈S
|f (i)| · π(i) <∞. Then

(17) I and S =⇒ limn→∞
1
n ·

n∑
m=1

f (Xm) =
∑
i∈S

f (i) · π(i).
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Limit Theorems Limit theorems for finite state space

The Limit theorems below hold for finite state spaces.
Theorem 6.6 (Finite state space I)

#S <∞ and I and A then
(a) π exists and unique,
(b) πi > 0 for all i ∈ S.
(c) For every initial distribution ααα on S we have

limn→∞αααT · Pn = πT

The proof is [7, p. 19]. If #S <∞ then the assumptions
of the theorem are equivalent to P is primitive: (∃k s.t.
Pk > 0 that is all elements of Pk are positive.)
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Limit Theorems Limit theorems for finite state space

Theorem 6.7 (Finite state space II)
#S <∞ and I then

(a) π exists and unique,
(b) πi > 0 for all i ∈ S.
(c) But it is not necessarily true that for every

initial distribution ααα on S we have
limn→∞αααT · Pn = πT
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Linear algebra

Notation

Let A = (aij) be matrix of N × N . We are assuming
from now on that A is nonnegative .
Hence aij ≥ 0.

a(m)
ij denotes element (i , j) of matrix Am.
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Linear algebra

Notation (cont.)

Definition 7.1 (Adjacency matrix of directed graphs)
Let G = (V , E ) be a directed graph. We denote the set
of vertices by V and the set of edges by E .
The adjacency matrix of graph G (the matrix of its
vertices): AG = (aij)

(18) aij =
 1, if (i , j) ∈ E ;

0, otherwise.
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Linear algebra

Notation (cont.)

It is easy to see that

(19) a(m)
ij = # {paths with length m from i to j} .

On the other hand, for every nonnegative N × N matrix
A there exists a directed graph GA in which
V (G) := {1, . . . , N} and

(i , j) ∈ E (G) if and only if aij > 0.
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Linear algebra

Notation (cont.)

Definition 7.2 ( irreducible matrices )
Matrix A is irreducible , if ∀(i , j), ∃m = m(i , j), so that
a(m)

ij > 0

It’s obvious that A is irreducible if and only if GA is
strongly connected, so there is a path in each direction
between each pair of vertices of the graph.
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Linear algebra

Notation (cont.)

Definition 7.3 ( Primitive matrices )
We say that a nonnegative matrix A is primitive , if
∃M : ∀i , j , a(M)

ij > 0

If a matrix is irreducible and aperiodic then this
matrix is primitive (see [7, p. 19]).
It is easy to see that if a nonnegative matrix is
irreducible and at least one of its diagonal elements
is nonzero, then it is primitive.
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Linear algebra

Perron-Frobenius Theorem I
Theorem 7.4
Let A be a N × N nonnegative matrix. Then

(i) A has eigenvalue λ ∈ R+
0 (so called as

Perron-Frobenius eigenvalue) such that no
other eigenvalues of A are greater than λ in
absolute value.

(ii) min
i

N∑
j=1

aij ≤ λ ≤ max
i

N∑
j=1

aij .

(iii) We can choose the left and right eigenvectors
u and v of λ so that all of their components
are nonnegative.

uT · A = λuT , A · v = λ · v. 96 / 299



Linear algebra

Perron-Frobenius Theorem II
From now on we normalize u and v so that

(20)
N∑

i=1
ui = 1 and

N∑
i=1

uivi = 1 .

If we additionally assume that A is irreducible , then:
(iv) λ is eigenvalue with multiplicity 1 and all

elements of u and v are strictly positive.
(v) λ is the only eigenvalue for which there exists

an eigenvector with only nonnegative
elements.
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Linear algebra

Perron-Frobenius Theorem III

And if we assume that A is primitive , then:
(vi) ∀i , j :

(21) limn→∞λ−na(n)
ij = ujvi ,

where u, v are the left and right eigenvectors
with positive components corresponding to λ
which satisfy condition (20).

Part (vi) of Perron-Frobenius Theorem comes from the
Renewal Theorem.
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Linear algebra

Application for Markov chains

In our case the matrix A is te transition matrix P which
is a stochastic matrix. Then all row sums are equal to
1.This implies that

λ = 1 according to (ii) on slide 96 and
v = (1, . . . , 1).
uT · P = uT by (iii) on slide 96 and by (20). That is
the stationary distribution π = u.
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Linear algebra

Application for Markov chains (cont.)
Then (vi) on slide 98 reads like: ∀i , j ∈ S
(22) limn→∞ pn

i ,j = uj = πj ,

here pn
i ,j was defined on slide 38. So, Theorem 6.6 is a

corollary of the Peron-Frobenius Therem.
Moreover, let Π be an |S| × |S| matrix, (where |S| is
the cardinality of S) such that all rows of Π are equal
to π. Then
(23) limn→∞Pn = Π .

Observe that (22) is the same as (23) in terms of
components. Speed of convergence:see [6, Theorem 4.9].
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Linear algebra

#S <∞, irreducible with period d
Theorem 7.5

Assume that #S <∞, P is irreducible, periodic with
period d > 1. Then P has d eigenvalues with absolute
value 1, each of them is simple. In particular 1 is a
simple eigenvalue that is there is a unique invariant
probability vector π corresponding to the eigenvalue 1.
Let ααα be a probability distribution on S. That is
ααα = (αi)i∈S with ∑

i∈S
αi = 1 and αi ≥ 0. Then

(24) limn→∞
1
d
(
αααT · Pn+1 + · · ·+ αααT · Pn+d

)
= π.

This Theorem is a corollary of Theorem 6.2.
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Linear algebra What if not irreducible?

A 9-states example (a reducible chain)

1

2

3

4

5

6

7

8

9

P :=



1
4

3
4 0 0 0 0 0 0 0

1
8

3
8

1
4 0 0 0 1

4 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1

3 0 0 0 0 2
3

0 0 0 0 1 0 0 0 0
0 0 1

4 0 0 3
4 0 0 0

0 0 1 0 0 0 0 0 0
0 1

4 0 0 0 1
2 0 1

4 0
0 0 0 1

3 0 0 0 0 2
3
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Linear algebra What if not irreducible?

The graph on the previous slide was prepared by
Mathematics 11 using the first code. The second one
gives the properties shown on the next slide
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Linear algebra What if not irreducible?

The properties of the MC in the last
example
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Linear algebra What if not irreducible?

Continuation
This shows that {1, 2}, {6} and {8} are transient
classes. This implies that their measure by the stationary
distribution must be zero. On each of the recurrent
classes we have different stationary distributions which
have nothing to do with each other. On the class {3, 7},
{4, 9} and {5} the stationary distributions in this order
are: π̂ :=

(
0, 0, 1

2 , 0, 0, 0, 1
2 , 0, 0

)
.

π̃ :=
(
0, 0, 0, 1

3 , 0, 0, 0, 0, 2
3
)

,

π := (0, 0, 0, 0, 1, 0, 0, 0, 0) .

Let π := α1π̂ + α2π̃ + α3π , where αi ≥ 0 and
α1 + α2 + α3 = 1. Then π is one of the uncountably
many stationary distributions of the chain. 105 / 299



Linear algebra What if not irreducible?

Continuation
We obtained π̃ on the previous slide by the Mathematica

Explanation: The very first number in the code is 4. It
says that we are in the recurrence class that contains 4.
The very last number is 9. This gives the measure of
state 9 for that stationary distribution which is supported
by the recurrence class that contains 4. 106 / 299



Linear algebra What if not irreducible?

Another 9 states example
Example 7.6

Find the all of the
stationary
distributions for the
Markov chain given
by P , where P is:

P =



1
2

1
2 0 0 0 0 0 0 0

1
4

1
4

1
4 0 0 0 1

4 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1

3
1
3 0 0 0 1

3
0 0 0 1

2
1
2 0 0 0 0

0 0 1
2 0 0 1

2 0 0 0
0 0 1

2 0 0 0 0 1
2 0

0 1
3 0 0 0 1

3 0 1
3 0

0 0 0 1
2 0 0 0 0 1

2
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Linear algebra Further examples

Another 9 states example (cont.)

That is the irreducible classes are
{1, 2, 3, 6, 7, 8} (above) and, {4, 5, 9} (below). Then we
run the Mathematica code on the next slide. The only
thing missing from this code is the definition of the
matrix p which should be defined first as P.
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Linear algebra Further examples

Another 9 states example (cont.)
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Linear algebra Further examples

Another 9 states example (cont.)
That is let

π(1) :=
( 2

31 , 4
31 , 7

31 , 0, 0, 4
31 , 8

31 , 6
31 , 0

)
,

π(2) :=
(
0, 0, 0, 3

7 , 2
7 , 0, 0, 0, 2

7 ,
)

.

Then for every ααα = (α1, α2) with α1, α2 > 0 and
α1 + α2 = 1 the vector

(25) π = α1 · π(1) + α2 · π(2)

is a stationary distribution and all stationary distributions
π can be presented of the form as in (25) for suitable α1,
α2. 110 / 299



Linear algebra What if not aperiodic?

