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Countinuous-time MC introduction

Barbershop example

The following example is from [2, Section 4.3]
Example 1.1
In a barbershop, a single barber cuts hair. There is
also a waiting room with two chairs for two people
(not counting the one whose hair is being cut). We
know the following:

3 / 130



Countinuous-time MC introduction

Barbershop example (cont.)

a Customers arrive at times of a rate 2
Poisson process, where the units are people
per hour, but will leave if both chairs in the
waiting room are occupied.

b The barber can cut hair at rate 3, i.e. each
haircut requires an exponentially
distributed amount of time with mean 20
minutes, independently of previous haircuts,
and also of the arrivals.
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Countinuous-time MC introduction

Barbershop example (cont.)

Questions:

a Find the equilibrium distribution.
b What fraction of potential customers enter

service?
c What is the average amount of time in the

system for a customer who enters service?
d Which fraction of the time there are no

customers in the barbershop?
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Countinuous-time MC introduction

Some words about the barbershop
Example

All of the times are measured in hours. The time of
the hair cut is Exp(3). Let ∆t > 0 be very small.
In a time interval of length ∆t:

with probability 3 · ∆t + o(∆t) exactly one hair
cut will be finished (if there are any costumers
in the barbershop),
with probability 2 · ∆t + o(∆t) a new costumer
arrives.
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Countinuous-time MC introduction

Some words about the barbershop
Example (cont.)

In conclusion:
At time t + ∆t there will be one costumer less
than at time t with probability 3 · ∆t + o(∆t),
if at time t there were any costumers in the
barbershop.
At time t + ∆t there will be one costumer
more than at time t with probability
2 · ∆t + o(∆t).
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Countinuous-time MC introduction

Some words about the barbershop
Example (cont.)

Let S := {0, 1, 2, 3} be the state space (the
possible number of costumers in the
barbershop).
Let Xt be the number of costumers at time t
where t ∈ R+ := {t : t ≥ 0} non-negative real
number it indicates the time measured in hours.

Then for all 0 ≤ s0 < s1 < · · · < sn < s and for all
i0, . . . , in, j ∈ S we have

(1) P (Xt+s = j |Xs = i , Xsn = in, . . . , Xs0 = i0)
= P (Xt = j |X0 = i) .8 / 130



Countinuous-time MC introduction

Countinuous-time MC, introduction
Definition 1.2
In general, if Xt , t ≥ 0 takes values from a
countable state space S and for all
0 ≤ s0 < s1 < · · · < sn < s and for all
i0, . . . , in, j ∈ S, (1) holds that is
(2) P (Xt+s = j |Xs = i , Xsn = in, . . . , Xs0 = i0)

= P (Xt = j |X0 = i) =: pt(i , j) .

then we say that Xt is a time homogeneous
continuous-time Markov chain (MC).
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Countinuous-time MC introduction

Countinuous-time MC, introduction
(cont.)

Since all of the Markov chains consider in this course
are time homogeneous, we simply call them
continuous-time Markov chains .
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Countinuous-time MC introduction

Continuity condition : This is very
important!!!

Continuity condition: We always assume that the
transition matrix Pt = (pt(i , j))ij∈S , t > 0 is
continuous at zero . That is:

(3) lim
t→0

pt(i , j) = δi ,j =
 1, i = j ;

0, i ̸= j .

In this way

(4) P0 = Diag(1, 1, . . . , 1).
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Countinuous-time MC introduction

Continuity condition (cont.)

Observe that (3) holds for example in the barbershop
example:
Namely, for a small h > 0,

ph(i , i + 1) = 2 · h + o(h), ph(i , i − 1) = 3 · h + o(h)

and ph(i , j) = o(h) if |i − j | > 1.
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Countinuous-time MC introduction

Chapman-Kolmogorov
Lemma 1.3 (Chapman-Kolmogorov equality:)

(5) ∑
k

ps(i , k)pt(k , j) = ps+t(i , j).

In other words

(6) Pt+s = Pt · Ps .

Proof.
To get the chain from i to j in time s + t, it needs to
be somewhere after time s. 13 / 130



Countinuous-time MC introduction

Infinitesimal generator
Proposition 1.4

For a general, continuous-time MC with countable
state space, the following limits exists:

limh→0+
ph(i ,j)

h =: q(i , j), i ̸= j and(7)

limh→0+
1−ph(i ,i)

h =: λ(i) .(8)

Moreover,
0 ≤ q(i , j) < ∞, i ̸= j but 0 ≤ λ(i) ≤ ∞.

So q(i , j) is finite, but λ(i) can be infinite. If
#S < ∞ then of course λ(i) is also finite.
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Countinuous-time MC introduction

In summary
It follows from (7) and (8) that for every i ∈ S

(9) λ(i) =
∑
i ̸=j
j∈S

q(i , j).

For an i ̸= j , i , j ∈ S we have

(10) P (Xt+∆t = j |Xt = i) = q(i , j) · ∆t + o(∆t).

For all i ∈ S

(11) P (Xt+∆t = i |Xt = i) = 1− λ(i) ·∆t +o(∆t).
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Countinuous-time MC introduction

Infinitesimal generator (cont.)

The proof of the previous Proposition is available in
[5, Theorems 1.1 and 1.2]. We define

q(i , i) := −λ(i) .

Then we form the matrix called
Infinitesimal generator :

Q = (q(i , j))i ,j∈S .

That is
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Countinuous-time MC introduction

Infinitesimal generator (cont.)

Q =


−λ1 q(1, 2) q(1, 3) · · ·

q(2, 1) −λ2 q(2, 3) · · ·
q(3, 2) q(3, 2) −λ3 · · ·

... ... ... . . .


