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Review: conditional distributions

In the course Probability | some of you have studied
conditional distributions in [1, Chapter 6.5.]. For
example, we have jointly continuous random variables
X, Y , whose joint density function f(x, y). Then the
density functions of the marginals are:

(1)

fy (yo) = ZC f(x,y)dx, fx(x) = ZC f(xo, y)dx.
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Review: conditional distributions (cont.)

The conditional density function of X with respect to the
event {Y = y} (of zero probability ):

fX|Y(X|Y) = 7;(:2;/)) :
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Conditional expectation (cont.)
This comes from that

Fxiy(xly) = P(X <x|Y € [y.y + Ay))
_ Floy+Ay) = F(x,y)
P(Y €ly,y +Ay))

F(x,y+Ay)—F(x,

e Flx,y)

P(Yelyy+Ay)) '
iy ()

We get fx|y(x|y) from this by differentiating Fx|y(x|y)

with respect to x: ,

Fx,y(x7)/) _ flxy)
fr(y) fr(y)

fxy(xly) =
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Conditional expectation (cont.)

Accordingly:
EX|Y =yl = [ x-foy(x,y)dx,

if fy(y) > 0. Hungarian students learnt it in [1, Chapter
7.3].

If we do not fix Y, E[X|Y] is a r.v. too.
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Conditional expectation (cont.)

Lemma 1.1

(See [1, chapter 7.3]) Let u,v : R — R be Borel
measurable functions. Then

(a) E[u(X) - v(Y)[Y]=v(Y)-E[u(X)]Y],
where u, v are Borel measurable func.
(b) For Borel measurable func. g : R? — R:

2)  Elg(X,Y)]=E[E[g(X,Y)[Y]]
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Conditional expectation (cont.)

This is the tower property . In special case:

(3) E[X]=E[E[X]|Y]].
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© Examples for E[X|Y]
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Example 2.1
Let us compute E [X]|Y], if

f(x,y):e_x/%, ifO<x,y<oo.

Solution:

o ) e e
| ) T(1)y)evevdx Y
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e */Ydx = y. From here

SOE[X|Y = y] =
E[X|Y]=Y.

o—g

X
y

Example 2.2
Let T :=[0,1] x [0, 2].

2x +vy), if (x,y) € T;

1
)
flx.y) = { 0 otherwise.

Let us compute function g : R — R, for which
E[X]Y]=g(Y).
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Solution: fy(y) = i f(x,y)dx = (1 +y).

f(x,y —
iy (xly) = fy(y)) = 2 if (x,y) e T.

So

EX|Y =y] = [ x-fay(xly)dx
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Let g(y) == % : %. Then from above:

E[X]Y] = g(Y).
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Example 2.3
Let X ~ Uniform(0,1) and Y|X = x ~ Uniform(0, x),

if 0 < x < 1. Then E[X|Y]=15.
Namely, we have learnt that fx|y(x|y) = ';(f(yy)) Hence,

1
f(x,y) = fvix(y|x) - fx(x) = ;-1, ifo<y<x<l1

Let 0 <y < 1. Then

00 11
fy(y) = / f(x,y)dx = [ =dx = —Iny.

-0 y X
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Examples for E [X|Y]

If y € (0,1) then fy(y) =0. Thenfor0 <y < x < I:

fx,y) _ 1/x
fy(y) —Iny

fxy(xly) =

If y & (0,1) then the conditional density function
fx|y(x|y) does not make sense. If y € (0,1) but
x ¢ (0,1) then fxy(x|y) = 0. Hence,

EX]Y =y]

00 1 1 N §

—Iny Iny

That is E[X|Y] = %51
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Lemma 2.4

Let X, Y1,...,Y, be random variables. Then there exists
a Borel measurable function g : R — R, such that

(4) E[X|Y1,..., Y] =g(Y1,..., Ya).

We have seen this for case n =1 and (X, Y) is jointly
continuous. But in the general case, we can use the
same argument to prove the statement.

Given a probability space (2, A, P).
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Some measure theory

Definition 2.5

@ Let B" be the Borel o-algebra on R"-en. If n =1,
then we simply write B.

o Let £:Q — R If £ 1(B") C A then we say that &
is measurable with respect to (w.r.t.) .4 and we also
say that £ is a random variable,.

@ o-algebra generated by r.v. &,...,&, (denoted by
o(&1,...,&,)), is the smallest o-algebra, for which
all the r.v. &, ..., &, are measurable.

