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Conditional expectation

Review: conditional distributions

In the course Probability I some of you have studied
conditional distributions in [1, Chapter 6.5.]. For
example, we have jointly continuous random variables
X ,Y , whose joint density function f (x , y). Then the
density functions of the marginals are:
(1)

fY (y0) =
∞∫

x=−∞
f (x , y0)dx , fX (x0) =

∞∫
y=−∞

f (x0, y)dx .
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Conditional expectation

Review: conditional distributions (cont.)

The conditional density function of X with respect to the
event {Y = y} (of zero probability ):

fX |Y (x |y) = f (x ,y)
fY (y) .
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Conditional expectation

Conditional expectation (cont.)
This comes from that

FX |Y (x |y) ≈ P (X < x |Y ∈ [y , y + ∆y))

= F (x , y + ∆y) − F (x , y)
P (Y ∈ [y , y + ∆y))

=
F (x ,y+∆y)−F (x ,y)

∆y
P(Y ∈[y ,y+∆y))

∆y
≈

F ′
y(x , y)
fY (y) .

We get fX |Y (x |y) from this by differentiating FX |Y (x |y)
with respect to x :

fX |Y (x |y) =
F ′′

x ,y(x , y)
fY (y) = f (x ,y)

fY (y) .
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Conditional expectation

Conditional expectation (cont.)

Accordingly:

E [X |Y = y ] =
∞∫

−∞
x · fX |Y (x , y)dx ,

if fY (y) > 0. Hungarian students learnt it in [1, Chapter
7.3].
If we do not fix Y , E [X |Y ] is a r.v. too.
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Conditional expectation

Conditional expectation (cont.)

Lemma 1.1

(See [1, chapter 7.3]) Let u, v : R → R be Borel
measurable functions. Then

(a) E [u(X ) · v(Y )|Y ] = v(Y ) · E [u(X )|Y ],
where u, v are Borel measurable func.

(b) For Borel measurable func. g : R2 → R:

(2) E [g(X ,Y )] = E [E [g(X ,Y )|Y ]]
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Conditional expectation

Conditional expectation (cont.)

This is the tower property . In special case:

(3) E [X ] = E [E [X |Y ]].
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Examples for E [X |Y ]

Example 2.1

Let us compute E [X |Y ], if

f (x , y) = e−x/y e−y

y , if 0 < x , y < ∞ .

Solution:

fX |Y (x |y) = f (x , y)
fY (y) = (1/y)e−x/ye−y

∞∫
−∞

(1/y)e−x/ye−ydx
= e−x/y

y .
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Examples for E [X |Y ]

So E [X |Y = y ] =
∞∫
0

x
y e−x/ydx = y . From here

E [X |Y ] = Y .

Example 2.2
Let T := [0, 1] × [0, 2].

f (x , y) =


1
4(2x + y), if (x , y) ∈ T ;
0, otherwise.

Let us compute function g : R → R, for which
E [X |Y ] = g(Y ).
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Examples for E [X |Y ]

Solution: fY (y) =
∞∫

−∞
f (x , y)dx = 1

4(1 + y).

fX |Y (x |y) = f (x , y)
fY (y) = 2x+y

1+y if (x , y) ∈ T .

So

E [X |Y = y ] =
∞∫

−∞
x · fX |Y (x |y)dx

=
∞∫

−∞
x · 2x + y

1 + y dx

= 1
6 · 4 + 3y

1 + y .
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Examples for E [X |Y ]

Let g(y) := 1
6 · 4+3y

1+y . Then from above:

E [X |Y ] = g(Y ).
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Examples for E [X |Y ]

Example 2.3

Let X ∼ Uniform(0, 1) and Y |X = x ∼ Uniform(0, x),
if 0 < x < 1. Then E [X |Y ] = Y −1

ln Y .

Namely, we have learnt that fX |Y (x |y) = f (x ,y)
fY (y) . Hence,

f (x , y) = fY |X (y |x) · fX (x) = 1
x · 1, if 0 < y < x < 1

Let 0 < y < 1. Then

fY (y) =
∫ ∞

−∞
f (x , y)dx =

∫ 1

y

1
x dx = − ln y .
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Examples for E [X |Y ]

If y ̸∈ (0, 1) then fY (y) = 0. Then for 0 < y < x < 1:

fX |Y (x |y) = f (x , y)
fY (y) = 1/x

− ln y

If y ̸∈ (0, 1) then the conditional density function
fX |Y (x |y) does not make sense. If y ∈ (0, 1) but
x ̸∈ (0, 1) then fX |Y (x |y) = 0. Hence,

E [X |Y = y ]

=
∫ ∞

−∞
x · fX |Y (x |y)dx =

∫ 1

y
x · 1/x

− ln y dx = y−1
ln y .

That is E [X |Y ] = Y −1
ln Y .
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Examples for E [X |Y ]

Lemma 2.4

Let X ,Y1, . . . ,Yn be random variables. Then there exists
a Borel measurable function g : R → R, such that

(4) E [X |Y1, . . . ,Yn] = g(Y1, . . . ,Yn).

We have seen this for case n = 1 and (X ,Y ) is jointly
continuous. But in the general case, we can use the
same argument to prove the statement.

Given a probability space (Ω,A,P).