Clearly, ph(i , i) − 1 + ∑

i ̸=j
ph(i , j) = 0 for all h > 0, so

(12)
∑
j∈S

q(i , j) = 0 ∀i ∈ S.
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Countinuous-time MC introduction

Infinitesimal generator for the barbershop
example

In the barber shop example:by formula (1) on slide 6
and formula (6) on slide 15 of File C:

q(i , i − 1) = 3 if i = 1, 2, 3
q(i , i + 1) = 2 if i = 0, 1, 2.

That is:

Q =

0 1 2 3
0 −2 2 0 0
1 3 −5 2 0
2 0 3 −5 2
3 0 0 3 −3

.
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Countinuous-time MC introduction

Infinitesimal generator, a comment

We get from Chapman-Kolmogorov equality, that if
we know the transition matrix for small t, then we
know it for all t, because Pnh = (Ph)n. This gives the
idea, that if we know the transition matrices’
derivative at 0 then we know the transition matrix Pt
for every t.
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Countinuous-time MC introduction

Theorem 1.5
Let Xt be a continuous-time MC with finite state
space S. As always, we assume that (3) holds. Then

(a) the transition matrix Pt = (pt(i , j)i ,j∈S)
satisfies the so-called
Kolmogorov’s-forward differential
equation:

(13) d
dt Pt = Pt · Q, t ≥ 0 .

(b) The solution of (13) is Pt = ααα · etQ ,
where ααα is the initial distribution of the
MC at time t = 0.
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Countinuous-time MC introduction

Proof
We have already used the following notation many
times: Px (Xt = y) := P (Xt = y |X0 = x) . Let us fix
a small t > 0 and x , y ∈ S. Using the Law of Total
Probability:
Px (Xt+∆t = y) − Px (Xt = y)

= Px (Xt+∆t = y |Xt = y) · Px (Xt = y)
+
∑
u ̸=y

Px (Xt+∆t = y |Xt = u) · Px (Xt = u)−Px (Xt = y)

=
[
1 − λ( y )∆t + o(∆t) − 1

]
· Px (Xt = y)

+
∑
u ̸=y

([q(u, y)∆t + o(∆t)]) · Px (Xt = u).
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Countinuous-time MC introduction

Proof (cont.)
If we divide both sides by ∆t, and ∆t → 0, then

(14) d
dtPx (Xt = y)

= Px (Xt = y) (−λ(y)) + ∑
u ̸=y

Px (Xt = u) · q(u, y).

In the equation above, the left-hand side is the
(x , y)-element of matrix d

dt Pt , and the right-hand
side is the (x , y)-element of the matrix Pt · Q. Using
that x , y ∈ S and t > 0 were arbitrary, we get that
d
dt Pt = Pt · Q.
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations

Kolmogorov’s forward differential equation:

(15) d
dt Pt = Pt · Q

Kolmogorov backward differential equation:

(16) d
dt Pt = Q · Pt .

These equations have a very important role, but
studying them would exceed the limits of this course.
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations (cont.)

Suggested reading: Péter Major’s lecture on
Continuous-time Markov Chains (A folytonos idejű
Markov láncokról): click here We make some
comments without proofs:
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations: Conditions

Conditions
(F1) λ(i) < ∞, ∀i (defined in formula (7)).
(F2) For every fixed j the convergence in

formula (7) is uniform in i .

Interestingly, Kolmogorov’s backward differential
equation can have solutions which are not solutions
of Kolmogorov’s forward differential equation and
which are relevant from probability theory point of
view (Satisfy Chapman- Kolmogorov equation).
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations: Conditions

Proposition 1.6
(a) If both of the conditions F1 and F2 hold

then Pt satisfies Kolmogorov’s forward
differential equation.

(b) If we only know that condition F1 holds
then Pt satisfies Kolmogorov’s backward
differential equation.

The proofs can be found in [8, page 10]. Recall
again that we always assume that (3) holds (we only
consider chains with continuous transition matrix in
0). 26 / 130



Countinuous-time MC introduction

Exponential waiting times

For all x ∈ S let Tx be the time that the chain
spends at state x ∈ S after it has arrived at x .
Lemma 1.7

Let us assume that λx < ∞ holds for all x ∈ S .
Then

(a) Tx = Exp(λx) holds for all x ∈ S and
(b) {Tx}x∈S are independent.
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Countinuous-time MC introduction

Exponential waiting times (cont.)
Proof of part (a)
Let

Gx(t) := P (Tx ≥ t) .

By the Markov property:

Gx(t + ∆t) = Gx(t)Gx(∆t) =
= Gx(t) [1 − λ(x)∆t + o(∆t)]

Hence,
G ′

x(t) = −λ(x)Gx(t) .
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Countinuous-time MC introduction

Exponential waiting times (cont.)

Proof of part (a) (cont.)
Clearly,

1 − P (Tx < t) = Gx(t) = e−tλ(x).

So Tx = Exp(λx). □
Proof of part (b) It is obvious from the Markov
property, that {Tx}x∈S are independent. □
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Countinuous-time MC introduction

Routing matrix
Definition 1.8

Assume that λx < ∞ holds for all x ∈ S. Now we
define the so-called routing matrix :
R = (r(x , y))x ,y∈S as follows: the diagonal elements
are all zeros: r(x , x) := 0 for all x ∈ S. Let x , y ∈ S
be arbitrary distinct. Imagine that the chain is in
state x and it stays there for a while then it jumps.
Let U(x , y) be the event that the chain jumps from
x to y when it leaves x and we write r(x , y) for the
probability of the event U(x , y). The discrete time
MC corresponding to the transition matrix R is
called embedded chain . 30 / 130



Countinuous-time MC introduction

Lemma 1.9

Assume that λx < ∞ holds for all x ∈ S. Let
R = (r(x , y))x ,y∈S be the routing matrix. Then

(17) r(x , y) = q(x ,y)
λx

, ∀x ̸= y .