@ Forar.wv. n, n € A means that 7 is measurable with
respect to A.
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Some measure theory

Theorem 2.6
@ nand&y,....5 rv. (QAP).
o F:=0(&,...,6&).

n € F <= dg : R" — R, Borel measurable function, for
which

(5) n(w) = g(&(w), . .-, &n(w)) -
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Some measure theory (cont.)

The proof can be found in [4, Chapter 3.6]. For further
readings on measure theory | suggest to click on the next
line:

Durrett, Probability: Theory and Examples, Apendix

or type into an Internet browser: https://services.
math.duke.edu/~rtd/PTE/PTE5_011119.pdf
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Some measure theory (cont.)

Remark 2.7

Now we use the notation of Theorem 2.6. Let A € A be
an event. Then

(6) Ac F <= 1lpeF
<~ Jg, ]1/\(("]) - g(fl(w)a cee agn(w))v

where g : R” — R is a Borel measurable function.
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A property of conditional expected value
Notation: [E [X; Al :=E[X - 1a], where A € A.
Theorem 2.8

(a) E[X]Y] € a(Y)
(b) YA € o(Y), E[X; Al = E[E [X|Y]; Al

Part (a) comes from Theorem 2.6.

Proof of Part (b)
Let us fix arbitrary real numbers a < b and let

A = Y 1([a, b]). Obviously it is enough to prove part
(b) for this kind of sets.
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A property of conditional expected value
(cont.)

Proof of Part (b) (cont.)

Let g(x,y) := x - 1, 4(y) . Below we apply parts (b)
and then (a) of Lemma 1.1:

E[X; Al = Elg(X,Y)]
E[E[g(X, Y)|Y]]
E[E[X - 14,5(Y)|Y]]
= E[ly(Y) E[X]Y]]
= E[E[X|Y];A].
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Conditioning for o-algebras

We would like to define the conditional expectation for

o-algebras . We can imagine this as that the conditional
expectation value for the r.v. Y (e.g. in Theorem 2.8) is
a conditional expectation for o(Y')-algebra.

Aim: To extend this definition to an arbitrary (so not
only continuous) r.v's conditional expectation for an
arbitrary o-algebra F C A.
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Example 2.9 (This Example is from [13])

Let Q :={a,b,c,d,e, f}, F =2% and IP is the uniform
distribution on Q. The r.v. X, Y, Z are defined by

abcdef a c d e f
X”<133557>’y”<2 1177)

abcdef
ZN<333322)

Then E[X|o(Y)] and E [X|o(Z)] are given on the next
slides.

N T
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Examples for E [X|Y]

= :._._ O X B bnos
X EXIow)) | e e ] -
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a b = d f

Figure: Figure for Example 2.9. The Figure is from [13]
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Figure: Figure for Example 2.9. The Figure is from [13]
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Definition 2.10 (Conditional expectation with respect to
a o-algebra)
Given a probability space (Q2, A, P). Let
@ X bear.v. for which: | |X(w)|dP(w) < oc.
Q

e F be sub-o-algebra of A.

Conditional expectation of X with respect to F (denoted
by E[X|F]) is ar.v. Z which satisfies:

(a) Z € F, (Z is measurable for F) and
(b) VA € F:

(7) / XdP = | ZdP .
A A
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Remark 2.11

@ Parts (a) and (b) from above are generalizations of
Theorem 2.8's parts (a) and (b), in such sense, that
in Theorem 2.8 F = o(Y). So E [X|F] is the
generalization of E [X]|Y]. (Cf. Theorem 2.8.)

e If a r.v. Z satisfies conditions (a) and (b) above
then we say that Z is a version of [E [X|F].

@ Our first aim is to prove, that [E [X|F] exists and
unique (up to measure zero). We do this by
applying the Radon-Nikodym Theorem. But for this,
we need some review from measure theory. (Now
we follow book [3, A.8].)
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Review of measure theory

© Review of measure theory
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Review of measure theory

Definition 3.1
On measurable space (2, F):
Q@ /. is a measure, if
o u:F —[0,00], (D) =0.
o If E =X, E; disjoint union, then p(E) = iojlu(E,-).

© v is a o-finite measure if there exist sets A, € F,
s.t.

e O=Ur, A,
o (A, < occ.
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Definition 3.2 (Signed measure)
Given a measurable space (2, F) (Q is a set, on which
F is a o-algebra). « is a signed measure on (£, F), if
e aE) € (—oo, ], VE € F.
e (D) =0.
o If E =UE; is disjoint union, then o(E) = > a(E;),
in such sense, that ’

@ If o(E) < oo, then there is absolute convergence,
Q If a(E) = oo, then Y a(E)” < oo and 3 o E;)" = oo.