Example 7.7 (Triangle-square chain)

5

6

7 1

4

2

3

0.7

0.
2

0.1

0.
3

0.5

0.2

0.2

0.4

0.4

0.
6

0.4

0.5

0.5

0.3

0.70.
9

0.1

Transient states: 1, 2, 3, Recurrent states: 4, 5, 6, 7.
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Linear algebra What if not aperiodic?

Example 7.7 (cont.)

It is enough to focus on the right hand side square
shaped part. That is the subgraph of vertices {1, 2, 3, 4}.
The transition matrix is:

P =


0 0.4 0 0.6

0.1 0 0.9 0
0 0.7 0 0.3

0.5 0 0.5 0
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Linear algebra What if not aperiodic?

Example 7.7 (cont.)
Using the following Mathematica 11 code:

We get:
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Linear algebra What if not aperiodic?

Example 7.7 (cont.)
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Linear algebra What if not aperiodic?

Example 7.7 (cont.)

We get the stationary distribution

(26) π =
(1

8 ,
5
16 ,

3
8 ,

3
16

)

by Mathematica 11 on the next slide:
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Linear algebra What if not aperiodic?

Stationary distribution with Mathematica
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Linear algebra What if not aperiodic?

P = S · D · S−1

S=


−1 1 −3

√
3

5
3
√

3
5

1 1 −3
5 −3

5
−1 1

√
3

5 −
√

3
5

1 1 1 1

, D=


−1 0 0 0
0 1 0 0
0 0 −

√
3

5 0
0 0 0

√
3

5



Let Dodd=


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, Deven=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


limn→∞D2n+1 = Dodd , limn→∞D2n = Deven

limn→∞P2n+1 = S · Dodd · S−1, and
limn→∞P2n = S · Deven · S−1.
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Linear algebra What if not aperiodic?

Cont.

This yields that

limn→∞P2n+1 =


0 5

8 0 3
81

4 0 3
4 0

0 5
8 0 3

81
4 0 3

4 0

 limn→∞P2n =


1
4 0 3

4 0
0 5

8 0 3
81

4 0 3
4 0

0 5
8 0 3

8



and limn→∞
1
2
(
P2n+1 + P2n+1

)
=


1
8

5
16

3
8

3
161

8
5
16

3
8

3
161

8
5
16

3
8

3
161

8
5
16

3
8

3
16

. Note

that all row vectors are the same and identical to π.
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6

s, S storage strategy:
Given s < S
Let Xn be the amount of stock on hand at the end
of day n.

Strategy:
If Xn ≤ s we fill up the stock during the night so
that the stock at the beginning of day n + 1 is S.
If Xn > s we do not do anything.
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)
Let Dn+1 be the demand of this item on day n + 1.

Using the x+ := max {x , 0} notation:

Xn+1 =
 (Xn − Dn+1)+ , if Xn > s;

(S − Dn+1)+, if Xn ≤ s.

120 / 299



Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)
In an example with s = 1, S = 5 and
P(Dn+1 = 0) = 0.3, P(Dn+1 = 1) = 0.4
P(Dn+1 = 2) = 0.2, P(Dn+1 = 3) = 0.1

0 1 2 3 4 5
0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)
For s = 1 and S = 5 the stationary distribution is:

π =
{ 177

1948 ,
379
2435 ,

225
974 ,

105
487 ,

98
487 ,

1029
9740

}

Assume that the profit of every single item is $12, but
the daily storage fee is $2.
Question:

What is the long-term profit on this item for the
previous choice of s, S?
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Inventory chain Durrett, Example 1.6
(cont.)

How should we choose values of s, S to maximize
the profit?
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Repair chain

A machine has 3 critical components which can go
wrong, but the machine operates until all of them stops
working. If at least two components are broken, they get
repaired for the next day. We assume that on a single
day maximum 1 component can go wrong, and the
probability of component 1, 2 and 3 failing is (in order)
0.01, 0.02 and 0.04.
If we are to model this process with a Markov chain, it is
recommended to use state space of broken parts:
{0, 1, 2, 3, 12, 13, 23} . The transition matrix is:
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Repair chain (cont.)

0 1 2 3 12 13 23
0 0.93 0.01 0.02 0.04 0 0 0
1 0 0.94 0 0 0.02 0.04 0
2 0 0 0.95 0 0.01 0 0.04
3 0 0 0 0.97 0 0.01 0.02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0

Question: How many components are used of type 1, 2
and 3 in 1000 days?
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Repair chain (cont.)
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Repair chain (cont.)

Figure: Prepared with Wolfram mathematica
127 / 299



Linear algebra What if not aperiodic?

Repair chain (cont.)

Figure: Prepared with Wolfram mathematica
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Repair chain (cont.)
Stationary distribution:

π = (0.336, 0.056, 0.134, 0.448, 0.002, 0.006, 0.014)
Mean first passage matrix:


0. 279.333 127.5 39.9167 404. 147.5 68.6094
17.6667 0. 145.167 57.5833 286.667 66.1667 86.276

21. 300.333 0. 60.9167 344. 168.5 33.9219
34.3333 313.667 161.833 0. 438.333 132.333 56.5365

1. 280.333 128.5 40.9167 0. 148.5 69.6094
1. 280.333 128.5 40.9167 405. 0. 69.6094
1. 280.333 128.5 40.9167 405. 148.5 0.
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Wright-Fisher model
Example 7.8

A (fixed size) generation consists of 2N genes with type
either a or A . If there are j ∈ {0, . . . , 2N} a-type gene
in the parent population, then the next generaton’s
building will be determined with 2N independent
binomial trials, with probabilities
pj = j

2N , qj = 1− j
2N . So, if Xn is the number of

a-type genes in the nth generation, then the appropriate
Markov-chain is:
P (Xn+1 = k|Xn = j) = p(j , k) =

(2N
k
)
pk

j q2N−k
j .
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The transition matrix for the
Wright-Fisher model when 2N = 6

1 0 0 0 0 0 0
15625
46656

3125
7776

3125
15552

625
11664

125
15552

5
7776

1
4665664

729
64
243

80
243

160
729

20
243

4
243

1
7291

64
3
32

15
64

5
16

15
64

3
32

1
641

729
4

243
20
243

160
729

80
243

64
243

64
7291

46656
5

7776
125

15552
625

11664
3125
15552

3125
7776

15625
46656

0 0 0 0 0 0 1
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In the Wright-Fisher model above we have absorbing
states when x = 0 and x = 2N . This means that if the
process ever reaches one of these states, it remains there
forever.

We modify the model so that there will be no absorbing
state:
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Figure: Simulation for the Wright-Fisher model, 2N = 6, starting
from 2
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Figure: Mathematica code for the Wright-Fisher model, 2N = 6,
starting from 2
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Wright-Fisher model with mutations
Example 7.9

In this model every gene can mutate before creating the
new generation. An a can mutate into A with probability
α1 and the reverse side has probability α2.
In this case the transition matrix is the same, but now,
for the mutation, the probabilities are modified.

pj = j
2N (1− α1) +

(
1− j

2N

)
α2,

and
qj = j

2N α1 +
(
1− j

2N

)
(1− α2).
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Simple RW on simple graphs
Example 7.10

3 51

2 4

1 2 3 4 5
1 0 1/2 1/2 0 0
2 1/3 0 1/3 1/3 0
3 1/4 1/4 0 1/4 1/4
4 0 1/2 1/2 0 0
5 0 0 1 0 0

Simple graph and the transition matrix of the
corresponding simple random walk (RW) on this graph.
From every vertex we move to a uniformly chosen
neighbour. (Described more precisely on the next slide.)136 / 299
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Let G = (V , E ) be a simple graph (no loops, no double
edges), where as usual, V is the set of vertices and E is
the set of edges. We denote the degree of vertex x ∈ V
by deg(x). The simple random walk on G is Markov
chain on state space S which is defined by the following
transition matrix:

(27) p(x , y) =


1
deg(x) , (x , y) ∈ E ;

0, otherwise.
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Example 7.10 (Cont.)
Using the mathematica 11 code on the next slide we
obtain that the stationary distribution:
π = (1

6 , 1
4 , 1

3 , 1
6 , 1

12) (the last command on the next slide
results the 5-th component of π). The mean first
passage matrix is M = (mi ,j)5

i ,j=1, where mi ,j is the
expected number (≥ 1) of steps to get from i to j for
the first time.

M =



6 11
4

9
4 6 53

419
4 4 5

2
19
4

27
221

4
7
2 3 21

4 11
6 11

4
9
4 6 53

425
4

9
2 1 25

4 12
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Mean First Passage Time Matrix

M = (mi ,j) and we know the diagonal: mi ,i = 1
πi

. In
general we need to solve the system of equations for all
i ̸= j :

mi ,j = pi ,j · 1 +
∑
k ̸=j

pi ,k · (1 + mk,j) = 1 + ∑
k ̸=j

pi ,k ·mk,j .
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Example 7.10 (Cont.)