Proof
Let U(x , y) be the event that when the chain jumps
from x to y . Let f be the density function of Tx .
Then

(18) P (U(x , y)) =
∞∫

t=0
P (U(x , y)|Tx = t) · f (t)dt.
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Countinuous-time MC introduction

Proof (cont.)
By definition

P (U(x , y)|Tx = t) = lim
∆t→0

P (Xt+∆t = y |Xt = x)∑
z∈S\{x}

P (Xt+∆t = z |Xt = x)

= lim
∆t→0

q(x , y)∆t + o(∆t)
λ(x)∆t + o(∆t)

= q(x , y)
λ(x) ∀t-re

We substitute this back to formula (18) and we
obtain the assertion of the Lemma.
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Countinuous-time MC introduction

Stationary distribution, irreducibility

Like on the previous slides, here we do NOT assume
that #S < ∞.

Definition 1.10

Xt is irreducible , if from any state i , any state j can
be reached in finitely many steps. In other words, if
∃k0 = i , k1, . . . , kn−1, kn = j , that

(19) q(kℓ−1, kℓ) > 0, ∀ℓ = 1, . . . , n
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Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Lemma 1.11

If Xt is irreducible, then ∀t > 0 and ∀i , j ,
pt(i , j) > 0. (No problem with the period.)

34 / 130



Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Proof
Fix an i , j ∈ S and choose k1, k1, . . . , kn as in
Definition 1.10. We obtain from formulas (7) and
(19) that ∃h0 > 0, such that for every 0 < h < h0,
ph(kℓ−1, kℓ) > 0. From here

(20) ph′(i , j) > 0, ∀h′ < nh0

35 / 130



Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Proof (cont.)
On the other hand, we know that the waiting time at
j has exponential distribution. Then for every s > 0:

(21) ps(j , j) ≥ P (Tj > s) = exp (−sλj) > 0.

Let 0 < h < h0 and s > 0 s.t. t = s + nh. Then
from formulas (20) and (21):

pt(i , j) ≥ pnh(i , j) · ps(j , j) > 0. □
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Countinuous-time MC introduction

Definition 1.12
Probability vector πππ is called stationary distribution ,
if

(22) ∀t > 0 : πππT · Pt = πππT , ∀t > 0.

Because it is hard to check such a condition
simultaneously for every t, the following Lemma will
be useful:
Lemma 1.13

The probability vector πππ is the stationary distribution
iff

(23) πππT · Q = 0.
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Countinuous-time MC introduction

Stationary distribution
Proof
Assume, that πππT · Pt = πππT holds for all t > 0. By
Kolmogorov’s forward differential equation:

0 = d
dt

(
πππT · Pt

)
( j )

=
∑
i

π(i)
∑
k

pt(i , k) · q(k , j)

=
∑
k

∑
i

π(i)pt(i , k)︸ ︷︷ ︸
π(k)

q(k , j).
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Countinuous-time MC introduction

Stationary distribution (cont.)

Proof (cont.)
So, the j th component of the vector πππT · Q is 0 for
every j . This means that πππT · Q = 0.
The other direction: Assume, that πππT · Q = 0.
Using Kolmogorov backward differential equation in
the second step and the fact that
P0 = Diag(1, . . . , 1) we get
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Countinuous-time MC introduction

Stationary distribution (cont.)
Proof (cont.)

d
dt

∑
i

π(i)pt(i , j)
 =

∑
i

π(i)p′
t(i , j)

=
∑
i

π(i)
∑
k

q(i , k)pt(k , j)

=
∑
k

∑
i

π(i)q(i , k)︸ ︷︷ ︸
0

pt(k , j) = 0.

Hence, πππT Pt is constant. So, it is equal to
πππT P0 = πππT · Diag(1, . . . , 1) = πππT . □
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Countinuous-time MC introduction

Limiting behavior
Theorem 1.14

Consider a continuous-time and irreducible MC for
which there exists a stationary distribution πππ. Then

(24) lim
t→∞

pt(i , j) = π(j), ∀i ∈ S.

Proof.
Because of Lemma 1.11 for every h > 0 matrix Ph is
irreducible and aperiodic. Thus using Theorem 4.3
from file A: we get limn→∞ pnh(i , j) = π(j).
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Countinuous-time MC introduction

Detailed balance condition

Extending the notion for discrete-time MC, we say
that detailed balance condition holds if:
Definition 1.15

(25) π(k)q(k , j) = π(j)q(j , k) , ∀j ̸= k .
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Countinuous-time MC introduction

Detailed balance condition (cont.)

Theorem 1.16
Let π be a probability vector (∑

i∈S
πi = 1 and πi ≥ 0).

If π satisfies (25) then πππ is stationary distribution.
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Countinuous-time MC introduction

Detailed balance condition (cont.)
Proof.
Fix an arbitrary j ∈ S

∑
k ̸=j ,k∈S

π(k)q(k , j) = π(j)
∑

k ̸=j ,k∈S
q(k , j) = π(j)λj ,

in other words, ∀j :
∑

k ̸=j ,k∈S
π(k)q(k , j) − π(j)λj = 0.

Observe that the left-hand side is the j th component
of vector πππT · Q.
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Finite-state continuous-time MC

The chain from given rates if #S < ∞
Informal construction of the chain:

Let us assume, that the chain is at state i at a given
time t ≥ 0. If λi = 0, then it remains in i forever, if
λi > 0, then the chain remains in i for time Exp(λi)
and then it jumps to j with probability r(i , j), where
r(i , j) was defined on slide 30.

Now we give another description of the continuous
time finite sate MC. To understand it recall part (e)
on slide 6 from File C.
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Finite-state continuous-time MC

The chain from given rates if #S < ∞
(cont.)

The same in other words:
Assume that the chain now is at state i . Imagine
that at every state j ̸= i there is a clock with
parameter Exp(q(i , j)). The chain jumps:

when the first clock rings,
to the state where the first clock rings.