Jordan’s Theorem: daq, oy are positive measures, that
a1 las and o = a1 — an.
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Absolute continuity of measures

Let
@ /4 be a finite or o-finite measure on F
@ v be a finite, signed measure on F.

We say that measure v is absolute continuous for 1 (
v ), if

Ve A: u(C)=0=r(C)=0.
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Review of measure theory

Theorem 3.3 (Radon-Nikodym)
Q@ (2, F) probability space.

Q@ . o-finite, v a signed measure on F.
Q@ v<puonlkF.
Then df € F, s.t.
(a) J1F(w)dp(w) < o,
(b) v(C) :gf(w)d,u(w), VC e F.
(c) If fi,f, € F satisfy (a) and (b), then
filw) = KH(w), a.e. we Q.
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Review of measure theory

We denote function f by

_ v
f =2

Function f is called Radon-Nikodym derivative of
measure v with respect to .
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Conditional Expectation

@ Conditional Expectation
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Conditional Expectation

Definition of conditional expectation

Let € be an integrable r.v. on (22, A, P)
(J|¢(w)|dw < 00), and let F C A be a sub-c-algebra.

Now we define conditional expectation of £ with respect
to o-algebra F, E[£|F].

In most cases F gives the information we have. (Recall
Theorem 2.6.) Assuming F means that based on the
information we have, the best estimate for the value of
X is the to-be-defined E [¢|F].
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Conditional Expectation

Definition of conditional expectation

To define E [¢|F], first let us introduce the signed
measure /e on A:

(8) pe(B) = [ €(w)dP(w), BeEA

Obviously p¢ is a signed measure. From the definition:
(9) pe < P

If we restrict both 1 and P to F, we get measures /| r
and P|». Absolute continuity of formula (9) is also true
for restricted measures:

(10) pelr < Plr.
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Conditional Expectation

Definition of conditional expectation

Consider the following Radon-Nikodym derivative

_ dulr

f .=
dF| s

Then
(a) feF and
(b) VE € F: gdeP’:,ug(E) :gdeP’.

Observe that: conditions (a) and (b) above are the
same as conditions (a) and (b) in Definition 2.10. Hence,
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Conditional Expectation

Definition of conditional expectation

e conditional expected value E [¢|F] exists,

o E[£|F] a.e. equals to Radon-Nikodym derivative

dulr
dP|r

@ From mod 0 uniqueness of Radon-Nikodym

derivative E [¢|F] is unique in the same sense.
@ Radon-Nikodym derivative % is a version of
_F

conditional expected value E [¢|F] .
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Conditional Expectation

Definition of conditional expectation

Definition 4.1 (Conditional probability)

Let F be a sub-o-algebra of A. For every A A
conditional probability of A with respect to (w.r.t.) the
o-algebra F:

(11) P(A|lF) :=E[La|F].
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Conditional Expectation

Properties of conditional expectation |

(a) Linearity:

E [aX + bY|F] = aE [X|F] + bE[Y|F]
(b) Monotonity:

If X <Y, then E [X|F] <E[Y|F].
(c) Csebisev inequality:

(12) P(|X| > a|F) < a ?E [X?|F].

(d) Monoton convergence theorem: Let us
assume, that X, > 0, X, T X, E[X] < ¢
then

E [Xa|F] T E[X]F].
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Conditional Expectation

Properties of conditional expectation |l

(e) Applying the above for Y1 — Y,: If Y, | Y,
E[[Y1]] ,E[|Y]] < oo, then
E [Xa|F] L E[X]F].

(f) Jensen inequality: If ¢ is convex,
E[[X]], Efle(X)[] < oo, then

(13)  P(E[X[F]) < E[p(X)F].
(g) Conditional Cauchy Schwarz:
(14)  E[XY|F]? <E[X*|F|E[Y?|F].
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Conditional Expectation

Properties of conditional expectation IlI
(h) X — E[X|F] is a contraction on L, if p > 1:
E[[E[X|F]IP] < E[IX]]

(i) If F1 C Fy, then
Q EI[E [X[A][F] = E[X]|F]
Q@ EI[E [X[F][A] = E[X]|F]
So always the more primitive o-algebra wins.
() f XeF,E[|Y]|],E[|XY]] < oo, then

(15) E|X -Y|F] =X -E[Y|F].
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Conditional Expectation

Properties of conditional expectation |V

(k) E[X|F] as projection: Let us assume, that
E [X?| < co. Then E[X|F] is the orthogonal
projection of X to L2(Q, F,P). In other
words:

E[(X - E[X|7])* = minE[(X - Y)7].
(1) X = E[X|F] is self-adjoint on L?(Q, A, P):
EX-E[Y|F]] = E[E[X|F]-E[Y|F]]
(16) = E[E[X|F] Y].
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Conditional Expectation

Properties of conditional expectation V

Let us define conditional variation w.r.t. o-algebra (see
[1, Def. 7.35] and [1, Statement 7.36]):

Var(X|F) = E [X?|F| - E[X|F]°.
Then
(m) Var (X)—E[Var(X|.7:)]+Var (E [X]|F]).
(n) Q= U Q; is disjoint union and P(Q;) > 0.