The second and third commands computes the value
m3,4 = 21

4 . The last command yields that π(5) = 1
12 .
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Knight moves on chessboard
Simple RW on the
graph G , where
G = (E , V ):
V := {1, . . . , 8}2 ,
and for
(i1, j1), (i2, j2) ∈ V
((i1, j1), (i2, j2)) ∈ E
iff either:
|i1− i2|=2&|j1− j2|=1
or
|j1− j2|=2&|i1− i2|=1
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RW with absorbing boundary :

0 1 2 3 4
1

q

p

q

p

q

p

1

0 1 2 3 4
0 1 0 0 0 0
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 0 0 0 0 1
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RW with reflecting boundary

0 1 2 3 4

1

q

p

q

p

q

p

1

0 1 2 3 4
0 0 1 0 0 0
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 0 0 0 1 0
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RW with periodic boundary conditions

0 1 2 3 4p

q

q

p

q

p

q

p

p

q

0 1 2 3 4
0 0 p 0 0 q
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 p 0 0 q 0
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The history of Branching Processes

In 1873 Francis Galton asked in Educational Times:
what is the probability of dying off of a name, a family
dying agnatically? Reverend Henry William Watson
answered it and they published a paper together in 1874:
On the probability of extinction of families. Thus the
correspondent MC is called Galton-Watson process. So
we only regard the number of sons in various
generations, because they carry on the name.
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Branching processes

Let’s regard a population, in which the 0th generation
only consists of one person and in the nth generation one
gives birth to k children (who will be counted in the
(n + 1)st generation) with probability pk (independently
of each other); with k = 0, 1, 2, . . .
Let Xn be the number of individuals in the nthgeneration.
The state space is N = {0, 1, 2, . . . }. If Y1, Y2, . . . are
i.i.d. random variables for which P (Ym = k) = pk , then
the transition matrix is p(0, 0) = 1 and
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Branching processes (cont.)

p(i , j) := P (Y1 + · · ·+ Yi = j) if i > 0 and j ≥ 0,

Special case: The number of children has geometric
distribution.

pℓℓℓ := P (number of children = ℓℓℓ) = qℓℓℓp.

Then element (k , l) of the transition matrix:

p(k , ℓ) =
k + ℓ− 1

ℓ

pnqk .
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Random walks on Zd

Simple symmetric random walk on S = Zd :

(28) p(x , y) :=


1
2d , ha ∥x− y∥ = 1;
0, otherwise.

General random walk on S = Zd :
p : Zd → [0, 1]; ∑

x∈Zd
p(x) = 1, and the transition matrix

P = (p(x , y)):

p(x , y) := p(x− y).
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Two stage Markov chains
In this example Xn+1 is dependent of (Xn−1, Xn) .
Basketball chain
Consider a basketball player who makes a shot with the
following probabilities:
1/2, if both of his previous shots are missed
2/3, if he has hit one of his last two shots
3/4, if he has hit both of his last two shots.
So let Xn = S denote the success and Xn = M denote
the miss.
The state space is: {SS, SM, MS, MM} and the
transition matrix is:
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Two stage Markov chains (cont.)

SS SM MS MM
SS 3/4 1/4 0 0
SM 0 0 2/3 1/3
MS 2/3 1/3 0 0
MM 0 0 1/2 1/2

Explanation: If (Xn−1, Xn) = (S, M), then the
probability of (Xn, Xn+1) = (M, S) is equal to 2/3.
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Stationary distribution for the Basketball
chain

Following the rule shown above to compute stationary
distribution πππ, we subtract 1 from transition matrix P’s
diagonal elements and replace the last column with ones.

A =


−1/4 1/4 0 1

0 −1 2/3 1
2/3 1/3 −1 1

0 0 1/2 1
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Stationary distribution for the Basketball
chain (cont.)

Then A−1 =


−13

6 −
5
16

11
16

43
24

−1
6 −

17
16 −

1
16

31
24

−1 −3
8 −3

8
7
41

2
3
16

3
16

1
8

.

Its last row is πππ. Hence,

πππ =
(1

2 , 3
16 , 3

16 , 1
8
)

.
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Stationary distribution for the Basketball
chain (cont.)

Reminder: the order of components is (SS,SM,MS,MM).
(S: success, M: miss.) So, in the long term the ratio of
successes is:

πSS + πKS = π1 + π3 = 1
2 + 3

16 = 11
16 .
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Stationary distribution with Mathematica
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Ehrenfest chain: Stationary distribution

Example 7.11 (πππ for the Ehrenfest chain)

Recall the definition of the Ehrenfest chain: Consider the
Markov Chain with state space S := {0, 1, 2, . . . , n} and

1 It jumps from 0 to 1 and from n to n − 1 with
probability 1.

2 For any 0 < i < n, it jumps from i to i − 1 with
probability i/n and from i to i + 1 with probability
1− i

n .
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Ehrenfest chain: Stationary distribution
(cont.)
Now compute the stationary state for this chain. The
transition matrix:

P :=



0 1 0 0 · · · 0
1
n 0 n−1

n 0 · · · 0
0 2

n 0 n−2
n · · · 0

0 0 . . . . . . . . . 0
0 0 0 n−1

n 0 1
n

0 0 0 0 1 0
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Ehrenfest chain: Stationary distribution
(cont.)

For πππT · P = πππT , thus using notation π−1 := πn+1 := 0
we obtain that:

(29) πk−1
(
1− k−1

n
)

+ πk+1
k+1

n = πk , k = 0, 1, . . . , n.

We introduce the generating function:

(30) g(x) =
n∑

k=0
x kπk .
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Ehrenfest chain: Stationary distribution
(cont.)
Multiply both sides of (29) by n and x k , then sum it up
for k from 1 to n:

n∑
k=1

(n − k + 1)x kπk−1 +
n−1∑
k=0

πk+1(k + 1)x k = n
n∑

k=0
x kπk︸ ︷︷ ︸

g(x)

.

By obvious manipulations of this formula we obtain:

(1 + x)g ′(x) = ng(x).
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Ehrenfest chain: Stationary distribution
(cont.)
After solving this differential equation we get:

g(x) = C(1 + x)n.

Using that π is a probability vector we get g(1) = 1.
Hence C = 2−n. That is:

(31) g(x) = 2−n (1 + x)n = 2−n
n∑

k=1

n
k

 · x k

Compare this to (30) to realize that πk = 2−n
(n

k
)

.
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Two steps back, one step forward chain

0 1 2 3 4 5 6this continues to ∞
0.5

0.5 0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0 1 2 3 4 5 · · ·
0 1

2
1
2 0 0 0 0 · · ·

1 1
2 0 1

2 0 0 0 · · ·
2 1

2 0 0 1
2 0 0 · · ·

3 0 1
2 0 0 1

2 0 · · ·
4 0 0 1

2 0 0 1
2 · · ·... ... ... ... ... ... ... . . .
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πππ for the two steps back one step ahead
chain:
From the equation πππT · P = πππT : π0 = 1

2 (π0 + π1 + π2)
and ∀k ≥ 1 : πk = 1

2 (πk−1 + πk+2) . From these two
equations it comes by induction that

(32) ∀k ≥ 0 : πk = πk+1 + πk+2.

It is obviously satisfied by πk = (1− ρ)ρk , k ≥ 0, where
ρ is the golden ratio: ρ =

√
5−1
2 . Homework: there is no

other stationary distribution. So the process spends most
of its time (more than 99%) in the set {0, 1, . . . , 9}.
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Definition 7.12
A MC is doubly stochastic if its probability matrix’s
column sum equals to 1. ∑

j
p(i , j) = 1 , ∀j .

Theorem 7.13
A MC with finite state space is doubly stochastic iff its
stationary distribution is the uniform distribution.

Proof.
Let us assume that #S = N , then

∑
x

πππ(x)p(x , y) = 1
N
∑
x

p(x , y) = 1
N = πππ(x).
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Examples

Example 7.14 (Random walk with periodic boundary
conditions)
Recall the definition of the random walk with periodic
boundary conditions from slide 144. It is obviously
doubly stochastic.
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Modulo 6 jumps on a circle

Example 7.15
We roll the finite number series 0, 1, 2, . . . , 5 on to a
circle so that 5 and 0 be neighbours. Then we use such a
regular dice which has number

1 on three sides,
2 on two sides,
3 on one side.

We move forward as much as we scored (modulo 6).
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Modulo 6 jumps on a circle (cont.)
The transition matrix is:

0 1 2 3 4 5
0 0 1/2 1/3 1/6 0 0
1 0 0 1/2 1/3 1/6 0
2 0 0 0 1/2 1/3 1/6
3 1/6 0 0 0 1/2 1/3
4 1/3 1/6 0 0 0 1/2
5 1/2 1/3 1/6 0 0 0

It can easily be seen that the elements of transition
matrix’s third power P3 are positive. Thus we see that
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Modulo 6 jumps on a circle (cont.)

the chain is irreducible and aperiodic, so the conditions
of Theorem 6.2 are satisfied (obviously πππ(i) = 1/6, ∀i).
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Recurrence of the simple Symmetric
random walk in Zd-ben

Theorem 8.1
In Rd the simple symmetric random walk is
recurrent (zero recurrent) if d = 1 or d = 2 but
transient for d ≥ 3 .