The equivalence of this characterization follows from
Lemmas 1.7 and 1.9 (see slides 27 and 31).
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Finite-state continuous-time MC

Lemma 2.1

Let Xt be an irreducible , continuous MC with finite
state space. We denote the infinitesimal generator by
Q , as usual. Then

(a) There exists a unique probability vector πππ
which is the left eigenvector of Q with
eigenvalue 0.

(b) The real part of any non-zero eigenvalues
of Q is negative.
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Finite-state continuous-time MC

Proof of part (a):
Let a > |maxi ,j q(i , j)|. Then

P := (1/a)Q + I

is an irreducible stochastic matrix. Let πππ be the left
eigenvector of P for eigenvalue 1. Obviously,
πππT · Q = 0 if and only if πππT · P = πππT . This yields
existence and uniqueness of πππ.

For the proof of Part (b) see [6, Exercise 3.4].
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Finite-state continuous-time MC

Example: a special chain with two states

Let S = {1, 2} and we know, that q(1, 2) = 1 and
q(2, 1) = 2. Then λ(1) = 1 and λ(2) = 2. In other
words,

Q =
 −1 1

2 −2


We know, that

(26) Pt = etQ.
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Finite-state continuous-time MC

Example: a special chain with two states
(cont.)

To compute this, we must diagonalizate Q:

D =
 0 0

0 −3

 , R =
 1 1

1 −2

 , R−1 =
 2/3 1/3

1/3 −1/3


So

Q = R · D · R−1

From here

etQ = R ·
 1 0

0 e−3t

 · R−1
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Finite-state continuous-time MC

Example: a special chain with two states
(cont.)

In other words:

etQ =
 2/3 1/3

2/3 1/3

 + e−3t
 1/3 −1/3

−2/3 2/3



Obviously for πππT = (2/3, 1/3),

lim
t→∞

Pt =
 πππT

πππT

 =
 2/3 1/3

2/3 1/3

 .
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Finite-state continuous-time MC

Chains with two states in general
In general: let us assume that for some λ, µ > 0

Q =
 −λ λ

µ −µ


The one can prove, like above, that
(27)

Pt =
 µ

λ+µ
λ

λ+µ
µ

λ+µ
λ

λ+µ

 + e−t(µ+λ)
 λ

λ+µ − λ
λ+µ

− µ
λ+µ

µ
λ+µ


In other words, for πππT := ( µ

λ+µ , λ
λ+µ)

lim
t→0

Pt =
 πππT

πππT

 . 53 / 130



Finite-state continuous-time MC

A chain with four states

Example 2.2

Let us consider the continuous MC, whose
infinitesimal generator is

Q =


−3 1 1 1

0 −3 2 1
1 2 −4 1
0 0 1 −1

 .

Compute the stationary distribution for this chain.
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Finite-state continuous-time MC

Figure: Simulation for Example 2.2
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Birth and death processes

Birth and death Chains
The state space S may be finite or countably infinite:
S = {0, 1, 2, . . . N}, where N ≤ ∞ and we are
allowed to make only one step ahead (birth) with
rate λn or one step back one step (death) with rate
µn . That is

q(n, n + 1) = λn for n < N(28)
q(n, n − 1) = µn for n > 0.(29)

This means that
P (Xt+∆t = n|Xt = n) = 1 −

(
µn + λn

)
∆t+o(∆t)

P (Xt+∆t = n + 1|Xt = n) = λn ∆t + o(∆t)
P (Xt+∆t = n − 1|Xt = n) = µn ∆t + o(∆t).57 / 130



Birth and death processes

Barbershop again
Recall from slide 18 that in the barbershop example
S = {0, 1, 2, 3} and the infinitesimal generator:

(30) Q =

0 1 2 3
0 −2 2 0 0
1 3 −5 2 0
2 0 3 −5 2
3 0 0 3 −3

.

This is a birth and death chain with

(31) λ0 = λ1 = λ2 = 2 and µ1 = µ2 = µ3 = 3.
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Birth and death processes

Stationary distribution
Theorem 3.1
Let Xn be a birth and death chain with:
S = {0, 1, . . . , N}, where N ≤ ∞.
q(n, n + 1) = λn if n < N and
q(n, n − 1) = µn if n > 0.
µ0 = 0 and λN = 0, if N < ∞. Then

(32) π(n) = λn−1λn−2···λ0
µnµn−1···µ1

π(0)

satisfies detaliled balance condition, so it gives
stationary distribution, if

N∑
n=1

λn−1λn−2···λ0
µnµn−1···µ1

< ∞
(which is always satisfied, if N < ∞). 59 / 130



Birth and death processes

Stationary distribution for the barbershop
S := {0, 1, 2, 3} using (31):

µi = 3, i = 1, 2, 3 and λi = 2, i = 0, 1, 2.

If π(0) = c , then repeated applications of (32) gives:

(33) π(1) = 2c
3 , π(2) = 22

32c , π(3) = 23

33c .

3∑
i=0

π(i) = 1 yields c
(
1 + 2

3 +
(2

3
)2 +

(2
3
)3) = 1.

From this we get c and substitute it back to (33).
We get
(34)

π(0) = 27
65 , π(1) = 18

65 , π(2) = 12
65 , π(3) = 8
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Conclusion

This gives answer to the question (a) asked on slide
3 The answer of question (b) (from the same place)
is as follows: there are three customers at π(3) = 8

65
part of the time.This means that 57/65 = 87.7% of
potential customers who enter the barbershop have
eventually get their haircut. We will answer question
(c) later.
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M/M/s queuing

Example 3.2 (M/M/s queuing)

Let us imagine a bank, where customers are being
served by s ≤ ∞ servers, and they are waiting in
one queue if there are more customers than servers.
It is reasonable to assume, that customers arrive by a
Poisson(λ) process and the serving times are
independent Exp(µ) .
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M/M/s queuing (cont.)