16 / 114



Examples for E [X |Y ]

Some measure theory
Definition 2.5

Let Bn be the Borel σ-algebra on Rn-en. If n = 1,
then we simply write B.
Let ξ : Ω → Rn. If ξ−1(Bn) ⊂ A then we say that ξ
is measurable with respect to (w.r.t.) A and we also
say that ξ is a random variable,.
σ-algebra generated by r.v. ξ1, . . . , ξn (denoted by
σ(ξ1, . . . , ξn)), is the smallest σ-algebra, for which
all the r.v. ξ1, . . . , ξn are measurable.
For a r.v. η, η ∈ A means that η is measurable with
respect to A.
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Examples for E [X |Y ]

Some measure theory

Theorem 2.6

η and ξ1, . . . , ξn r.v. (Ω,A,P).
F := σ(ξ1, . . . , ξn).

η ∈ F ⇐⇒ ∃g : Rn → R, Borel measurable function, for
which

(5) η(ω) = g(ξ1(ω), . . . , ξn(ω)) .
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Examples for E [X |Y ]

Some measure theory (cont.)

The proof can be found in [4, Chapter 3.6]. For further
readings on measure theory I suggest to click on the next
line:
Durrett, Probability: Theory and Examples, Apendix
or type into an Internet browser: https://services.
math.duke.edu/˜rtd/PTE/PTE5_011119.pdf
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Examples for E [X |Y ]

Some measure theory (cont.)

Remark 2.7

Now we use the notation of Theorem 2.6. Let A ∈ A be
an event. Then

A ∈ F ⇐⇒ 1A ∈ F(6)
⇐⇒ ∃g , 1A(ω) = g(ξ1(ω), . . . , ξn(ω)),

where g : Rn → R is a Borel measurable function.
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Examples for E [X |Y ]

A property of conditional expected value
Notation: E [X ; A] := E [X · 1A] , where A ∈ A.
Theorem 2.8

(a) E [X |Y ] ∈ σ(Y )
(b) ∀A ∈ σ(Y ), E [X ; A] = E [E [X |Y ] ; A]

Part (a) comes from Theorem 2.6.
Proof of Part (b)
Let us fix arbitrary real numbers a < b and let
A = Y −1([a, b]). Obviously it is enough to prove part
(b) for this kind of sets.
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Examples for E [X |Y ]

A property of conditional expected value
(cont.)
Proof of Part (b) (cont.)
Let g(x , y) := x · 1[a,b](y) . Below we apply parts (b)
and then (a) of Lemma 1.1:

E [X ; A] = E [g(X ,Y )]
= E [E [g(X ,Y )|Y ]]
= E

[
E
[
X · 1[a,b](Y )|Y

]]
= E

[
1[a,b](Y ) · E [X |Y ]

]
= E [E [X |Y ] ; A] .
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Examples for E [X |Y ]

Conditioning for σ-algebras

We would like to define the conditional expectation for
σ-algebras . We can imagine this as that the conditional
expectation value for the r.v. Y (e.g. in Theorem 2.8) is
a conditional expectation for σ(Y )-algebra.

Aim: To extend this definition to an arbitrary (so not
only continuous) r.v’s conditional expectation for an
arbitrary σ-algebra F ⊂ A.
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Examples for E [X |Y ]

Example 2.9 (This Example is from [13])

Let Ω := {a, b, c , d , e, f }, F = 2Ω and P is the uniform
distribution on Ω. The r.v. X ,Y ,Z are defined by

X ∼
 a b c d e f

1 3 3 5 5 7

 ,Y ∼
 a b c d e f

2 2 1 1 7 7



Z ∼
 a b c d e f

3 3 3 3 2 2


Then E [X |σ(Y )] and E [X |σ(Z )] are given on the next
slides.
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Examples for E [X |Y ]

E [X |σ(Y )]

Figure: Figure for Example 2.9. The Figure is from [13]
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Examples for E [X |Y ]

E [X |σ(Y )]

Figure: Figure for Example 2.9. The Figure is from [13]
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Examples for E [X |Y ]
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Examples for E [X |Y ]

Definition 2.10 (Conditional expectation with respect to
a σ-algebra)

Given a probability space (Ω,A,P). Let
X be a r.v. for which: ∫

Ω
|X (ω)|dP(ω) < ∞.

F be sub-σ-algebra of A.
Conditional expectation of X with respect to F (denoted
by E [X |F ] ) is a r.v. Z which satisfies:

(a) Z ∈ F , (Z is measurable for F) and
(b) ∀A ∈ F :

(7) ∫
A

XdP = ∫
A

ZdP .
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Examples for E [X |Y ]

Remark 2.11
Parts (a) and (b) from above are generalizations of
Theorem 2.8’s parts (a) and (b), in such sense, that
in Theorem 2.8 F = σ(Y ). So E [X |F ] is the
generalization of E [X |Y ]. (Cf. Theorem 2.8.)
If a r.v. Z satisfies conditions (a) and (b) above
then we say that Z is a version of E [X |F ].
Our first aim is to prove, that E [X |F ] exists and
unique (up to measure zero). We do this by
applying the Radon-Nikodym Theorem. But for this,
we need some review from measure theory. (Now
we follow book [3, A.8].)
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Review of measure theory

Definition 3.1
On measurable space (Ω,F):

1 µ is a measure, if
µ : F → [0,∞], µ(∅) = 0.
If E = ⋃∞

i=1 Ei disjoint union, then µ(E ) =
∞∑

i=1
µ(Ei).