For the proof in the case of d = 1 see the discussion
starting on slide ?? in 2018 File BB.
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One needs to be careful

In the case of countably infinite state space it can
happen that there are no recurrent states as the
following trivial example shows
Example 8.2 (Monotone increasing MC)
Let S be the set of non-negative integers and
p(i , i + 1) := 1 for all i ∈ S.
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Detailed balance condition
πππ satisfies detailed balance condition , if ∀x , y

(33) πππ(x)p(x , y) = πππ(y)p(y , x)

If we sum both sides for y , we get that
∑
y

πππ(y)p(y , x) = πππ(x)
∑
y

p(x , y)︸ ︷︷ ︸
=1

= πππ(x) .

So, if a probability measure satisfies formula (33), then it
is a stationary distribution. There exist stationary
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Detailed balance condition (cont.)
distributions which do not satisfy the detailed balance
condition (33). For example, consider the MC whose
probability matrix is:

P =


0.5 0.5 0
0.3 0.1 0.6
0.2 0.4 0.4

 .

Then the stationary distribution π of P does not satisfy
(33). To get contradiction, assume that π satisfies (33).
From this and from the fact that p(1, 3) = 0 we get
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Detailed balance condition (cont.)
πππ(3) = 0. This and formula (33) yield that
πππ(2) = πππ(1) = 0 which is impossible. On the other
hand, P is a doubly stochastic matrix for which there is a
stationary distribution (the uniform distribution):
πππ = (1

3 , 1
3 , 1

3).
So, it can happen that there is a stationary distribution
but it does not satisfy (33). In spite of this, if we have a
guess about a probability vector that it could be the
stationary distribution, we can check it easily by
substituting it into formula (33).
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Reversible MC
Now we use [6, chapter 1.6]. Notation: For the MC
(Xn) we introduce

(34) X n
0 := (X0, . . . , Xn).

So for x := (x0, . . . , xn)

(35) {X n
0 = x} = {X0 = x0, . . . , Xn = xn}

and for an x = (x0, . . . , xn) let

(36) ←−x := (xn, xn−1, . . . x1, x0).
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Reversible MC (cont.)
It comes easily from formula (33) that:
(37)
πππ(x0)p(x0, x1)· · ·p(xn−1,xn)=πππ(xn)p(xn, xn−1)· · ·p(x1, x0).

Using notation x = (x0, . . . , xn) this implies that:

(38) Pπππ (X n
0 = x) = Pπππ

(
X n

0 =←−x
)

.

So if MC (Xn) has stationary distribution, and it satisfies
detailed balance condition, then the distribution of
(X0, . . . , Xn) is the same as the distribution of
(Xn, . . . , X0).
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Reversible MC (cont.)

Definition 9.1 (reversible MC)
A MC Xn is reversible if it has stationary distribution πππ
and πππ satisfies the detailed balance condition , that is
formula (33) holds.
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Reversible MC (cont.)

Example 9.2 (Simple random walk on graphs, slide 137)
Let us regard a simple random walk on graph
G = (V , E ). Using notation of slide 137, the stationary
distribution is: πππ(y) = deg(y)/2#E . It can be easily
seen (homework) that it satisfies detailed balance
condition:

πππ(x)p(x , y) = πππ(y)p(y , x) , ∀x , y ∈ S.
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Reversible MC (cont.)

Example 9.3 (Random walk with periodic boundary
condition ( slide 144))
Reminder: finite state space (with cardinality N ) rolled
onto a circle. We jump 1 clockwise with probability p
and anticlockwise with probability q = 1− p. The chain
is double stochastic, so πππ = ( 1

N , . . . , 1
N ). But

πππ(k)p(k , k + 1) = p
N and q

N = πππ(k + 1)p(k + 1, k)
and they are equal only if p = q. So in other instances
the detailed balance condition is not satisfied.
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Definition 9.4 (Chain with reversed time)

Given an irreducible MC Xn with transition matrix P and
stationary distribution πππ. Let us define the matrix
P̂ = (p̂(x , y)):

(39) p̂(x , y) := πππ(y)p(y ,x)
πππ(x) .

Then P̂ is a stochastic matrix (every element is
non-negative, the row-sums are 1.) So P̂ determines a
MC (X̂n), which we call time reversal of (Xn).

Obviously, if (Xn) is reversible, then P = P̂.
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Time reversal

Theorem 9.5
Using notation of Definition 9.4:

(a) πππ is stationary distribution not only for (Xn)
but for (X̂n), too, and

(b) for all x:

(40) Pπ (X n
0 = x) = Pπ

(
X̂ n

0 =←−x
)

,

where ←−x was defined in (36).
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Time reversal (cont.)
Proof.
Firstly we prove part (a):

∑
y

πππ(y)p̂(y , x) =
∑
y

πππ(y)π
ππ(x)p(x , y)

πππ(y) = πππ(x) .

Now we see part (b):

Pπππ (X n
0 = x) = πππ(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn)

= πππ(xn)p̂(xn, xn−1) · · · p̂(x2, x1)p̂(x1, x0)
= Pπππ

(
X̂ n

0 =←−x
)

.
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Birth and death processes

Birth and death processes are those MCs, whose state
space are

S := {k , k + 1, . . . , n} .

and we cannot jump more than 1. So the possible jumps
are: −1, 0, 1. The transition probability:

p(x , y) = 0 if |x − y | > 1 :

182 / 299



Detailed balance condition and related topics Birth and death processes

Birth and death processes (cont.)
Then the transition matrix P is:

p(x , x + 1) = px if x < n
p(x , x − 1) = qx if x > k

p(x , x) = 1− px − qx if k ≤ x ≤ n.

and all other p(x , y) = 0. Warning: p + q ̸= 1 is
possible here!
Theorem 9.6

All birth and death processes are reversible.
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Birth and death processes (cont.)
Proof
We need to see that we can find a probability measure πππ
on S which satisfies formula (33), thus for x < n it must
be true for πππ:

πππ(x + 1) p(x + 1, x)︸ ︷︷ ︸
qx+1

= πππ(x) p(x , x + 1)︸ ︷︷ ︸
px

So, for (33), it is needed that

(41) πππ(x + 1) = px

qx+1
πππ(x) .

Iterating this for every 1 ≤ i ≤ n − k 184 / 299
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Proof Cont.

(42) πππ(k + i) = πππ(k) · pk+i−1 · pk+i−2 · · · pk+1 · pk

qk+i · qk+i−1 · · · qk+2 · qk+1︸ ︷︷ ︸
ri

It is easy to see that if we choose πππ(k) such way that

(43) πππ(k) ·
1 +

n−k∑
i=1

ri

 = 1,

then πππ is a stationary distribution which satisfies the
detailed balance condition, so the chain is reversible.
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We have computed the stationary distribution for the
Ehrenfest Chain (see slides 12 and 155). We got that
πππ(k) = 2−N

(N
k
)
, but we needed an unpleasant reduction

involving generator functions. Now we can easily get this
from formula (42) because the Ehrenfest Chain is
obviously a birth and death process.
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Example 9.7 (πππ for the Ehrenfest chain (see file A, slide
12))
Here: S = {0, 1, . . . , N}. From formula (42) we get that

ri =
N

i

 if 1 ≤ i ≤ N .

Using that 1 +
N∑

i=1
ri = 2N we obtain that for

i = 0, . . . , N :

πππ(i) = 2−N
N

i

.
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Two year collage

Example 10.1 (Two year collage)

At a two year collage the first year students are called
freshmen the second year students are the sophomores.

Freshmen: 60% of them become sophomores ,
25% of them remain freshmen, 15% of them exit
( E ) so leave the school.
Sophomores: 70% of them complete the courses
with Success ( S ), 20% of them remain sophomores
and 10% of them exit.
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Two year collage (cont.)

Then if S = {1, 2, G , D} (freshmen, sophomores,
Graduate, Drop out) and Xn shows that a student is in
which state after n years, then Xn is a MC whose state
space is S and its transition matrix:

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

190 / 299



Absorbing Chains Exit distributions through examples

Two year collage (cont.)

Let h(x), x ∈ S be the probability that a student in state
x eventually graduates. Then we apply the
one step reasoning method. Namely, we do not know
h(1) and h(2) but after making one step on the chain
the following equations hold:

h(1) = 0.25h(1) + 0.6h(2)
h(2) = 0.2h(2) + 0.7.

From this h(2) = 7/8 and h(1) = 0.7.
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Theorem 10.2

A MC is given with a finite state space S. Let a, b ∈ S
and C := S \ {a, b}. Let h : S → R+ be a function
satisfying:
(44)
h(a) = 1, h(b) = 0, ∀x ∈ C : h(x) = ∑

y∈S
p(x , y)h(y) .

Put
Vy = min {n ≥ 0 : Xn = y}.

Assume that ∀x ∈ C: Px (Va ∧ Vb <∞) = 1. Then

h(x) = Px(Va < Vb) .
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Proof
We frequently use the shorthand notation

a ∧ b := min {a, b} .

Let T := Va ∧ Vb. By assumption

(45) ∀x ∈ C , Px (T <∞) = 1.