Jump rates:

q(n, n+1) = λ and q(n, n−1) =
 nµ, if 1 ≤ n ≤ s;

sµ, if n ≥ s.
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Stationary distribution for M/M/∞
queuing

Example 3.3 (M/M/∞ queuing)

q(n, n + 1) = λ and q(n, n − 1) = nµ.

Then π(n) = (λ/µ)n

n! π(0). So, we choose
π(0) = e−λ/µ and then we see that the stationary
distribution is Poi(λ/µ).
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M/M/s queuing with balking I
Recall example 3.2 about M/M/s queuing (on slide
62):

q(n, n+1) = λ and q(n, n−1) =
 nµ, if 0 ≤ n ≤ s;

sµ, if n ≥ s.
We modify it slightly: Customers arrive at times of a
Poisson process with rate λ but only join the queue
with probability an if there are n customers in line.
and with probability 1 − an the customers leave. So
it is a birth and death process with the following
rates:

λn = λan and µn =
 nµ, if 0 ≤ n ≤ s;

sµ, if n ≥ s. 65 / 130
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M/M/s queuing with balking II
Theorem 3.4

If an → 0, then there exists stationary distribution.

Proof.
By (32), π(n + 1) = anλ

sµ π(n) holds for n ≥ s. There
exists an N , s.t. if n > N , then anλ

sµ < 1
2 . Thus for all

n > max {N , s} we have π(n + 1) <
(1

2
)n−N

π(N).
Thus ∑

n≥1
π(n) < ∞. By Theorem 3.1 there exists

stationary distribution.

If s = 1 and an = 1/(n + 1), then πππ = Poi(λ/µ).
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Branching processes

Example 3.5 (Branching processes)

In this example each individual dies with rate µ and
gives birth to a new individual with rate λ and we
start with one individual. So, the state space is
S = {0, 1, 2, 3, . . . } that is, the set of the
non-negative integers and the rates are

q(n, n + 1) = λn and q(n, n − 1) = µn if n ≥ 1.

We start with one individual.
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Branching process with imigration

Example 3.6 (Branching process with immigration)

Let us assume, that every individual dies with rate
µ , and new children are born with rate λ as above.
Furthermore, there are incoming members with rate
ν . Then

q(n, n + 1) = nλ + ν and q(n, n − 1) = nµ.
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Example: fast growing population model

Example 3.7

Let
µn ≡ 0 and λn = λ · n2, λ > 0

In this case the population growths very fast and it
becomes infinite in finite time. We study this
phenomenon in the next few slides:
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Pure birth processes

Definition 3.8
Pure birth processes are such birth and death
processes, that ∀n : µn = 0.

Theorem 3.9

(a) If
∞∑

n=0
1
λn

= ∞, then
∞∑
j=i

pt(i , j) = 1,
∀t ≥ 0.

(b) If
∞∑

n=0
1
λn

< ∞, then
∞∑
j=i

pt(i , j) < 1,
∀t > 0.
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Pure birth processes (cont.)

Explanation: Let Xn be the waiting time for jump
from n to n + 1. We have learned that
Xn ∼ Exp(λn). The r.v. {Xn}∞

n=1 are independent
and E [Xn] = 1/λn. The time of the n-th jump is
Tn :=

n∑
i=1

Xn. Then E [Tn] =
N∑

n=1
1/λn. When

∞∑
n=1

1/λn = ∞, then from Kolmogorov’s Three-Series
Theorem (next slide) Tn → ∞ almost surely, but if
∞∑

n=1
1/λn < ∞, then {Tn}∞

n=1 is bounded, so
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Pure birth processes (cont.)

∃T < ∞, that the population growths to infinity
before time T . Now we explain this with details:
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Pure birth processes (cont.)
Theorem 3.10 (Kolmogorov’s Three-Series Theorem)

Let X1, X2, . . . be independent r.v.. The Random

series
∞∑

i=1
Xi converges a.s. iff all of the following

three series are convergent. If at least one of these
series is not convergent, then

∞∑
i=1

Xi is divergent a.s..

1
∞∑

n=1
P (|Xn| > 1) < ∞.

2
∞∑

n=1
E
[
Xn · 1{|Xn|≤1}

]
is convergent.

3
∞∑

n=1
Var

(
Xn · 1{|Xn|≤1}

)
< ∞.
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Explosion in the pure birth process

Proof of part (a) of Theorem 3.9

Let us assume, that
∞∑

n=1
1/λn = ∞. Let

Xn ∼ Exp(λn), Yn = Xn · 1Xn≤1, Zn = Xn · 1Xn>1.

Using that E [Xn] = 1/λn

(35) E [Yn] = 1/λn − E [Zn] .

Now we compute E [Zn]:
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Explosion in the pure birth process (cont.)

E [Zn] =
∞∫
0
P (Zn ≥ t) dt(36)

=
1∫

0
P (Zn ≥ t) dt +

∞∫
1
P (Zn ≥ t) dt

= e−λn + e−λn

λn
.

From here and formula (35):

(37) E [Yn] = 1 − e−λn

λn
− e−λn.
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Explosion in the pure birth process (cont.)
First observe that the first sum in Kolmogorov’s
Three-Series Theorem is

(38)
∞∑

n=1
P (|Xn| > 1) =

∞∑
n=1

e−λn.

Assume that

(39)
∞∑

n=1
e−λn = ∞

Then
∞∑

n=1
Xn is divergent almost surely by

Kolmogorov’s Three-Series Theorem. Observe that
(39) can happen only if

∞∑
n=1

1
λn

= ∞.
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Explosion in the pure birth process (cont.)
Now assume that

(40)
∞∑

n=1

1
λn

= ∞ but
∞∑

n=1
e−λn < ∞.