2 ν is a σ-finite measure if there exist sets An ∈ F ,
s.t.

Ω = ⋃∞
n=1 An

ν(An) < ∞.
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Review of measure theory

Definition 3.2 (Signed measure)
Given a measurable space (Ω,F) (Ω is a set, on which
F is a σ-algebra). α is a signed measure on (Ω,F), if

α(E ) ∈ (−∞,∞], ∀E ∈ F .
α(∅) = 0.
If E = ⋃Ei is disjoint union, then α(E ) = ∑

i
α(Ei),

in such sense, that
1 If α(E ) < ∞, then there is absolute convergence,
2 If α(E ) = ∞, then ∑

i
α(Ei)− < ∞ and ∑

i
α(Ei)+ = ∞.

Jordan’s Theorem: ∃α1, α2 are positive measures, that
α1⊥α2 and α = α1 − α2.
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Review of measure theory

Absolute continuity of measures

Let
µ be a finite or σ-finite measure on F
ν be a finite, signed measure on F .

We say that measure ν is absolute continuous for µ (
ν ≪ µ ), if

∀C ∈ A : µ(C) = 0 ⇒ ν(C) = 0.
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Review of measure theory

Review of measure theory
Theorem 3.3 (Radon-Nikodym)

1 (Ω,F) probability space.
2 µ σ-finite, ν a signed measure on F .
3 ν ≪ µ on F .

Then ∃f ∈ F , s.t.
(a) ∫ |f (ω)|dµ(ω) < ∞,
(b) ν(C) = ∫

C
f (ω)dµ(ω), ∀C ∈ F .

(c) If f1, f2 ∈ F satisfy (a) and (b), then
f1(ω) = f2(ω), a.e. ω ∈ Ω.
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Review of measure theory

We denote function f by

f = dν
dµ

Function f is called Radon-Nikodym derivative of
measure ν with respect to µ.
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Conditional Expectation

Definition of conditional expectation

Let ξ be an integrable r.v. on (Ω,A,P)
(∫ |ξ(ω)|dω < ∞), and let F ⊂ A be a sub-σ-algebra.

Now we define conditional expectation of ξ with respect
to σ-algebra F , E [ξ|F ] .

In most cases F gives the information we have. (Recall
Theorem 2.6.) Assuming F means that based on the
information we have, the best estimate for the value of
X is the to-be-defined E [ξ|F ].
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Conditional Expectation

Definition of conditional expectation
To define E [ξ|F ], first let us introduce the signed
measure µξ on A:

(8) µξ(B) :=
∫
B
ξ(ω)dP(ω), B ∈ A.

Obviously µξ is a signed measure. From the definition:
(9) µξ ≪ P.
If we restrict both µξ and P to F , we get measures µ|F
and P|F . Absolute continuity of formula (9) is also true
for restricted measures:
(10) µξ|F ≪ P|F .
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Conditional Expectation

Definition of conditional expectation
Consider the following Radon-Nikodym derivative

f := dµ|F
dP|F

Then
(a) f ∈ F and
(b) ∀E ∈ F : ∫

E
fdP = µξ(E ) = ∫

E
ξdP .

Observe that: conditions (a) and (b) above are the
same as conditions (a) and (b) in Definition 2.10. Hence,
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Conditional Expectation

Definition of conditional expectation

conditional expected value E [ξ|F ] exists,
E [ξ|F ] a.e. equals to Radon-Nikodym derivative
dµ|F
dP|F

From mod 0 uniqueness of Radon-Nikodym
derivative E [ξ|F ] is unique in the same sense.

Radon-Nikodym derivative dµ|F
dP|F is a version of

conditional expected value E [ξ|F ] .
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Conditional Expectation

Definition of conditional expectation

Definition 4.1 (Conditional probability)

Let F be a sub-σ-algebra of A. For every A ∈ A
conditional probability of A with respect to (w.r.t.) the
σ-algebra F :

(11) P (A|F) := E [1A|F ] .
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Conditional Expectation

Properties of conditional expectation I
(a) Linearity:

E [aX + bY |F ] = aE [X |F ] + bE [Y |F ]
(b) Monotonity:

If X ≤ Y , then E [X |F ] ≤ E [Y |F ].
(c) Csebisev inequality:

(12) P (|X | ≥ a|F) ≤ a−2E
[
X 2|F

]
.

(d) Monoton convergence theorem: Let us
assume, that Xn ≥ 0, Xn ↑ X , E [X ] < ∞
then

E [Xn|F ] ↑ E [X |F ] .
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Conditional Expectation

Properties of conditional expectation II
(e) Applying the above for Y1 − Yn: If Yn ↓ Y ,

E [|Y1|] ,E [|Y |] < ∞, then
E [Xn|F ] ↓ E [X |F ] .

(f) Jensen inequality: If φ is convex,
E [|X |] ,E [|φ(X )|] < ∞, then

(13) φ(E [X |F ]) ≤ E [φ(X )|F ] .