First we express the probability Px (Va < Vb) in terms of
the expectation of a random variable. Namely, note that
by definition,

h(XT ) =
 1, if Va < Vb ;

0, if Vb < Va.
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Proof (cont.)
That is

(46) h(XT ) = 1{Va<Vb}

Hence, for all x ∈ C we have

(47) Px (Va < Vb) = Ex [h(XT )]

Now we prove that

(48) Ex [h(XT )] = limn→∞Ex [h(XT∧n)] .
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Proof (cont.)
To see this, recall that we assumed that the state space
#S <∞. So, M := max

x∈S
h(x) <∞, That is, on the one

hand, for all x ∈ C ,

(49) h(XT∧n) < M holds for all n.

On the other hand, using (45) (which says that T is
almost surely finite) we have that

(50) limn→∞ h(XT∧n) = h(XT ).
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Proof (cont.)
Putting together (50) and (49), we obtain that (48)
holds by Lebesgue Dominated Convergence Theorem .
Finally, we verify that

(51) Exh(XT∧n) = h(x) , ∀n > 1, ∀x ∈ C .

u1(x , a) := Px (X1 = a) = p(x , a) and for k ≥ 2

uk = Px (Xk = a, T = k) · h(a)︸ ︷︷ ︸
1

=
∑

x1,...,xk−1∈C
p(x , x1)p(x1, x2) · · · p(xk−1, a).
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Proof (cont.)
Moreover, let S0 := h(x) and

Sk :=
∑

x1,...,xk∈C
p(x , x1)p(x1, x2) · · · p(xk−1, xk)h(xk).

A careful case analysis yields that by (44) for k ≥ 1:

(52) Sk = Sk−1 − uk .

Observe that for a k ≤ n we have

(53) Ex [h(XT∧n), T = k] = Px (Xk = a, T = k) .
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Proof (cont.)
Using (52), (53), a telescoping sum in the third step and
the fact that S0 = h(x) we obtain:

Ex [h(XT∧n)] = Ex [h(XT∧n);T > n]+
n∑

k=1
Ex [h(XT∧n),T=k]

= Sn +
n∑

k=1
uk(54)

= h(x)︸ ︷︷ ︸
S0

+
n∑

k=1
(Sk − Sk−1︸ ︷︷ ︸

−uk

) +
n∑

k=1
uk(55)

= h(x) .■(56)
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Wright-Fisher model, see slide 130
The state space: S = {0, 1, . . . , 2N}. The absorbing
states: 0 and 2N . Question: what is the probability of
ending up in 2N , or in the model’s language: what is the
probability that once every gene becomes type a?
The transition matrix:

p(x , y) =
2N

y

( x
2N

)y (
1− x

2N

)N−y

︸ ︷︷ ︸
Binomial(2N,x/2N)

.

That is: the distribution of y ∈ {0, 1, . . . , 2N} where the
Markov chain jumps to from x ∈ {0, 1, . . . , 2N} is a

199 / 299



Absorbing Chains Exit distributions through examples

Wright-Fisher model, see slide 130 (cont.)
Binomial(2N , x/2N) random variable. We know that
expected value of a Binomial(2N , x/2N) r.v. is equal to
x . The same in formula:

(57) x =
2N∑
y=0

p(x , y) · y

Let us define a function: h(t) := t
2N , then by (57):

h(x) =
2N∑
y=0

p(x , y)h(y).
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Wright-Fisher model, see slide 130 (cont.)
Let a = 2N and b = 0. Then h(a) = 1 and h(b) = 0.
Obviously:

Px (Va ∧ Vb <∞) > 0, ∀0 < x < N .

So, we can use Theorem 10.2, thus we get:

Px (V2N < V0) = h(x) = x
N .■

In summary: here we guessed the exit probability function
h(x) and to verify our guess we used Theorem 10.2.
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Example: Gambler’s ruin, unfair case

Now we use the notation introduced on slide 4, where
the Gambler’s ruin example was introduced with the
modification that now p ̸= 1/2 is arbitrary. Let

h(x) = Px (VN < V0) .

That is h(x) is the probability that a gambler starting
with $x eventually wins, that is reaches $N earlier than
$0. Obviously, h(N) = 1 and h(0) = 0. As usual, let
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Example: Gambler’s ruin, unfair case
(cont.)

q := 1− p and let 0 < x < N . Yet again we use the
one-step argument : After one step:

Xn+1 =
 x + 1, with probability p;

x − 1, with probability q.

So, for 0 < x < N :

(58) h(x) = ph(x + 1) + qh(x − 1).
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Example: Gambler’s ruin, unfair case
(cont.)

Obvious manipulations yield:

p (h(x + 1)− h(x)) = q (h(x)− h(x − 1)) .

Hence,

(59) h(x + 1)− h(x) = q
p (h(x)− h(x − 1))
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Example: Gambler’s ruin, unfair case
(cont.)
Let c := h(1)− h(0). So, from formula (59) for x ≥ 1

(60) h(x)− h(x − 1) = c
(q

p

)x−1
.

Using that h(N) = 1, h(0) = 0 and a telescopic sum in
the second step and (60) in the last step:

1 = h(N)− h(0) =
N∑

x=1
h(x)− h(x − 1) = c

N∑
x=1

(
q
p

)x−1
.
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Example: Gambler’s ruin, unfair case
(cont.)

Put θ = q/p . Then c = (1− θ)/(1− θN). So

(61) h(x) = h(x)− h(0) = c
x−1∑
i=0

θi = 1−θx

1−θN .

From here if N →∞ we get that

(62) p > 1
2 ⇒ Px (V0 =∞) = 1−

(q
p

)x
.
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Example: Gambler’s ruin, unfair case
(cont.)

Corollary 10.3

Consider a random walk on Z, in which starting from all
x > 0 we go forward one step with probability p > 1

2 and
we go backward one step with probability q = 1− p.
Then the probability that starting from an arbitrary
x > 0 we never reach 0 is 1−

(
q
p

)x
> 0. That is every

state is transient.
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Example: Gambler’s ruin, fair case

We consider the Gambler’s ruin example with p = 1/2.
We use the unfair case (p ̸= 1/2)’s notation. The
argument is the same until formula (59).
But in case of p = 1/2 formula (59) shows that the
gradient of function h(x) is constant and h(0) = 0,
h(N) = 1 so if p = 1/2

Px (VN < V0) = h(x) = x/N .
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Tennis

The following problem is from [3, p.44].
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Tennis (cont.)
Example 10.4

In tennis a player wins the game if either she gets 4
points when the other player has not more than 2 points.
If the score is 4− 3 then the winner is the player who
makes a two pints advantage first. Assume that

The server wins the point with 0.6 probability,
Successive points are independent.

Question: What is the probability that the server wins if
the score now is 3− 3?
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Tennis (cont.)
Solution: Let Xn be the difference of the points scored
from the point of the server after 3− 3 until one of the
player has a 2 point advantage so that the game ends.
That is the state space is S := {−2,−1, 0, 1, 2} . Then
the transition matrix:

2 1 0 -1 -2
2 1 0 0 0 0
1 0.6 0 0.40.40.4 0 0
0 0 0.60.60.6 0 0.40.40.4 0
-1 0 0 0.60.60.6 0 0.4
-2 0 0 0 0 1
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A simulation for the Tennis starting from 0
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A simulation for the Tennis starting from 0
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Tennis

Let h(x) be the probability that the server wins when
staring from X0 = x . Obviously now the absorbing
states are {−2, 2} and C = {−1, 0, 1}. Clearly,

h(2) = 1 and h(−2) = 0.

From the one-step reasoning:

(63) h(x) = ∑
y

p(x , y)h(y) , ∀x ∈ C .
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Tennis (cont.)

h(1) = 0.6 · h(2)︸ ︷︷ ︸
1

+0.4h(0) = 0.4h(0) + 0.6(64)

h(0) = 0.6h(1) + 0.4h(−1)
h(−1) = 0.6h(0) + 0.4 · h(−2)︸ ︷︷ ︸

0

= 0.6h(0).

Let R = (r(x , y))x ,y∈C be the restriction of matrix P to
rows and columns of C , and let ĥ be the vector which
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Tennis (cont.)
we get by ignoring those coordinates of h which are
outside C . Then formula (64):

(65) ĥ− R · ĥ =


0.6
0
0


Which is:

1 −0.4 0
−0.6 1 −0.4

0 −0.6 0


︸ ︷︷ ︸

I−R

·


h(1)
h(0)

h(−1)

 =


0.6
0
0
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Tennis (cont.)

So


h(1)
h(0)

h(−1)

 = (I − R)−1 ·


0.6
0
0

 =


0.8769
0.6923
0.4154
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Exit time from the two year collage

Consider the two-year collage example on slide 189.
There,we asked what was the probability of a
k = 1, 2-year-student of graduating ever. Now, for the
same example we ask:
Question: On average, how much time is needed for a
student to get out of the school either by completing it
successfully or drop out (unsuccessfully).
Let g(x) be the expected number of years that an
x ∈ {1, 2}-year student leaves the school either because
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Exit time from the two year collage (cont.)

she graduates or because she drops out. We define
g(G) = g(D) = 0. Again, we use the one-step reasoning:

g(1) = 1 + 0.25g(1) + 0.6g(2)
g(2) = 1 + 0.2g(2).