Then it follows from (37) that the second series in
Kolmogorov’s Three-Series Theorem is divergent so
in this case also

∞∑
n=1

Xn is divergent almost surely.
This and the argument on the previous slide together
implies that part (a) of Theorem 3.9 holds. Now to
prove part (b), we assume that

(41)
∞∑

n=1

1
λn

< ∞.
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Explosion in the pure birth process (cont.)

Then clearly
∞∑

n=1
e−λn < ∞, so the first and the

second series are convergent in the Kolmogorov’s
Three-Series Theorem. Now we prove that the third
series is also convergent. For this, we observe that
(42)
Var(Yn)≤Var(Xn) + E [Yn]E [Zn]= 1

λ2
n
+E [Yn]E [Zn] .

The fact that the right hand side is summable
follows from (41), (37) and (36). □
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Embedded MC
Recall that on slide (30) we introduced the routing
matrix r(i , j) := q(i , j)/λi , if i ̸= j and r(i , i) = 0,
where λi = ∑

j ̸=i
q(i , j) . This is a stochastic matrix

which determines a discrete-time MC, called
embedded MC . Let

Vk := min {t ≥ 0 : Xt = k}

and

Tk := min {t > 0 : Xt = k and ∃s < t, Xs ̸= k}.
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Embedded MC (cont.)
Example 3.11 (M/M/1 queuing)
q(i , i + 1) = λ, if i ≥ 0 and q(i , i − 1) = µ if i ≥ 1.
The embedded MC: r(0, 1) = 1 and

r(i , i+1) = λ

λ + µ
, i ≥ 1, r(i , i − 1) = µ

λ + µ
, i ≥ 1.

It is a random walk with partly reflective bounds. So,
as seen

is positive recurrent, if λ < µ.
is null recurrent, if λ = µ.
is transient, if λ > µ.
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Example 3.12 (Branching processes)
q(i , i + 1) = λi and q(i , i − 1) = µi . State zero is an
absorbing one, but for i ≥ 1:

r(i , i + 1) = λ

λ + µ
and r(i , i − 1) = µ

λ + µ
.

If λ < µ, then absorbing happens at zero almost
surely, but

(43) if λ > µ then ρ := P1 (T0 < ∞) = µ
λ < 1.

So for x ≥ 1 : Px (T0 < ∞) =
(

µ
λ

)x .
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Proving this:

ρ = µ

λ + µ
· 1 + λ

λ + µ
· ρ2.

So when the chain leaves state 1, then either it goes
to 0 and then dies out with probability 1 or goes to 2
and then branches of both children should die out,
which has probability ρ2. From here ρ = µ

λ . The last
statement comes from that if we want to go from x
to 0, then first we must reach x − 1, x − 2.
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Exit distributions with embedded MC

Question: if there are some absorbing states (we
denote it by A), then what is the probability that the
chain gets to a ∈ A?
Let A ⊂ S and a ∈ A.

VA := min {t ≥ 0 : Xt ∈ A} , h(i) := Pi (XVA = a).

Then if b ∈ A \ {a}:

h(a) = 1, h(b) = 0.
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Exit distributions with embedded MC
(cont.)

So we only need to specify h(i) for ∀i ̸∈ A. To do
this, we must see, that: ∀i ̸∈ A:

(44) h(i) =
∑
j ̸=i

q(i , j)
λi

· h(j) where λi =
∑
j ̸=i

q(i , j).

Hence ∀i ̸∈ A :

(45) ∑
j

q(i , j)h(j) = 0 , where q(i , i) = −λi .
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Exit distributions with embedded MC
(cont.)

So for all i ̸∈ A we have an equation, from what we
can determine h(i), i ̸∈ A.
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Expected time of exit: theory
We write the analogue of (45) for the expected exit
time.

VA := min {t ≥ 0 : Xt ∈ A} , g(i) := Ei [VA].

So g(i) = 0, if i ∈ A. As usual

λi =
∑
j ̸=i

q(i , j) and r(i , j) := q(i , j)
λi

.

We know, that the chain in the i th state remains for
time Exp(λi) and then jumps into state j ̸= i with
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Birth and death processes Exit times

Expected time of exit: theory (cont.)
probability r(i , j). Using the fact that
E [Exp(λi)] = 1/λi we get, that:

i ̸∈ A : g(i) = 1
λi

+
∑
j ̸=i

q(i , j)
λi

g(j).

By rearranging it and using that q(i , i) = −λi :

(46) i ̸∈ A : ∑
j

q(i , j)g(j) = −1.

If S is finite, these are #S − #A equations for
#S − #A unknowns g(i), i ̸∈ A.
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Birth and death processes Exit times

Expected time of exit: At the barber’s
Recall Barbershop Example: Customers are
served by rate 3 and they arrive by rate 2, but they
leave, if both chairs are occupied on: In other words

q(i , i − 1) = 3 if i = 1, 2, 3
q(i , i + 1) = 2 if i = 0, 1, 2.

Transition matrix for the embedded MC:
0 1 2 3

0 0 1 0 0
1 3/5 0 2/5 0
2 0 3/5 0 2/5
3 0 0 1 0 88 / 130
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Expected time of exit: At the barber’s
(cont.)

So now A = {0}, g(0) = 0, g(i) = Ei [V0]. Let

g :=


g(1)
g(2)
g(3)

 and 1 =


1
1
1

.

Then equation system (46) is equivalent with:

(47) Q̃ · g = −1 ,
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Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

where Q̃ is the restriction of matrix Q for columns
belonging to S \ A (now those who are not 0). This
equivalence comes from that know thatg(i) = 0, if
i ∈ A. So columns i ∈ A add zero to all equations.

Q̃ =


−5 2 0

3 −5 2
0 3 −3


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Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

and

−(Q̃)−1 =


1/3 2/9 4/27
1/3 5/9 10/27
1/3 5/9 19/27


From formula (45):

g = −(Q̃)−1 · 1 =


19/27
34/27
43/27

 ,
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Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

so i th element of g is given by i th row sum of matrix
−(Q̃)−1.
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home?