Let f be the o-algebra generated by {Q;}7°;.
Then for a r.v. X:
]E [X, Q,]
E[X|F]=Y -2 g
=2 Ty e
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Conditional Expectation

Properties of conditional expectation VI

(p) Bayes’s formula: Let F € F and A € A.
Then

J P(A|F)
Q

Is is easy to see, that this statement gives
Bayes-theorem, in the case, when F is
generated by a partition.
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© Martingales
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Definition 5.1
@ An increasing sequence of o-algebras F,, is called
filtration .

e X, is adapted to F,, if X, € F,, Vn.

e (X,) is a martingale for filtration F,, if
(a) E[[Xy]] < o0
(b) X, is adapted to F),,
(c) E(Xni1|Fn) = Xn, Vn > 1.

If (a) and (b) are satisfied, but = of (c) is replaced by
(c') <, then (X,) is a supermartingale,

(c") >, then (X,) is a submartingale .
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Example 5.2

Let us imagine a player, who plays a fair game (with
expected value 0) very many times. Let M, be his/her
winning after the n'™ game (or losing if M, is negative)
and let Y, be the outcome of the n” game and let
Fnp=0(Y1,....Y,). Then (M,) is a martingale for F,.
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Example 5.3

We throw a regular coin many times. Let the outcome of
the n" throw be &, = 1 if it's head and &, = —1 if it's
tail. Let X, ==& + -+ &, and F, =0 {&, ..., &} if
n>1and Xo =0 and Fo = {0,Q}. Then

E[Xpe1|Fo] = E [Xo|Fo] +E [€ns1| Fo] = X, .
X 0

So X, is a martingale for F,,.
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Example 5.4

Let Xi,..., X, iid. E[X]=p and

S, =5+ X{+---+ X, be arandom walk. Then

M, := S, — nu is a martingale for 7, .= o(Xy,..., X,).
Namely: M,.; — M, = X,.1 — p is independent of

Xn, e ,Xl, 50, SO

E [My11 — Mn|Fy] = E [Xo11] —p = 0.

So
E [I\/I,,+1|./7,,] = M,.

If 4+ <0, then S, supermartingale and if 1 > 0, then S,
submartingale.
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Theorem 5.5

Let X, be a MC, whose transition matrix is

P = (p(x,y))x,. Let us assume, that for a function
f:SxN—=R:

(18) f(x,n)=> p(x,y)f(y,n+1).

y

Then M, = f(X,, n) is a martingale for
Fn=o0(X1,...,X,). In the special, when

(19) h(x) = > p(x, y)h(y) .

then h(X,) is martingale for F, = o(X1,..., X,).
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Proof.

E[f(Xpp1, n+1)|F] = Ey)p(Xn,y)f(y,n+1)
= f(X,,n).
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Example 5.6 (Gambler's Ruin)
Let X1, Xz, ... i.i.d. s.t. for some p € (0,1), p #1/2:

PXi=1)=pand P(X;=—-1)=qg=1-—p.

Let S, = So+ X1 +---X,. Then

M= (5)”

is a martingale.

This comes from that h(x) = (Z)X satisfies condition
(19). Hence we can apply Theorem 5.5.
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Example 5.7 (Simple symmetric random walk)

Yi, Yo, ... iid. P(Y;=1)=P(Y; = —1) = 1/2.
So=S+Yi+---+Y, Then M,:=S2—nis a
martingale for o(Yy,..., Ys).

Namely: we must show, that for f(x, n) = x> — n the
equality in (18) is satisfied. In other words, that

x2—n:;((X—l)z—(n+1))+;((X+1)2—(n+1)).

And this is given by a trivial computation.
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Example 5.8 (product of independent r.v.s)

Given are X1, Xp,--- > 0i.i.d. and E[X;] = 1. Then
M, = My- X;--- X, is a martingale for
Fn = U(Xl, ce ,Xn).