This yields: g(2) = 1.25 and g(1) = 2.333.
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Exit time

Theorem 10.5

Let Xn be a MC with a finite state space S. Let A ⊂ S
and C := S \ A, and VA := min {n ≥ 0 : Xn ∈ A}. Let
g : S → R+ be a function which satisfies:

(a) Px (VA <∞) > 0 , ∀x ∈ C,
(b) g(a) = 0, ∀a ∈ A,
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Exit time (Cont.)
Theorem 10.5 (Cont.)

(c) ∀x ∈ C

(66) g(x) = 1 +
∑
y

p(x , y)g(y).

Then this function g is the expected exit time. That is

(67) g(x) = Ex [VA] .

Proof.
The proof goes similarly as the proof of Theorem
10.2.
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Waiting time for TT

Example 10.6

We flip a fair coin until we get two Tails (TT) in a row.
Question: what is the expected value of the number of
flips?

Solution: We call T the Tails and H the Heads. Let
TTT be the (random) number of flips until we get the
two Tails (the TT). Now we associate a MC (Xn) with
state space S := {0, 1, 2}, where Xn is the number of
consecutive Tails after the nth flip. So, if the nth flip
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Waiting time for TT (cont.)

results in a Head, then Xn = 0, if it is a Tail, then
Xn = 1 or Xn = 2 depending on Xn−1 (if it was Head or
Tail). State 2 is absorbing because we only flip the coin
until this happens. So, the transition matrix:

0 1 2
0 1/2 1/2 0
1 1/2 0 1/2
2 0 0 1
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Waiting time for TT (cont.)

Let

V2 := min {n ≥ 0 : Xn = 2} and g(x) := Ex [V2] .

Then from the one-step reasoning:

g(0) = 1 + 0.5g(0) + 0.5g(1)(68)
g(1) = 1 + 0.5g(0).
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Waiting time for TT (cont.)

Let 1 be the vector in R2, having both components
equal to 1. Then g(0) = 0 by formula (68):

(69) (I − R) · ĝ = 1,

where, as before, R is the matrix we get from P by
deleting the rows and columns corresponding to the
absorbing states (now the only absorbing state is 2) and
ĝ is the vector we get from vector g by deleting the
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Waiting time for TT (cont.)

components belonging to the absorbing states which is 2
as mentioned before. Hence from (69) we get

ĝ =
 g(0)

g(1)

 = (I − R)−1 · 1 =
 4 2

2 2

 · 1 =
 6

4


So, by Theorem 10.5, we have

E0 [V2] = g(0) = ĝ(0) = 6.
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Tennis at 3− 3
Consider the Tennis problem on slide 209 again.
Question: How long the game lasts if now the score is
4− 3, 3− 3 and 3− 4 from the point of the server?
Solution: Let g(x) be the expected time of the game if
x ∈ {1, 0,−1}. As we discussed, the absorbing states are
A := {−2, 2} and the state space is
S := {−2,−1, 0, 1, 2}. So, C : A \ A = {1, 0,−1}.
Using notation analogue to the previous problem:

R =


0 0.4 0

0.6 0 0.4
0 0.6 0
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Tennis at 3− 3 (cont.)
and from here:

I − R =


1 −0.4 0
−0.6 1 −0.4

0 −0.6 1


So, like the previous problem:


g(1)
g(0)

g(−1)

=(I − R)−1 1=


19/13 10/13 4/13
15/13 25/13 10/13
9/13 15/13 19/13




1
1
1
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Tennis at 3− 3 (cont.)

So, at 3− 3 the expected play-time:

(70) g(0) = 15 + 25 + 10
13 = 3.846.
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Tennis at 3− 3 (cont.)

Remark 10.7

Consider an absorbing MC with state space S, absorbing
states A and transient states C := S \ A. Let y ∈ C and
we denote the total number of visit to y including the
time 0 if we started from y by N(y). The
N(y) =

∞∑
n=0

1Xn=y . In this way
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Tennis at 3− 3 (cont.)
Remark 10.7 (Cont.)

(71) Ex [N(y)] =
∞∑

n=0
Rn(x , y) = (I − R)−1(x , y).

Let T be the duration until the chain gets into an
absorbing state. This is equal to the total time the MC
spends at all of the transient states together. That is

T =
∑
y∈C

N(y).

Hence by (71) 231 / 299
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Tennis at 3− 3 (cont.)
Remark 10.7 (Cont.)

Ex [T ] =
∑
y∈C

Ex [N(y)] =
∑
y∈C

(I − R)−1(x , y),(72)

which is the x -th component of the vector

(I − R)−1 · 1.

With this argument we proved that (I − R)−1(x , y) is
equal to the expectation of the number of visits to y
(counting the initial state if x = y) starting from x .
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Tennis at 3− 3 (cont.)

As a Corollary of this Remark we can see that in (70) the
summands

15
13 ,

25
13 ,

10
13

are the expected number of cases when the score is
1, 0,−1 respectively, before the game ends.
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Gambler’s ruin, p = 1/2: How long does
it last?
So: p(i , i + 1) = p(i , i − 1) = 1/2. A := {0, N},

VA := min {n ≥ 0 : Xn ∈ A}.

Let g(x) := Ex [VA] . Obviously

(73) g(0) = g(N) = 0.

If 0 < x < N :

g(x) = 1 + 1
2g(x + 1) + 1

2g(x − 1)
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

g(x + 1)− g(x) = g(x)− g(x − 1)− 2.

If c = g(1) = g(1)− g(0), then

(74) g(k)− g(k − 1) = c − 2(k − 1)
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

Using that g(N) = 0 and summing the previous
equations for 1 ≤ k ≤ N , we get telescopic sums. From
these:

0 = g(N) =
N∑

k=1
(g(k)− g(k − 1))

=
N∑

k=1
(c − 2(k − 1)) = cN − 2N(N−1)

2 .
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

Hence, c = N − 1. Substituting this back to formula
(74) and summing it up we obtain that:

g(x) = x(N − x) .
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Gambler’s ruin, p ̸= 1/2: How long does
it last?

So, in this case: p(i , i + 1) = p ̸= 1/2 and
p(i , i − 1) = 1− p =: q. Let A := {0, N},
C := {1, . . . , N − 1},

VA := min {n ≥ 0 : Xn ∈ A}.

Let g(x) := Ex [VA] . Obviously

(75) g(0) = g(N) = 0.
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)

From the one-step reasoning:

(76) g(x) = 1 + p · g(x + 1) + q · g(x − 1) , x ∈ C .

These are N − 1 equations for the N − 1 unknowns:
(g(1), . . . , g(N − 1)). This system of equation is the
same that appeared in formula (66). Thus, from
Theorem 10.5 its solution can only be g(x) = Ex [VA].
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)
We can easily check that g(1), . . . , g(N − 1) is the
solution of the system of equation (76) if

g(x) = x
q − p −

N
q − p ·

1− (q/p)x

1− (q/p)N , 0 < x < N − 1.

So, the expected time of the game for 0 < x < N − 1:

(77) Ex [VA] = x
q − p −

N
q − p ·

1− (q/p)x

1− (q/p)N .
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)
From now we always assume that x ∈ C . We use (77)
and distinguish two cases: if p < q , then

(78) lim
N→∞

N
1−(q/p)N = 0 thus g(x) ≈ x

q−p .

On the other hand, if p > q , then (q/p)N → 0, thus

(79) g(x) ≈ N−x
p−q [1− (q/p)x ] + x

p−q(q/p)x .
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This Subsection is based on Charles M. Grinstead, J.
Laurie Snell’s book. [4]. Click here for the book.

In this Section (unless we say otherwise) Xn is supposed
to be an absorbing MC on a finite state space S with

transition matrix P,
absorbing states A ⊂ S and
transient states C := S \ A.

We write a := #A and c := #C .

We will answer the following questions in general terms:
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Questions answered on this Subsection in
general terms

(Q1) What is the probability that the process will
end up in a given absorbing state? (Theorem
10.11.)

(Q2) What is expected exit time (expectation of
the time to get to any of the absorbing
states)? (Theorem 10.9.)

(Q3) What is the expected number of visits to a
transient state before finally getting to an
absorbing state. (Theorem 10.8.)
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We always assume that the c + a states of S are
arranged as follows: the first c states are the transient
states and the last a states are the absorbing states.
Then the transition matrix P is in the canonical form :

(80)
C A

C R Q
A 0a,c Ia

, that is P =
 R Q

0a,c Ia

 .

where
R is a c × c matrix,
Q is a non-zero c × a matrix
0a,c is an a × c zero matrix (all elements are zero),
Ia is an a × a identity matrix,
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The powers of P
Clearly,

(81) Pn =
 Rn ⋆

0a,c Ia

 ,

where ⋆ is a c × a matrix. We have actually proved that

(82) limn→∞Rn = 0c,c

The following Theorem answers question Q3. In special
cases we have already seen its proof. Alternatively, for
the proof see [4, p. 418, Theorem 11.4].
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The fundamental matrix
Theorem 10.8

As always in this Subsection, we assume that Xn is an
absorbing MC. Then

(a) Ic − R has an inverse N := (Ic − R)−1 which
is called the fundamental matrix .