(g) Conditional Cauchy Schwarz:

(14) E [XY |F ]2 ≤ E
[
X 2|F

]
E
[
Y 2|F

]
.
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Conditional Expectation

Properties of conditional expectation III
(h) X → E [X |F ] is a contraction on Lp, if p ≥ 1:

E [|E [X |F ]|p] ≤ E [|X |p]

(i) If F1 ⊂ F2, then
1 E [E [X |F1] |F2] = E [X |F1]
2 E [E [X |F2] |F1] = E [X |F1]

So always the more primitive σ-algebra wins.
(j) If X ∈ F , E [|Y |] ,E [|XY |] < ∞, then

(15) E
[
X · Y |F

]
= X · E [Y |F ] .
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Conditional Expectation

Properties of conditional expectation IV
(k) E [X |F ]E [X |F ]E [X |F ] as projection: Let us assume, that

E
[
X 2

]
< ∞. Then E [X |F ] is the orthogonal

projection of X to L2(Ω,F ,P). In other
words:

E
[
(X − E [X |F ]) 2] = min

Y ∈F
E
[
(X − Y ) 2] .

(l) X → E [X |F ]X → E [X |F ]X → E [X |F ] is self-adjoint on L2(Ω,A,P)L2(Ω,A,P)L2(Ω,A,P):

E [X · E [Y |F ]] = E [E [X |F ] · E [Y |F ]]
= E [E [X |F ] · Y ] .(16)
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Conditional Expectation

Properties of conditional expectation V
Let us define conditional variation w.r.t. σ-algebra (see
[1, Def. 7.35] and [1, Statement 7.36]):

Var(X |F) := E
[
X 2|F

]
− E [X |F ]2 .

Then
(m) Var (X )=E [Var(X |F)]+Var (E [X |F ]) .
(n) Ω =

∞⋃
i=1

Ωi is disjoint union and P(Ωi) > 0.
Let F be the σ-algebra generated by {Ωi}∞

i=1.
Then for a r.v. X :

E [X |F ] =
∑
i

E [X ; Ωi ]
P(Ωi)

· 1Ωi .

46 / 114



Conditional Expectation

Properties of conditional expectation VI

(p) Bayes’s formula: Let F ∈ F and A ∈ A.
Then

(17) P (F |A) =

∫
F
P(A|F)∫

Ω
P(A|F) .

Is is easy to see, that this statement gives
Bayes-theorem, in the case, when F is
generated by a partition.
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Martingales
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M0M0M0

M1M1M1

M2M2M2

M3M3M3

M4M4M4

Ω = [0, 1] and P = Leb|[0,1]

if x =
∞∑
n=1

xn2−n, xn ∈ {0, 1}

let θk =

{
1, if xk = 1;
−1, if xk = 0.

From this, Mn(x) = 1 +
n∑

k=1

θk2−k

Fn is generated by
{[

i
2n
, i+1

2n

)
: i = 0, . . . 2n − 1

}

Mn ∈ Fn

E [Mn+1|Fn] = Mn
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Martingales

Definition 5.1
An increasing sequence of σ-algebras Fn is called
filtration .
Xn is adapted to Fn, if Xn ∈ Fn , ∀n.
(Xn) is a martingale for filtration Fn, if

(a) E [|Xn|] < ∞
(b) Xn is adapted to Fn,
(c) E(Xn+1|Fn) = Xn, ∀n ≥ 1.

If (a) and (b) are satisfied, but = of (c) is replaced by
(c’) ≤ , then (Xn) is a supermartingale ,
(c”) ≥ , then (Xn) is a submartingale .
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Martingales

Example 5.2
Let us imagine a player, who plays a fair game (with
expected value 0) very many times. Let Mn be his/her
winning after the nth game (or losing if Mn is negative)
and let Yn be the outcome of the nth game and let
Fn = σ(Y1, . . . ,Yn). Then (Mn) is a martingale for Fn.
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Martingales

Example 5.3

We throw a regular coin many times. Let the outcome of
the nth throw be ξn = 1 if it’s head and ξn = −1 if it’s
tail. Let Xn := ξ1 + · · · + ξn and Fn := σ {ξ1, . . . , ξn} if
n ≥ 1 and X0 = 0 and F0 = {∅,Ω}. Then

E [Xn+1|Fn] = E [Xn|Fn]︸ ︷︷ ︸
Xn

+E [ξn+1|Fn]︸ ︷︷ ︸
0

= Xn .

So Xn is a martingale for Fn.
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Martingales

Example 5.4

Let X1, . . . ,Xn i.i.d. E [Xi ] = µ and
Sn := S0 + X1 + · · · + Xn be a random walk. Then
Mn := Sn − nµ is a martingale for Fn := σ(X1, . . . ,Xn).
Namely: Mn+1 − Mn = Xn+1 − µ is independent of
Xn, . . . ,X1, S0, so

E [Mn+1 − MN |Fn] = E [Xn+1] − µ = 0.

So
E [Mn+1|Fn] = Mn.

If µ ≤ 0, then Sn supermartingale and if µ ≥ 0, then Sn
submartingale.
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Martingales

Theorem 5.5

Let Xn be a MC, whose transition matrix is
P = (p(x , y))x ,y . Let us assume, that for a function
f : S × N → R:

(18) f (x , n) =
∑
y

p(x , y)f (y , n + 1).

Then Mn = f (Xn, n) is a martingale for
Fn = σ(X1, . . . ,Xn). In the special, when

(19) h(x) = ∑
y

p(x , y)h(y) ,

then h(Xn) is martingale for Fn = σ(X1, . . . ,Xn).
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Martingales

Proof.