Example: In a nursury school at closing time parents
haven’t come for three children Anne (A), Bella (B)
and Charlie (C). Kindergarten teacher stays as long
as all the children go home. Parents phoned that
they would arrive by time Exp(1), Exp(2) and
Exp(3) after close time. (So expectedly they will
fetch their child 1, 1/2 and 1/3 hours after close
time, independently of each other.) Question is when
can the kindergarten teacher go home?
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Solution: States of MC are the names of remaining
children and ∅ when no child is left:

Q ABC AB AC BC A B C ∅
ABC −6 3 2 1 0 0 0 0
AB 0 −3 0 0 2 1 0 0
AC 0 0 −4 0 3 0 1 0
BC 0 0 0 −5 0 3 2 0
A 0 0 0 0 −1 0 0 1
B 0 0 0 0 0 −2 0 2
C 0 0 0 0 0 0 −3 3
∅ 0 0 0 0 0 0 0 094 / 130



Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Let us use the notation and method of the previous
example:

Now A := ∅. So Q̃ is the above matrix restricted to
the first 7 rows and columns. Then the first row
vector of matrix −

(
Q̃
)−1:

(1/6, 1/6, 1/2, 1/30, 7/12, 2/15, 1/20).
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Sum of them is: 63/60. So kindergarten teacher can
go home 63 minutes after close time.
Note: This can be seen from the fact, that for every
number a, b, c :

max {a, b, c} =a + b + c − min {a, b} − min {a, c}
− min {b, c} + min {a, b, c} .
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

We can use this and part (d2) of slide ??, if
Ti = Exp(λi), i = 1, 2, 3 are independent for
determining max {T1, T2, T3} .
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Markovian queuing systems

1 Countinuous-time MC introduction

2 Finite-state continuous-time MC

3 Birth and death processes
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5 References
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Markovian queuing systems

M/M/1 queuing again

q(n, n + 1) = λ, if n ≥ 0,
q(n, n − 1) = µ if n ≥ 1.

We assume, that

(48) λ < µ .

As we have seen, this is a birth and death process in
which

λn = λ and µn = µ.

99 / 130



Markovian queuing systems

M/M/1 queuing again (cont.)

Because of condition (48) we can use Theorem 3.1.
From here:

(49) π(n) =
(

λ

µ

)n
· π(0).

For this to give a measure, we need:
π(0) := 1 − λ/µ. So

(50) π(n) =
(
1 − λ

µ

) (
λ
µ

)n
, n ≥ 0 .
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Markovian queuing systems

M/M/1 queuing again (cont.)
Let us assume, that the system is in a stationary
state. Then let

Xs the number of customers at time s in the
system.
Q be the length of the queue,
TQ be the time spent in the queue,
WQ = E [TQ] and W = WQ +E [serving time]
L the long time average a customer sepends in
the system. L = lim

t→∞
1
t

∞∫
0

Xs .
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Markovian queuing systems

M/M/1 queuing again (cont.)

λa the long time average rate at which arriving
customers join the system. λa = lim

t→∞
Na(t)

t ,
Na(t)the number of customers who joined the
system befor time t.

Obviously

(51) P (TQ = 0) = π(0) = 1 − λ

µ
.
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Markovian queuing systems

M/M/1 queuing again (cont.)
Let f (x) be the conditional density function of TQ
on (0, ∞) assuming that TQ > 0. Note that because
of (51): P (TQ = 0) > 0.
Assuming, that at the arrival of a customer there are
already n customers in the system, (whose
probability if given in (50)). Conditioned on this, the
conditional density function of TQ is Gamma(n, µ).
Using this we get:

(52) f (x) = µ

λ
·

∞∑
n=1

(
1 − λ

µ

) (
λ

µ

)n
e−µx µnxn−1

(n − 1)! .
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Markovian queuing systems

M/M/1 queuing again (cont.)

After trivial rearrangement we get, that

(53) f (x) = (µ − λ)e−(µ−λ)x .

We have proven by this, that
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Markovian queuing systems

M/M/1 queuing again (cont.)

Lemma 4.1

The conditional distribution of TQ for TQ > 0 is
Exp(µ − λ).
WQ = E [TQ] = λ

µ
1

µ−λ .

E [W ] = WQ + 1
µ = λ

µ
1

µ−λ + 1
µ = 1

µ−λ .
L = 1

1−λ/µ − 1 = λ
µ−λ .
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Markovian queuing systems

M/M/1 queue finite waiting room

There is one server and serving a customer takes
time Exp(µ).
Customers arrive by Poisson(λ).
In the waiting room during 1 serving there is
place for N − 1 waiting customers. Customers,
who arrive when there is no empty seat, leave at
once and will never return.

106 / 130



Markovian queuing systems

Lemma 4.2

Let Xt be a MC, for which there exists
stationary distribution πππ and it satisfies detailed
balance condition. Infinitesimal generator of
chain Xt is Q .
Let A ⊂ S and Yt be the restriction of Xt to A.
In other words, Yt ’s infinitesimal generator is Q̃,
where for distinct x , y:

q̃(x , y) =
 q(x , y), if x , y ∈ A, x ̸= y;

0, otherwise.
Let C := ∑

x∈A
π(x).

Then ν := πππ/C is the stationary state of Yt .
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Markovian queuing systems

M/M/1 queue with finite waiting room III

Proof.
Using, that πππ satisfies detailed balance condition, it
clearly comes, that ν also satisfies it, so ν is
stationary distribution for chain Yt .
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M/M/1 queue with finite waiting room IV
From here and from (50) comes, that for the
M/M/1 queue with waiting room of space N
introduced above, the stationary state:

(54) π(n) := 1−λ/µ

1−(λ/µ)N+1

(
λ
µ

)n
if 0 ≤ n ≤ N .