Namely:
E[My1 — M,|F)] = M, - E[X,1 — 1|F,] = 0.

This latter is because X, is independent of X7, ..., X,,
hence X, .1 is also independent of the o-algebra F,
generated by them. So,

E[Xyi1 — 1| Fn] = E[X,01 — 1] = 0.
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Theorem 5.9
Let v, : R — R a convex function and 1) be increasing.

(a) If M, is a martingale, then p(M,) is a
submartingale.

(b) If M, submartingale, then 1)(M,) is a
submartingale also.

This is an immediate corollary of Jensen's inequality
(formula (13)) and the definition.

So, if M, is a martingale, then e.g. |M,| and M? are
submartingale.
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Theorem 5.10

Let M,, be a martingale. Then

(20)  E[M2 | Fo] — M2 =E (M1 — M,)*|F].

Proof. )
(21) E [(M”Jrl - Mn) ‘Fn} -

E [M/3+1’fn] - 2,wnE [Mn+1|~'rn] +Mr%
M
=E [M; | F,] — M.

[]

Now we prove the orthogonality of the increments of the
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Theorem 5.11

Let M,, be a martingale and let 0 < i < j < k < n. Then
(22) E[(M, — My) - M]] = 0.
and its obvious corollary:

(23) E[(M, — My) - (M; — M;)] = 0.

Proof.
Proof of (22):

]E[(Mn - Mk)Mj] == E[E [(Mn - Mk)/\/lj|fk]]
= E[M;-E[(M, — M)|F]] =0
5 61/114




Corollary 5.12

Using notation of Theorem 5.11:

E [(M, — Mp)?] = é[@ (M — Mi_1)]°.
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Proof.
By using formula (23):

E (M, — Mp)?] =E

-

k=1
= él(Mk — Mk_1)2
+2 > E[(Mc— M1)(M; — M;_1)].

1<j<k<n N

[]
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Let m < n, then from the definition:

Lemma 5.13
e If M, is martingale, then [E [M,] = E[M,],
e If M, is submartingale, then E[M,,] < E[M,],
e If M, is supermartingale, then E [M,,] > E [M,].

The next example is about a famous betting strategy.
Then we will see that

(24) "you can’t beat an unfavorable game.”
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Doubling strategy

In every round of a fair game Charlie bets by the so-called
doubling strategy : If he wins in a game, then he bets $1
in the next one. But if he loses, in the next one he
doubles his previous bet. The following table shows what
happens if Charlie wins first after four lost game:

bet| 1| 2| 4| 8|16

outcome of thegame | L| L| L| L|W

profit | -1 -3 |-7|-15| 1

If he wins in the (k 4+ 1)*" game after k losses, then his

loss is: 142+ ---+2k"1 =2k 1. His winning in the
(k 4+ 1)t game: 2%, so his profit is: 1% .
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Generalization

@ X; is the outcome of the i game (e.g. +1).

@ M, is a supermartingale with respect to Xy, X, ...,
that is with respect to F, := o(Xy,,..., X,). That
is E[M,1|Fi] < My, M, € Fp, E[|M,]] < c0.

@ H, is a betting strategy, which depends on the
outcome of the first n — 1 games, so
H, e F,.1= O'(MO,Xl, . 7Xn—1)- We say that H,
is predictable . H, > 0. (Distinguish the bettor
from the house.)

e W, is the net profit using betting strategy H,,.

That is W, = W, + il H - (M — My 1)
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Examples

@ Let X; = 1 with probability 1/2 and X; = —1 with
probability 1/2 and M, = X; + - - - + X,, and the
strategy can be H, =1 for all n.

e Doubling strategy: X,, M, as above but H,, is 2!
if the last win happened k steps before.

@ H,, is the amount of stocks we have between time
m — 1 and m and M, the price of stocks at time m.
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Martingales

Theorem 5.14

Let us assume, that

@ M, is a supermartingale for F,,.
@ dc, >0:0< H, <,
Then W, is a supermartingale also.

We need H, > 0 to ensure that the player does not
become the house.

H, < ¢, is needed for the expectation to exist. For the
applications it is a handy condition.
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Proof.
The change of the winning from moment n to n+ 1:

Wn+1 - Wn — I'lp41 (Mn+1 - Mn) .
Because H,.1 € Fj;:

E [Wn—|—1 - Wn|]:n] = [HnJrl (MnJrl - Mn) ‘fn]
- n—|—1E [Mn+1 - Mnlfn] < 0.