E [f (Xn+1, n + 1)|Fn] =
∑
y

p(Xn, y)f (y , n + 1)

= f (Xn, n).
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Martingales

Example 5.6 (Gambler’s Ruin)

Let X1,X2, . . . i.i.d. s.t. for some p ∈ (0, 1), p ̸= 1/2:

P (Xi = 1) = p and P (Xi = −1) = q = 1 − p.

Let Sn = S0 + X1 + · · · Xn. Then

Mn :=
(

q
p

)Sn

is a martingale.

This comes from that h(x) =
(

q
p

)x
satisfies condition

(19). Hence we can apply Theorem 5.5.
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Martingales

Example 5.7 (Simple symmetric random walk)

Y1,Y2, . . . i.i.d. P(Yi = 1) = P (Yi = −1) = 1/2.
Sn = S0 + Y1 + · · · + Yn. Then Mn := S2

n − n is a
martingale for σ(Y1, . . . ,Yn).

Namely: we must show, that for f (x , n) = x 2 − n the
equality in (18) is satisfied. In other words, that

x 2 − n = 1
2((x − 1)2 − (n + 1)) + 1

2
(
(x + 1)2 − (n + 1)

)
.

And this is given by a trivial computation.
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Example 5.8 (product of independent r.v.s)

Given are X1,X2, · · · ≥ 0 i.i.d. and E [Xi ] = 1. Then
Mn = M0 · X1 · · · Xn is a martingale for
Fn := σ(X1, . . . ,Xn).

Namely:

E [Mn+1 − Mn|Fn] = Mn · E [Xn+1 − 1|Fn] = 0.

This latter is because Xn+1 is independent of X1, . . . ,Xn,
hence Xn+1 is also independent of the σ-algebra Fn
generated by them. So,
E [Xn+1 − 1|Fn] = E [Xn+1 − 1] = 0.
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Theorem 5.9
Let φ, ψ : R → R a convex function and ψ be increasing.

(a) If Mn is a martingale, then φ(Mn) is a
submartingale.

(b) If Mn submartingale, then ψ(Mn) is a
submartingale also.

This is an immediate corollary of Jensen’s inequality
(formula (13)) and the definition.
So, if Mn is a martingale, then e.g. |Mn| and M2

n are
submartingale.
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Theorem 5.10

Let Mn be a martingale. Then

(20) E
[
M2

n+1|Fn
]
− M2

n = E
[
(Mn+1 − Mn)2|Fn

]
.

Proof.
(21) E

[
(Mn+1 − Mn)2 |Fn

]
=

E
[
M2

n+1|Fn
]
− 2Mn E [Mn+1|Fn]︸ ︷︷ ︸

Mn

+M2
n

= E
[
M2

n+1|Fn
]
− M2

n .

Now we prove the orthogonality of the increments of the
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Theorem 5.11

Let Mn be a martingale and let 0 ≤ i ≤ j ≤ k < n. Then

(22) E [(Mn − Mk) · Mj ] = 0.

and its obvious corollary:

(23) E [(Mn − Mk) · (Mj − Mi)] = 0.

Proof.
Proof of (22):

E [(Mn − Mk)Mj ] = E [E [(Mn − Mk)Mj |Fk ]]
= E

[
Mj · E [(Mn − Mk)|Fk ]︸ ︷︷ ︸

0

]
= 0
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Corollary 5.12

Using notation of Theorem 5.11:

E
[
(Mn − M0)2] =

n∑
k=1

E [(Mk − Mk−1)]2 .
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Proof.
By using formula (23):

E
[
(Mn − M0)2

]
= E


 n∑

k=1
Mk − Mk−1

2
=

n∑
k=1

(Mk − Mk−1)2

+ 2
∑

1≤j<k≤n
E [(Mk − Mk−1)(Mj − Mj−1)]︸ ︷︷ ︸

0

.
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Let m ≤ n, then from the definition:
Lemma 5.13

If Mn is martingale, then E [Mm] = E [Mn],
If Mn is submartingale, then E [Mm] ≤ E [Mn],
If Mn is supermartingale, then E [Mm] ≥ E [Mn].

The next example is about a famous betting strategy.
Then we will see that

(24) ”you can’t beat an unfavorable game.”
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Doubling strategy
In every round of a fair game Charlie bets by the so-called
doubling strategy : If he wins in a game, then he bets $1
in the next one. But if he loses, in the next one he
doubles his previous bet. The following table shows what
happens if Charlie wins first after four lost game:

bet 1 2 4 8 16
outcome of the game L L L L W

profit -1 -3 -7 -15 1
If he wins in the (k + 1)st game after k losses, then his
loss is: 1 + 2 + · · · + 2k−1 = 2k − 1. His winning in the
(k + 1)st game: 2k , so his profit is: 1$ .
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Generalization
Xi is the outcome of the i th game (e.g. ±1).
Mn is a supermartingale with respect to X0,X1, . . . ,
that is with respect to Fn := σ(X0, , . . . ,Xn). That
is E [Mn+1|Fn] ≤ Mn, Mn ∈ Fn, E [|Mn|] < ∞.
Hn is a betting strategy, which depends on the
outcome of the first n − 1 games, so
Hn ∈ Fn−1 = σ(M0,X1, . . . ,Xn−1). We say that Hn
is predictable . Hn ≥ 0. (Distinguish the bettor
from the house.)
Wn is the net profit using betting strategy Hn.
That is Wn = W0 +

n∑
m=1

Hm · (Mm − Mm−1).
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Examples

Let Xi = 1 with probability 1/2 and Xi = −1 with
probability 1/2 and Mn = X1 + · · · + Xn and the
strategy can be Hn = 1 for all n.
Doubling strategy: Xn,Mn as above but Hm is 2k−1

if the last win happened k steps before.
Hm is the amount of stocks we have between time
m − 1 and m and Mm the price of stocks at time m.
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Theorem 5.14

Let us assume, that
Mn is a supermartingale for Fn.
∃cn > 0 : 0 ≤ Hn ≤ cn,

Then Wn is a supermartingale also.