(b) N = Ic + R + R2 + R3 + · · · .
(c) N = (ni ,j)c

i ,j=1 then ni ,j is the expected values
of the times the chain starting from i ∈ C
visits j ∈ C before the absorbtion happens.
Initial state is counted if i = j .
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Time to absorption

Let Xn be as in Theorem 10.8. We write

VA := min {n ≥ 0 : Xn ∈ A} .

We define the vector g = (g(x))x∈C , where

g(x) := Ex [VA] . where x ∈ C

That is the x ∈ C -th component g(x) of the vector g is
the expected number of steps until the absorbtion
happens if the MC starts from x .
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Time to absorption (cont.)

Theorem 10.9

Let Xn be an absorbing MC. We denote the column
vector with all components equal to 1 by 1 ∈ Rc . Then

(83) g = N · 1 .

We have actually proved this in the previous subsection
in special cases. For a proof see [4, p. 420, Theorem
11.5]. This theorem answers Question Q2. In the
following slides we will answer Question Q1.
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An auxiliary lemma
We often need the following simple lemma.
Lemma 10.10

Let X be a non-negative integer valued r.v.. Then

(84) E [X ] =
∞∑

k=1
P (X ≥ k) .

Proof.
Observe that X =

∞∑
k=1

1{X≥k}. Then

E [X ] =
∞∑

k=1
E
[
1{X≥k}

]
=
∞∑

k=1
P (X ≥ k).
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Absorption probabilities
Let B = (bi ,j)i∈C ,j∈A be a c × a matrix whose elements
are defined as follows: for an i ∈ C and j ∈ A we write

bi ,j := P (the chain starting from i is absorbed at j)

Theorem 10.11

Let Xn be an absorbing MC. Then

(85) B = N ·Q .

Now we present the proof in a shorter form the we
repeat in a more detailed form.
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Proof in short
Proof of Theorem 10.11 in short.
Let R0 := I. Then

bi ,j
(84)=

∞∑
n=0

∑
k∈C

r (n)
i ,k · qk,j

=
∑
k∈C

∞∑
n=0

r (n)
i ,k · qk,j

=
∑
k∈C

ni ,k · qk,j

= (N · R)i ,j .
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Proof of Theorem 10.11 with details

Proof of Theorem 10.11 with details
Fix an arbitrary i ∈ C and j ∈ A . Imagine that we
start from i and finally arrive at j on such a such path
which stay within C before arriving at j . Let m be the
length of this path. Observe that m = 2 means no states
in between i and j on the path and for m > 2 there are
n − 2 states in between i and j on the path and all of
them must be in C . So such a path is describe with
c1, . . . , cm−2 ∈ C .
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Proof of Theorem 10.11 with details
(cont.)

Proof of Theorem 10.11 with details (cont.)
Let us call the probability that such a path is realized
wi ,c1,...,cm−2,j , where the word c1, . . . , cm−2 is the empty
word if m = 2. Below we write n = m − 1 from the two
but last step:
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Proof of Theorem 10.11 with details
(cont.)
Proof (cont.)

bi ,j =
∞∑

m=2

∑
c1,...,cm−2∈C

wi ,c1,...,cm−2,j

=
∞∑

m=2

∑
c1,...,cm−2∈C

pi ,c1 ·
m−2∏
k=1

pik ,ck+1 · pcn−1,j · pcm−1,j

=
∞∑

m=2

∑
c1,...,cm−2∈C

ri ,c1 ·
m−2∏
k=1

rck ,ck+1 · qcm−1,j

=
∞∑

n=0

∑
k∈C

r (n)
i ,k · qk,j

= (
∞∑

n=0
Rn ·Q)i ,j , 254 / 299
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Proof of Theorem 10.11 with details
(cont.)
Proof (cont.)

where
m−2∏
k=1

rck ,ck+1 := 1 if m = 2. Hence

(86) B =
∞∑

n=0
Rn ·Q

Recall that according to part (b) of Theorem 10.8 we
have N =

∞∑
n=0

Rn. Hence, by (86) we obtained that

(87) B = N ·Q. ■ 255 / 299
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The problems considered

In this subsection Xn is an irreducible chain on the finite
state space S with transition matrix P and w assume
that #S ≥ 3. Let i , j , k ∈ S be three distinct elements
of S. We pose the following questions:

(Q4) What is the probability that the chain staring
from i ∈ S visits j ∈ S earlier than k ∈ S?

(Q5) What is the probability that the chain staring
from j ∈ S returns to j earlier than it visits
k ∈ S.
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The answer to question Q4

We prepare an absorbing MC from Xn by declaring some
of the states absorbing. Namely, let ej and ek be the
coordinate unit vectors in R#S which contains a 1 in
their j and k-th position respectively, and all other
components are zero. We replace of the j-th and k-th
rows of P by ej and ek respectively. The transition
probability matrix obtained in this way is denoted by
P (j ,k) and the corresponding MC is denoted by X (j ,k)

n .

257 / 299



Absorbing Chains Application to Irreducible chains

The answer to question Q4 (cont.)

Clearly, X (j ,k)
n is an absorbing MC with absorbing states

A := {j , k} transient states C := S \ C . Let

P (j ,k) =
 R(j ,k) Q(j ,k)

0a,c Ia


be the canonical form of P (j ,k) and let N(j ,k) be the
corresponding fundamental matrix:

N(j ,k) =
(
I − R(j ,k))−1

,
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The answer to question Q4 (cont.)
where I is the (#S − 2)× (#S − 2) identity matrix.
Now we apply Theorem 10.11 for the MC X (j ,k)

n . That is
we define the (#S − 2)× 2 matrix

(88) B(j ,k) = N(j ,k) ·Q(j ,k),

where the rows are indexed by the elements of C and the
columns are indexed by {j , k}.

Now we can answer question Q4:

We introduce:
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The answer to question Q4 (cont.)

(89)
ηi ,j ,k :=P (the chain starting from i visists j earlier than k)

Then by Theorem 10.11 and by the definition of matrix
B we obtain that

(90) ηi ,j ,k = b(j ,k)
i ,j ,

where b(j ,k)
i ,j is the j-the element of the i-th row of the

matrix B(j ,k)
i ,j defined in (88) and this answers question

Q4.
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The answer to question Q5

Fix an arbitrary distinct j , k ∈ S. Let τj ,k be the
probability that the chain staring from j ∈ S returns to j
earlier than it visits k ∈ S. We can use the one-step
reasoning. Namely, if the chain starting from j returns to
j for the first time before visiting k then the chain
starting from j cannot make its first step to k . So, in the
first step the chain either remains in j (with probability
p(j , j) and then it has arrived back to j without visiting
k) or it jumps to an i ̸=∈ {j , k} and then it will continue
starting now from i ̸∈ {j , k} and visits j earlier than k .
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The answer to question Q5 (cont.)

The probability of this is (by definition) ηi ,j ,k . So, the
one-step reasoning yields:

(91) τj ,k = pj ,j + ∑
i ̸∈{j ,k}

p(j , i) · ηi ,j ,k .
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Example 10.12 (Exercise 1.13 from Lawler’s book [7])

Let Xn be a MC on S = {1, 2, 3, 4, 5} with

P =



0 1
2

1
2 0 0

0 0 0 1
5

4
5

0 0 0 2
5

3
5

1 0 0 0 0
1
2 0 0 0 1

2



(a) Is this chain irreducible? Is it
aperiodic? (b) Find π. (c) What
is the expected number of steps
to return to 1 for the first time if
the chain starts from 1?

(d) What is the expected number of steps to get to 4 for
the first time, if the chain starts from 1? (e) What is the
probability that the chain visits 5 earlier than 3 if the
chain starts from 1? (f)What is the probability that the
chain starting from 3 returns to 3 earlier than it visits 5?
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The chain is irreducible and aperiodic. This answers (a)
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So, (b): π = (10
37 , 5

37 , 5
37 , 3

37 , 14
37). (c): 37/10. (d): 34

3 .
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(e)The answer in 4/9. (The
element in the first row
since we start from 1 and
the column which
corresponds to 5 (this is a
the second column).

B3,5 =

3 5
1 5

9
4
9

2 1
9

8
9

4 5
9

4
9
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That is

(92) η1,3,5 = 5
9 , η2,3,5 = 1

9 , η4,3,5 = 5
9 .

Now we can answer question (f) that is we compute τ3,5
which was defined as the probability that the chain
staring from 3 returns to 3 earlier than it visits 5.
Namely, by (91) we have

τ3,5 = p3,3 + p(3, 1)η1,3,5 + p(3, 2)η2,3,5 + p(3, 4)η4,3,5

= 0 + 0 · 59 + 0 · 19 + 2
5 ·

5
9

= 2
9 .
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Umbrellas example [3, Excercise 1.37]

Example 10.13
An individual has three umbrellas, some at her office,
and some at home. If she is leaving home in the morning
(or leaving work at night) and it is raining, she will take
an umbrella, if one is there. Otherwise, she gets wet.
Assume that independent of the past, it rains on each
trip with probability 0.2.
Question 1: Which percentage of time does she get
wet?
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Umbrellas example (cont.)
We approach this problem in the language of Markov
chains. The only idea:
Let S := {0, 1, 2, 3} and we write Xn for the number of
umbrellas at the current location.
Then the transition matrix P is:

0 1 2 3
0 0 0 0 1
1 0 0 0.8 0.2
2 0 0.8 0.2 0
3 0.8 0.2 0 0
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Umbrellas example (cont.)
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Umbrellas example (cont.)
This yields that the stationary distribution is

(93) π =
( 4

19 , 5
19 , 5

19 , 5
19
)

.