So W, is supermartingale for F,,. O
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Theorem 5.15

Using the above notaion: let us assume, that 0 < c,
exists s.t. |H,| < c,. Then
(a) If M, is a martingale, then W, is also a
martingale (for F,).
(b) If M, is a supermartingale, then W, is also a
supermartingale (for F,).

Similar to the proof of Theorem 5.14.

70 /114



Martingales
Stopping time or optional random variable

We have defined stopping times for Markov Chains in
File A. Let F, = o(Xi,...,X,) be the information we
know in moment n.

Definition 5.16

A r.v. N, which takes values from the set
{1,2,...}U{oc}, is a stopping time, if {N = n} € F,,
Vn < 0.
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Stopping time or optional random variable

(cont.)

Example 5.17 ("hitting time")

Xl,XQ, ce Ild, .Fn = O'(Xl, ce ,Xn),

S, := X1+ -+ X,. Hitting time of set A is
N:=min{n:S5, € A}.

Lemma 5.18
Sum, max, min of stopping times are also stopping time.

This easily comes from the definition.
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Stopping time or optional random variable
(cont.)

Now we define o-algebra F7 at stopping time T, which
mainly represent the information we know at time T.

Definition 5.19 (o-algebra at stopping time)

Fr={Ac A: An{T =n} € F,}.
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Martingales

Stopping time or optional random variable
(cont.)

Lemma 5.20

Let N, T be stopping times. Then

o {T < n} e Fr, in other words T € Fr.

@ X1, Xo,... iid., F,:=0(Xy,..., X,),
Spi=Xy+ -+ X, M, :=max{S,,: m < n}.
Then Sy, My € Fy.

e In general: if Y, € F,, then Y1 € Fr.

e IfFN<T, then Fy C Fr.
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Stopping time or optional random variable
(cont.)

Proving the above statements is homework.
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Theorem 5.21

Let X1, X5, ... iid., F,= O'{Xl,.

.. X}, N a stopping

time (independent of {X;}). Conditionally for {T < oo}:
{XN+n,n > 1} are independent of Fy and have the same

distribution as X,,.

.
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bet= $1 till a stopping time

Given a stopping time T and in every game the bet is
only $1. We stop the game at time T. Let

1, itm<T,
Hm':{o, if m>T.

We claim that H,, € F,,_1, so H,, is predictable by
definition on slide 66. Namely,

(Hp= 0} = U {T = Kk} € Fo s,
k=1

So, we can use Theorem 5.14: Hence we cannot win
much with this strategy either.
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Theorem 5.22

Let us assume, that M,, is martingale, supermartingale or
submartingale for o-algebra F, and let T be a stopping
time. Then the stopped process M, 1 is also

martingale, supermartingale or submartingale for M,,,
where

T An:=min{T,n}.
Furthermore,
(a) M, is martingale => E [M1,,] = E [My],

(b) M, is supermartingale —>
E [M7nn] < E[Mo],

(b) My submartingale = E[Mrpn] = E[Mo]. |
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Proof

Let Wy := My. Then by definition of W,
Wy = Mo+ 3 Hn(Mn — Mn_1) = M7,

Namely,
e if T > n, then W, = M, and
e if T <n, then W, = M.

Using this, Theorems 5.14 and 5.15 we get the
statement. Parts (a), (b), (c) come from Lemma 5.13.
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Exit distributions

Now we are going to see an application of Theorem 5.22
and examine in the general case, that when can we
substitute Mt,, in part (a) of Theorem 5.22 into M.

Given: a,beZ, a< b, Xi, X5, ... i.i.d. and
P(Xi=-1)=P(X;=1)=13.
Let S, := Sy + X; +---+ X, and
T:=min{n:S, € (a b)}.
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Martingales
Exit distributions (cont.)

Obviously: S, is martingale and 7 is stopping time. If we
want to compute E, [7], then we can use the following
heuristic:

(25) X;EX [57'] = a-Py (ST = a)‘i‘b'(l_Px (ST = a))

If this is true, then:

(26) P, (5, = a) =
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Exit distributions (cont.)

The argument above is just a heuristic because Theorem
5.22 only guarantees x = S, ,, instead of the first
equality in formula (25). When can we omit An? First
let us see an example, when we cannot:

Let V, :=min{n:S, = a}. Recall that we have proven
in file A, that VN > 0:

(27) Py (Vy < Vp) = /1/
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Exit distributions (cont.)

So Py (Vy < o0) = 1. For some n € N:
T:=Vyand T, :=min{V,, V,}.