We need Hn ≥ 0 to ensure that the player does not
become the house.

Hn ≤ cn is needed for the expectation to exist. For the
applications it is a handy condition.
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Proof.
The change of the winning from moment n to n + 1:

Wn+1 − Wn = Hn+1 (Mn+1 − Mn) .

Because Hn+1 ∈ Fn:

E [Wn+1 − Wn|Fn] = E [Hn+1 (Mn+1 − Mn) |Fn]
= Hn+1E [Mn+1 − Mn|Fn] ≤ 0 .

So Wn is supermartingale for Fn.
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Theorem 5.15

Using the above notaion: let us assume, that 0 < cn
exists s.t. |Hn| < cn. Then

(a) If Mn is a martingale, then Wn is also a
martingale (for Fn).

(b) If Mn is a supermartingale, then Wn is also a
supermartingale (for Fn).

Similar to the proof of Theorem 5.14.
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Stopping time or optional random variable

We have defined stopping times for Markov Chains in
File A. Let Fn = σ(X1, . . . ,Xn) be the information we
know in moment n.
Definition 5.16

A r.v. N , which takes values from the set
{1, 2, . . . } ∪ {∞}, is a stopping time , if {N = n} ∈ Fn,
∀n < ∞.
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Stopping time or optional random variable
(cont.)

Example 5.17 (”hitting time”)
X1,X2, . . . i.i.d., Fn := σ(X1, . . . ,Xn),
Sn := X1 + · · · + Xn. Hitting time of set A is
N := min {n : Sn ∈ A}.

Lemma 5.18
Sum, max, min of stopping times are also stopping time.

This easily comes from the definition.
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Stopping time or optional random variable
(cont.)

Now we define σ-algebra FT at stopping time T , which
mainly represent the information we know at time T .

Definition 5.19 (σ-algebra at stopping time)

FT := {A ∈ A : A ∩ {T = n} ∈ Fn} .
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Stopping time or optional random variable
(cont.)
Lemma 5.20

Let N ,T be stopping times. Then
{T ≤ n} ∈ FT , in other words T ∈ FT .
X1,X2, . . . i.i.d., Fn := σ(X1, . . . ,Xn),
Sn := X1 + · · · + Xn, Mn := max {Sm : m ≤ n}.
Then SN ,MN ∈ FN .
In general: if Yn ∈ Fn, then YT ∈ FT .
If N ≤ T, then FN ⊂ FT .
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Stopping time or optional random variable
(cont.)

Proving the above statements is homework.
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Theorem 5.21

Let X1,X2, . . . i.i.d., Fn = σ {X1, . . . ,Xn}, N a stopping
time (independent of {Xi}). Conditionally for {T < ∞}:
{XN+n, n ≥ 1} are independent of FN and have the same
distribution as Xn.
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bet= $1 till a stopping time
Given a stopping timeT and in every game the bet is
only $1. We stop the game at time T . Let

Hm :=
 1, if m ≤ T ;

0, if m > T .

We claim that Hm ∈ Fm−1 , so Hm is predictable by
definition on slide 66. Namely,

{Hm = 0} =
m−1⋃
k=1

{T = k} ∈ Fm−1.

So, we can use Theorem 5.14: Hence we cannot win
much with this strategy either.
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Theorem 5.22

Let us assume, that Mn is martingale, supermartingale or
submartingale for σ-algebra Fn and let T be a stopping
time. Then the stopped process Mn∧T is also
martingale, supermartingale or submartingale for Mn,
where

T ∧ n := min {T , n} .
Furthermore,

(a) Mn is martingale =⇒ E [MT∧n] = E [M0],
(b) Mn is supermartingale =⇒

E [MT∧n] ≤ E [M0],
(b) Mn submartingale =⇒ E [MT∧n] ≥ E [M0].
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Proof

Let W0 := M0. Then by definition of Wn

Wn = M0 +
n∑

m=1
Hm(Mm − Mm−1) = MT∧n.

Namely,
if T ≥ n, then Wn = Mn and
if T ≤ n, then Wn = MT .

Using this, Theorems 5.14 and 5.15 we get the
statement. Parts (a), (b), (c) come from Lemma 5.13.
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Exit distributions
Now we are going to see an application of Theorem 5.22
and examine in the general case, that when can we
substitute MT∧n in part (a) of Theorem 5.22 into MT .

Given: a, b ∈ Z, a < b, X1,X2, . . . i.i.d. and

P (Xi = −1) = P (Xi = 1) = 1
2 .

Let Sn := S0 + X1 + · · · + Xn and

τ := min {n : Sn ∈ (a, b)} .
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Exit distributions (cont.)

Obviously: Sn is martingale and τ is stopping time. If we
want to compute Ex [τ ], then we can use the following
heuristic:

(25) x ?= Ex [Sτ ] = a ·Px (Sτ = a)+b ·(1−Px (Sτ = a)).