With finite state space it is also true, if λ > µ. It is
only false, if λ = µ. In this case:

π(n) = 1
N+1 if 0 ≤ n ≤ N .
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Markovian queuing systems

At the barber’s for the last time
Review: We have introduced barber shopb example
on slide 3 and on slide 60 we have computed its
stationary distribution:

πππT =
(27

65 , 18
65 , 12

65 , 8
65
)

,

which is the same as what comes from formula (54).

On slide 88 we have computed, that if there are
i = 1, 2, 3 customers at the barber’s, then how much
time should we wait till no costumer are in the
barber shop.
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Markovian queuing systems

At the barber’s for the last time (cont.)

Clearly,

(55) L = 1 · 18
65 + 2 · 12

65 + 3 · 8
65 = 66

65 .

Let λa be the long run rate of customers at the
barber’s who have their haircut (who don’t leave)
because of the occupied waiting room. That is let
Na(t) be the number of customers who have arrived
before time t and did not leave immediately because
of the busy waiting room but who stayed at the
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Markovian queuing systems

At the barber’s for the last time (cont.)

barber shop and eventually got served by the barber.
More precisely: λa := limn→∞

Na(t)
t .

112 / 130



Markovian queuing systems

Finding λa: We know, that customers arrive by
Poisson(2) process. This means that during a time
interval of length ∆t, the probability that a customer
enters into the barbershop is 2 · ∆t (plus o(∆t) what
we will suppress below for the sake of simpler
presentation). But if there are already 3 customers,
the newly arrived customer leaves. This results, that
with probability 2 · ∆t · π(3) a potential customers is
lost. We have to subtract this. So, during a time
interval of length ∆t there will be a new costumer
who enters the service and who remains inside the
system with probability 2(1 − π(3))∆t . Hence

(56) λa = 2(1 − π(3)) = 114
65 .
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Markovian queuing systems

Little’s Formula
The following formula holds in general for GI/G/1
(general input /general service/ one server) queues.
Theorem 4.3 (Little’s Formula)

L = W · λa.

The sketch of the proof is available in Durrett’s book
p. 107.
Using Little’s formula, (55) and (56) we get

W = 66/65
114/65 = 33

57 = 0.579 hours = 34.74 mins

114 / 130



Markovian queuing systems

We can also compute this, as when I get inside, there
can be i = 0, 1, 2, 3 customers inside. In the case of
i = 3 I go home. In the case of i = 0, 1, 2 I spend
time (i + 1) · 1

3 inside (because people before me and
I also have a haircut in time Exp(3), which requires
1/3 hours.) Regarding these, expected value of my
time W spent inside:

W = 1
1 − π(3)

[
π(0) · 1

3 + π(1) · 2
3 + π(2) · 1

]

= 33
57 .

So, the expectation of my waiting time in the queue:

WQ = W −1
3 = 14

57 = 0.2456 hours = 14.736 mins.
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M/M/s queue

We have introduced M/M/s queue in slide 62
In a bank, customers are being served by s
servers, and they are waiting in one queue if
there are more customers than servers.
Customers arrive by a Poisson(λ) process.
Serving times are independent times of Exp(µ).
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M/M/s queue (cont.)

Now, S = 0, 1, 2, . . . is the number of customers in
the bank. As we have seen, this is a birth and death
process with the following rates:

q(n, n + 1) = λ, n ≥ 0.

and
q(n, n − 1) =

 nµ, if 1 ≤ n ≤ s;
sµ, if n ≥ s.
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Markovian queuing systems

M/M/s queue (cont.)

Lemma 4.4

If λ < sµ , then there exists a πππ stationary state,
which satisfies detailed balance condition.
Proof If we write down detailed balance condition,
we get the following conditions:

λπ(j − 1) = µjπ(j) if j ≤ s
λπ(j − 1) = µsπ(j) if j ≥ s
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M/M/s queue (cont.)

From here

(57) π(k) =


c
k!

(
λ
µ

)k
, if k ≤ s;

c
s!sk−s

(
λ
µ

)k
, if k ≥ s.

where we would like to choose c s.t. πππ be stationary
measure. It is possible, if λ < sµ. □
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Markovian queuing systems

M/M/s queue (cont.)

Lemma 4.5
If λ > sµ, chain M/M/s is transient., If λ < sµ,
chain M/M/s is recurrent.

120 / 130



Markovian queuing systems

M/M/s queue (cont.)

Proof.
If λ > sµ, then the M/M/1 queue with serving time
nµ is obviously transient. This is from that for the
M/M/1 queue there is stationary state πππ (so it is
recurrent) if λ < µ. The M/M/s queue with serving
time µ is less efficient, so it is also transient. The
other direction is from the existence of stationary
state.
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Markovian queuing systems

M/M/s queue (cont.)
Example 4.6
Compute the stationary measure for the

(a) M/M/s queue, if
µ = 1, λ = 2, s = 3,

(b) M/M/1 queue, if
µ = 3, λ = 2, s = 1.

And compare the chains by this in view of efficiency.
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Markovian queuing systems

M/M/s queue (cont.)
Solution (a):
∞∑

k=2
π(k) = c

2 · 22 ·
∞∑

j=0
(2/3)j = 6c , π(0) = c ,

π(1) = λ
µc = 2c . In other words 9c = 1, from which

c = 1/9. So
(58)

π(0) = 1
9 , π(1) = 2

9 and π(k) = 2
9
(2

3
)k if k ≥ 3.

Solution (b): from formula (50):

π(n) = 1
3 ·

(2
3

)n
, n ≥ 0,
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Markovian queuing systems

M/M/s queue (cont.)

So π(0) = 1
3 and π(1) = 2

9 .
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Examples

Branching process with imigration, 68
Branching processes, 67
M/M/s queuing, 62, 63
When can the kindergarten teacher go home?, 93–97
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