Then T and T, are obviously stopping times. It can be
seen from formula (27), that

Eq {57-’1} :0°P1(V0< V,,)+n-]P>1(V,7< Vo): 1.
1/n

83 /114



Exit distributions (cont.)

So here we could leave An. But
1#£0=E[S7].

So we could not cancell An of T. The next theorem
shows us when we can leave An.
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Exit distributions (cont.)

Theorem 5.23

Let us assume, that M,, is a martingale and T is a
stopping time, for which

o P(T <o0)=1 and
o 3K : [Mrr| < K.
Then E[My] = E[My] .
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Exit distributions (cont.)

Proof
From Theorem 5.22:

E[Mo] = E [M7,,=E [M7; T < n]+E|

So

M, T > n|.
~—

S‘MT/\n|§K

(28) |E[Mo] —E[My; T < n]| < KP(T > n) — 0.
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Theorem 5.24 (Doob's Optional Stopping Theorem)

Let X be a supermartingale and T be a stopping time. If
any of the following conditions holds

(i) T is bounded.
(ii) X is bounded and T < oo a.s..
(i) E[T] < co and X has bounded increments.
then
(a) Xt € L} and E(X7) < E[Xy].
(b) If X is a martingale then E(X7) = E[Xp] .
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Proof (cont.)
On the other hand,

(29) E[M7]—E[My; T <n=E[Ms; T > nl.

Using that
o0

IE[Mr; T >n]| < > [|E[M; T = K|
k=n+1

= > |E[Mir: T = K]
k=n+1

< K-P(T>n)—0.

By combining formulas (28) and (29) completes the

proof. 06
Q0
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Wald equality

Let X1, Xp,... beiid., E[X] = p. Let
S, =S+ Xy + -+ X,. We know, that then M, — npu is
a martingale for X,,.

Theorem 5.25 (Wald's equation)
If T is a stopping time with E[T] < oo then

E[Sr — So] = uE[T].

Proof can be found in (see [3]).
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Convergence

Theorem 5.26 (Convergence theorem)

If X, > 0 is a supermartingale, then X, := nIi_)rgo X, exists
and E [X.] < E[Xy].

Before the proof of the theorem, we need the following
lemma, which is called Doob’s martingale inequality.

Lemma 5.27
Let X, > 0 be a supermartingale and A\ > 0. In this case:

(30) P <rp§(>)< Xp > )\) < E[Xo] /N
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Martingales

Proof of the lemma
Let T :=min{n: X, > A}. Observe that

(31) {T < 0} = {rpzz%(Xn>)\}

Let A, :={w € Q: T(w) < n}. Then
(32) X1nn(w) = Xrwy(w) > Aifw € A,
It comes from Theorem 5.22, that
E[Xo] > E[X7an] = E[X7; Al > AP (A,). So,
Vn:P(T <n)=P(A,) <E[X] /A

Hence P(T < o0) < E[Xp] /A. And this completes the
proof of the lemma by (31). W 01 /114



Draft of the proof of Theorem 5.26

Let So := 0, a < b and let us define the following
stopping times:

Rk : =min{n > S;1: X, < a}

Sk :=min{n> Ry : X, > b}.
By a similar reasoning as in the proof of the previous
lemma can we get that:
a

P(Sk < OO‘R/( < OO) < b
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Draft of the proof of Theorem 5.26 (cont.)

lterating this
2\ K
P (S < o0) < <b> — 0 exponentially fast.

So X, only cuts interval [a, b] from under finitely many
times. Let

Y = Iimiorng,, and Z := limsup X,

n—oo
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Draft of the proof of Theorem 5.26 (cont.)

If P(Y < Z) >0 was true, then for some a < b it
would also be:

P(Y<a<b< Z)>0.

In this case X, would cross the interval [a, b] from below
a to above b infinitely many times, which is not possible,
so limit X = nIi_q)lo X, exists. Moreover, for all n, M:

E[Xo] > E[X,] > E[X, A M] = E [Xoc A M].
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Draft of the proof of Theorem 5.26 (cont.)

So
E[Xo] > E[X AM] T E[XS].
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Martingales

Polya’s Urn,

Given an urn with initially contains: r > 0 red and g > 0
green balls.

(a) draw a ball from the urn randomly,

(b) observe its color,

(c) return the ball to the urn along with
¢ new balls of the same color .
o If c =

0 this is sampling with replacement.
o If ¢

—1 sampling without replacement.

From now we assume that ¢ > 1. After the n-th draw
and replacement step is completed:
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Polya's Urn, (cont.)

@ the number of green balls in the urnis: G, .
@ the number of red balls in the urnis: R, .
@ the fraction of green balls in the urnis X, .