If this is true, then:

(26) Px (Sτ = a) = b − x
b − a .
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Exit distributions (cont.)

The argument above is just a heuristic because Theorem
5.22 only guarantees x = Sτ∧n instead of the first
equality in formula (25). When can we omit ∧n ? First
let us see an example, when we cannot:

Let Va := min {n : Sn = a}. Recall that we have proven
in file A, that ∀N > 0:

(27) P1 (VN < V0) = 1
N .
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Exit distributions (cont.)

So P1 (V0 < ∞) = 1. For some n ∈ N:

T := V0 and T̃n := min {V0,Vn} .

Then T and T̃n are obviously stopping times. It can be
seen from formula (27), that

E1

[
ST̃n

]
= 0 · P1 (V0 < Vn) + n · P1 (Vn < V0)︸ ︷︷ ︸

1/n

= 1 .
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Exit distributions (cont.)

So here we could leave ∧n. But

1 ̸= 0 = E1 [ST ] .

So we could not cancell ∧n of T . The next theorem
shows us when we can leave ∧n.
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Exit distributions (cont.)

Theorem 5.23

Let us assume, that Mn is a martingale and T is a
stopping time, for which

P (T < ∞) = 1 and
∃K : |MT∧n| ≤ K.

Then E [MT ] = E [M0] .
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Exit distributions (cont.)

Proof
From Theorem 5.22:

E [M0] = E [MT∧n]=E [MT ; T ≤ n]+E
[

Mn︸︷︷︸
≤|MT∧n|≤K

; T > n
]
.

So

(28) |E [M0] − E [MT ; T ≤ n]| ≤ KP (T > n) → 0.
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Theorem 5.24 (Doob’s Optional Stopping Theorem)

Let X be a supermartingale and T be a stopping time. If
any of the following conditions holds

(i) T is bounded.
(ii) X is bounded and T < ∞ a.s..
(iii) E [T ] < ∞ and X has bounded increments.

then
(a) XT ∈ L1 and E(XT ) ≤ E [X0].
(b) If X is a martingale then E(XT ) = E [X0] .
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Proof (cont.)
On the other hand,

(29) E [MT ] − E [MT ; T ≤ n] = E [MT ; T > n] .

Using that
|E [MT ; T > n]| ≤

∞∑
k=n+1

|E [Mk ; T = k]|

=
∞∑

k=n+1
|E [Mk∧T ; T = k]|

≤ K · P (T > n) → 0 .

By combining formulas (28) and (29) completes the
proof. 88 / 114
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Wald equality

Let X1,X2, . . . be i.i.d., E [Xi ] = µ. Let
Sn := S0 + X1 + · + Xn. We know, that then Mn − nµ is
a martingale for Xn.
Theorem 5.25 (Wald’s equation)
If T is a stopping time with E [T ] < ∞ then

E [ST − S0] = µE [T ] .

Proof can be found in (see [3]).
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Convergence
Theorem 5.26 (Convergence theorem)

If Xn ≥ 0 is a supermartingale, then X∞ := limn→∞ Xn exists
and E [X∞] ≤ E [X0].

Before the proof of the theorem, we need the following
lemma, which is called Doob’s martingale inequality.
Lemma 5.27
Let Xn ≥ 0 be a supermartingale and λ > 0. In this case:

(30) P
(
max
n≥0

Xn > λ

)
≤ E [X0] /λ.
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Proof of the lemma
Let T := min {n : Xn > λ} . Observe that

(31) {T < ∞} =
{
max
n≥0

Xn > λ

}

Let An := {ω ∈ Ω : T (ω) < n}. Then
(32) XT (ω)∧n(ω) = XT (ω)(ω) > λ if ω ∈ An

It comes from Theorem 5.22, that
E [X0] ≥ E [XT∧n] ≥ E [XT ; A] ≥ λP (An) . So ,

∀n : P (T < n) = P (An) ≤ E [X0] /λ.
Hence P (T < ∞) ≤ E [X0] /λ . And this completes the
proof of the lemma by (31). ■ 91 / 114
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Draft of the proof of Theorem 5.26

Let S0 := 0, a < b and let us define the following
stopping times:

Rk : = min {n ≥ Sk−1 : Xn ≤ a}
Sk : = min {n ≥ Rk : Xn ≥ b} .

By a similar reasoning as in the proof of the previous
lemma can we get that:

P (Sk < ∞|Rk < ∞) ≤ a
b .
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Draft of the proof of Theorem 5.26 (cont.)

Iterating this

P (Sk < ∞) ≤
(a

b

)k
→ 0 exponentially fast.

So Xn only cuts interval [a, b] from under finitely many
times. Let

Y := lim infn→∞ Xn and Z := lim sup
n→∞

Xn
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Draft of the proof of Theorem 5.26 (cont.)

If P (Y < Z ) > 0 was true, then for some a < b it
would also be:

P (Y < a < b < Z ) > 0.

In this case Xn would cross the interval [a, b] from below
a to above b infinitely many times, which is not possible,
so limit X∞ = limn→∞ Xn exists. Moreover, for all n, M:

E [X0] ≥ E [Xn] ≥ E [Xn ∧ M] → E [X∞ ∧ M] .
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Draft of the proof of Theorem 5.26 (cont.)