Hence it happens with probability 4/19 that the
individual does not have any umbrellas at her current
location. However, she does not necessarily get wet at all
of these occasions, since there is a rain only every 5th
days (independently of everything). So, she gets wet
with probability 4/(19 · 5) = 0.04210526.... Remark:
the stationary distribution could be computed by hands
easily since the system of equations is very simple.
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Umbrellas example (cont.)

Namely, we want to find a probability vector
π = (π1, π2, π3, π4) such that
(94)

(π0, π1, π2, π3) ·


0 0 0 1
0 0 8

10
2
10

0 8
10

2
10 0

8
10

2
10 0 0

 = (π0, π1, π2, π3)

This yields the system of equations:
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Umbrellas: answer of Question 1
0.8π(3) = π(0)(95)

0.8π(2) + 0.2π(3) = π(1)
0.8π(1) + 0.2π(2) = π(2)

π(0) + π(1) + π(2) + π(3) = 1

As on slide 33, we throw away the last equation and
substituted it by the condition that the sum of the
components of π is equal to one, since the last equation
of the original system would give no more information
than the retained first three equations do. The solution
of the system (95) is really obvious high school
mathematics.

275 / 299



Branching Processes

1 Examples of Markov chains

2 Finding Stationary distributions (simple cases)

3 Chapman-Kolmogorov equation

4 The most important notions and the main theorems without proofs
The most important notions

5 Canonical from of non-negative matrices
Definitions
Path diagram
An example

6 Limit Theorems
Limit theorems for countable state space
Limit theorems for finite state space

7 Linear algebra
What if not irreducible?
Further examples
What if not aperiodic?
Doubly stochastic Markov Chains

8 Recurrence in case of countable infinite state space

9 Detailed balance condition and related topics
Detailed balance condition and Reversible Markov Chains
Birth and death processes

10 Absorbing Chains
Exit distributions through examples
Exit time through examples
Summary and the general theory
Application to Irreducible chains
All of these with Mathematica

11 Branching Processes
Generator functions
Branching Processes

12 References

276 / 299



Branching Processes Generator functions

Notation used in this Section
In this Section we always that X is a such r.v.
which takes only non-negative integers.
∀k ∈ N-re let pk := P (X = k) .
The generator function of the r.v. X is

gX (s) := E
[
sX ] =

∞∑
k=0

pk · sk .

The most basic properties of generator functions (in
short: g.f. )
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Generator functions

(a) A generator function uniquely determines the
cumulative distribution function.

(b) The generator function of the sum of two
independent r.v. which take only non-negative
integers, is the product of the generator
functions of these r.v..

278 / 299



Branching Processes Generator functions

Generator functions (cont.)

(c) Let g(x) be the generator function of the r.v.
X . Then

E [X (X − 1) · · · (X − k)] = g (k+1)(1),

where g (k+1) is the k + 1-th derivative of g .
Hence by a simple calculation we get:
(96)

E [X ] = g ′(1) és E
[
X 2] = g ′′(1) + g ′(1).

(d) g(1) = 1 since (pk) is a probability vector.
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Generator functions (cont.)
Lemma 11.1

Let X and N be independent non-negative integer valued
r.v. with generator functions gX és gN . Moreover, let
X1, X2, . . . be i.i.d. r.v. having the same distribution as
X . We define the r.v.:

R := X1 + · · ·+ XN .

Then the generator function of R is:

(97) gR(s) = gN(gX (s)).
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Generator functions (cont.)

Before the proof of the Lemma we remark that an
important corollary of Lemma 11.1 is as follows: Using
properties (c) and (d) from slide 279 we obtain that
(98)

E [R] = g ′R(1) = g ′N(gX (1)︸ ︷︷ ︸
1

) · g ′X (1) = E [N] · E [X ] .
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Generator functions (cont.)
Proof.

gR(s) def of gR= E
[
sR] def of R= E

[
sX1+···+XN

]
tower prop.= E

E [
sX1+···+XN

] ∣∣∣∣∣∣N


=
∞∑

n=0
E
E [

sX1+···+Xn
] ∣∣∣∣∣∣N = n

 · P (N = n)

=
∞∑

n=0
E
[
sX1+···+Xn

]
︸ ︷︷ ︸

gn
X (s)

·P (N = n)

= E
[
gN

X (s)
] def of gN= gN (gX (s)) .282 / 299
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Branching Processes with more details

We introduced Branching Processes on slide 146. Given
a probability vector (pk)∞k=0 which we call offspring
distribution . A population develops according to the
following rule: At the beginning there is one individual
on level 0. Then for all n ≥ 0, each individual on level n
independently gives birth to k offsprings with probability
pk . The same with notations:
Let Y be a non-negative integer valued r.v. such that
P (Y = k) = pk . Fix an arbitrary n ≥ 0. Let Xn denote
the number of level n individuals. The level n individuals
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Branching Processes with more details
(cont.)

{1, 2, . . . , Xn} give birth to Y (n)
1 , · · · , Y (n)

Xn
individuals.

So, the number of level n + 1 individuals is:

(99) Xn+1 = Y (n)
1 + · · ·+ Y (n)

Xn
.

We always assume that
{
Y (n)

m
}

m,n are i.i.d. r.v. with

Y (n)
m

d= Y .
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Branching Processes with more details
(cont.)
That is

P
(
Y (n)

m = k
)

= pk .

We can consider (Xn) as a Markov Chain with state
space S = {0, 1, 2, . . . } and the transition matrix
P = (pi ,j) is given by
(100)

p(i , j) = P (Y1 + · · ·+ Yi = j) for i > 0 and j ≥ 0,

where {Yi}∞i=1 are i.i.d. with Yk
d= Y .
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Branching Processes with more details
(cont.)

Let
gn := E

[
sXn

]
,

That is gn is the generator function of Xn, (which was
defined as the number of level n individuals). Let

g(s) := g1(s) := gY (s) =
∞∑

n=0
pn · sn.
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Branching Processes with more details
(cont.)

Clearly, for all m, the generator function of Ym is the
same:

g(s) = gYm(s) ∀m.

To get a better understanding of the generator function
gn we apply Lemma 11.1 with the following substitutions:

Xn → N , Yi → Xi , Xn+1 → R .
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Branching Processes with more details
(cont.)
The we obtain from Lemma 11.1 that

gn+1 = gn(g(s)).

From here, we obtain by mathematical induction that

(101) gn(s) = g ◦ · · · ◦ g︸ ︷︷ ︸
n

(s) =: gn (s).

Apply this for s = 0 to get:

(102) P (Xn = 0) = gn(0).
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Branching Processes with more details
(cont.)

Hence P (Extinction ) = limn→∞P(Xn = 0), where
Extinction is the event the the Brancing Process dies out
in finitely many steps.
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E [Y ]=g ′(1)<1 =⇒ limn→∞P(Xn = 0) = 1

g(s)

g(0) g2(0) g3(0)
g4(0)

0 1

1
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Summary: pn is the probability that
an individual has exactly n offsprings.
Then the expected number of
offsprings of an individual is
m :=

∞∑
n=1

pn · n. Consider the
generator function:
g(s) :=

∞∑
n=0

pn · sn . The graph of g

goes through (1, 1). Let ℓ be the
tangent line to g at s = 1. The
slope of ℓ is g ′(1) = m. If m > 1
then ℓ ∩ [0, 1]2 is below the line
y = x . Hence ∃ a q ∈ [0, 1) with
g(q) = q. Looking at the Figure:

0 ≤ g ′(q) < 1. So, for
gn := g ◦ · · · ◦ g︸ ︷︷ ︸

n
, we

have gn(0)→ q. That
is by (102) q is the
probability of extinction.

`

q

q
g(s)
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Examples
A 9-states example, 102
Branching processes, 146, 147
Ehrenfest chain, 12
Gambler’s ruin, 4
General random walk on S = Zd , 148
Inventory chain, 119–123
Knight moves on chessboard, 141
Modulo 6 jumps on a circle, 164–166
Repair chain, 124, 125
RW with absorbing boundary, 142
RW with periodic boundary conditions, 144
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RW with reflecting boundary, 143
Simple RW on Graphs, 136
Simple Symmetric Random Walk (SSRW) on S = Zd ,
148
Social mobility chain, 31
Tennis, 209–211
Triangle-square chain, 111
Two stage Markov chains, 149, 150
Two steps back, one step forward chain, 160
Two year collage, 189–191
Umbrellas example, 270
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Waiting time for TT , 222–226
Weather chain, 28
Wright-Fisher model, 130
Wright-Fisher model with mutations, 135
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