@ Let Y, =1 if the n-th ball drawn is green.
Otherwise Y, := 0.

@ Let F, be the filtration generated by Y = (Y,).
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Polya's Urn, (cont.)

Claim 1
X, is a martingale w.r.t. F,,.

Proof Assume that

R,=1iand G, =

Then L ,
P(Xn+1:.1 .C )Z.J -9
I+J)+c¢ I+
and . .
J 1
i+ i+
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Polya's Urn, (cont.)

Hence
Jj+c J J I
33) E|X, 1| F,| = —— T+ T
( ) ["H’ "] I+J+c¢c 1+ I+J+c¢c 1+
J
pr— :X_
I+J n

L]

Corollary 5.28
There exists an X, s.t. X, — Xy a.s..

This is immediate from Theorem 5.26.
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Polya's Urn, (cont.)

In order to find the distribution of X,, observe that:

@ The probability p,, of getting green on the first m
steps and getting red in the next n — m steps is the
same as the probability of drawing altogether m
green and n — m red balls in any particular
redescribed order.

m-l g4k nmm-l r+{c

ensm| = kgog+r+kc' i—o &+r+(m+{)c
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Polya's Urn, (cont.)

If c=g=r=1then

P(Gy=m+1) = (”)m!(n—m)! 1

m) (n+1)! B n+1

That is X is uniform on (0,1): In the general case X
has density

r((g+r)/c) x(&19-1(1 _ x)(r/o)-1,
M(g/c)M(r/c)

That is the distribution of X is Beta (£, %)

c’c

101 /114



Review

Recall that [(a) = [ e ¥y® ldy.
0
Density function of Gamma distribution with parameter ,

(a, \):

M)
0, if x <0.
For o, B > 0 parameters the [S-distribution Beta(«, ) is

1 a—1 . B—1 .
(34) @A@:{g@mx (1—x)P1, if x € [0, 1],

9

{ Al 5 L VSV

otherwise,

where B(a, 5) = rr((aa)i%)
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Application

Let Ui, ..., U, beiid. U; ~ Uni(0,1). Let Uy be the
k-th smallest of them. Then

U(k) ~ Beta(k,n+ 1 — k).
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Example

This is an example for conditional expectation.

Example
We define the probability pace (£2,.4,P) as follows:
o Q :=[0,1]?
e A is the o-algebra of Borel sets on [0, 1]
o [P := Ls][p1pp- The two-dimensional Lebesgue
measure (area on the plane) restricted to the unit

square.
So, an element w of the sample space €2 is of the form

w = (x,y) €[0,1].
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Example (cont.)
@ Let S be the random variable defined by
S(x,y) == x+ y. This is a random variable (r.v.)
since this is a measurable function from (£, A, P) to
R

o Let F C A be the o-algebra defined by B x [0, 1],
where B the Borel o-algebra on the unit interval

[0,1].
Let Z :=E[S|F]. Then
(a) Z€ F and
(b) [SdP = [ZdP forall Ac F.
A A
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Example (cont.)

The meaning of condition (a) is as follows: Clearly the
function Z : [0,1]> — R is measurable with respect to F
(that is Z € F) if both of the following two conditions
hold:

(i) Z(x,y1) = Z(x,y») holds for all y1,y, € [0, 1],
(Z(x,y) is constant on vertical lines)

(i) x — Z(x,0) is Borel measurable.
The meaning of condition (b) is:

(35)  [Z(x,y)dxdx = [S(x,y)dxdy, VAcF.
A A
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Example (cont.)

If A€ F then A is of the form: A= B x [0, 1], where
B C [0, 1] Borel set. It is enough to check that (35)
holds only for the sets of the form [a, b] x [0, 1]. For
these sets (35) reads like

(36)
//ny dydx—//S(x y)dydx—//x+y dydx.
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Example (cont.)
Using (i) from the one but last slide:

b1 b
//Z(X,y)dydx = /Z(X,O)dX. On the other hand,
a . a
using that /(X +y)dy =3 + % we obtain that

0

b1 b
(37) //(x—l—y)dydx: /(%—f—%) dx .

a

That is by (36) the two yellow formulas are equal for all
0<a< b<1l. Weusethisfor b= a-+ Ax:
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Example (cont.)
a+Ax a+Ax x 1
(38) / Z(x,0)dx = / <2+6> dx

We divide by Ax on both sides and we let Ax — 0 we
get from Newton-Leibnitz formula that

(39) Z(x.y) = Z(x,0) = % + ¢ V(x,y) € [0,1]%.
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