So
E [X0] ≥ E [X∞ ∧ M] ↑ E [X∞] .
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Polya’s Urn,
Given an urn with initially contains: r > 0 red and g > 0
green balls.

(a) draw a ball from the urn randomly,
(b) observe its color,
(c) return the ball to the urn along with

c new balls of the same color .
If c = 0 this is sampling with replacement.
If c = −1 sampling without replacement.

From now we assume that c ≥ 1. After the n-th draw
and replacement step is completed:
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Polya’s Urn, (cont.)

the number of green balls in the urn is: Gn .
the number of red balls in the urn is: Rn .
the fraction of green balls in the urn is Xn .
Let Yn = 1 if the n-th ball drawn is green.
Otherwise Yn := 0.
Let Fn be the filtration generated by Y = (Yn).
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Polya’s Urn, (cont.)
Claim 1
Xn is a martingale w.r.t. Fn.

Proof Assume that

Rn = i and Gn = j

Then
P
(
Xn+1 = j + c

i + j + c

)
= j

i + j ,

and
P
(
Xn+1 = j

i + j + c

)
= i

i + j .
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Polya’s Urn, (cont.)
Hence

(33) E [Xn+1|Fn] = j + c
i + j + c · j

i + j + j
i + j + c · i

i + j

= j
i + j = Xn .

□

Corollary 5.28
There exists an X∞ s.t. Xn → X∞ a.s..

This is immediate from Theorem 5.26.
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Polya’s Urn, (cont.)
In order to find the distribution of X∞ observe that:

The probability pn,m of getting green on the first m
steps and getting red in the next n − m steps is the
same as the probability of drawing altogether m
green and n − m red balls in any particular
redescribed order.

pn,m =
m−1∏
k=0

g + kc
g + r + kc ·

n−m−1∏
ℓ=0

r + ℓc
g + r + (m + ℓ)c
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Polya’s Urn, (cont.)
If c = g = r = 1 then

P(Gn = m + 1) =
n

m

m!(n − m)!
(n + 1)! = 1

n + 1 .

That is X∞ is uniform on (0, 1): In the general case X∞
has density

Γ((g + r)/c)
Γ(g/c)Γ(r/c)x (g/c)−1(1 − x)(r/c)−1.

That is the distribution of X∞ is Beta
(g

c ,
r
c
)
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Review
Recall that Γ(α) =

∞∫
0

e−yyα−1dy .
Density function of Gamma distribution with parameter ,
(α, λ):

f (x) =


λe−λx (λx)α−1

Γ(α) , if x ≥ 0;
0, if x < 0.

For α, β > 0 parameters the β-distribution Beta(α, β) is

(34) fα,β(x) =


1
B(α,β)x

α−1(1 − x)β−1, if x ∈ [0, 1];
0, otherwise,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) .
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Application

Let U1, . . . ,Un be i.i.d. Ui ∼ Uni(0, 1). Let U(k) be the
k-th smallest of them. Then

U(k) ∼ Beta(k , n + 1 − k).
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kattintson ide.

[3] R. Durrett
Probability Theory with examples, Second edition
Duxbury Press, 1996 . második kiadás.

105 / 114

http://www.math.bme.hu/~balazs/vsz1jzetb-t.pdf
http://www.math.bme.hu/~balazs/vsz1jzetb-t.pdf
http://www.math.duke.edu/~rtd/EOSP/EOSP2E.pdf
http://www.math.duke.edu/~rtd/EOSP/EOSP2E.pdf


References

[4] I.I. Gihman, A.V. Szkorohod
Bevezetés a sztochasztikus folyamatok elméletébe
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[13] G. Zitkovic Theory of Probabilty I, Lecture 7
Click here

108 / 114

http://www.nas.its.tudelft.nl/people/Piet/CUPbookChapters/PACUP_Poisson.pdf
http://www.nas.its.tudelft.nl/people/Piet/CUPbookChapters/PACUP_Poisson.pdf
http://www.math.bme.hu/~balint/oktatas/sztochasztikus_folyamatok/
https://www.ma.utexas.edu/users/gordanz/notes/conditional_expectation.pdf


References

Example
This is an example for conditional expectation.
Example
We define the probability pace (Ω,A,P) as follows:

Ω := [0, 1]2

A is the σ-algebra of Borel sets on [0, 1]2

P := L2|[0,1]2. The two-dimensional Lebesgue
measure (area on the plane) restricted to the unit
square.

So, an element ω of the sample space Ω is of the form
ω = (x , y) ∈ [0, 1]2.
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Example (cont.)
Let S be the random variable defined by
S(x , y) := x + y . This is a random variable (r.v.)
since this is a measurable function from (Ω,A,P) to
R.
Let F ⊂ A be the σ-algebra defined by B × [0, 1],
where B the Borel σ-algebra on the unit interval
[0, 1].

Let Z := E [S|F ] . Then
(a) Z ∈ F and
(b)

∫
A

SdP =
∫
A

ZdP for all A ∈ F .
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Example (cont.)
The meaning of condition (a) is as follows: Clearly the
function Z : [0, 1]2 → R is measurable with respect to F
(that is Z ∈ F) if both of the following two conditions
hold:

(i) Z (x , y1) = Z (x , y2) holds for all y1, y2 ∈ [0, 1],
(Z (x , y) is constant on vertical lines)

(ii) x 7→ Z (x , 0) is Borel measurable.
The meaning of condition (b) is:

(35)
∫
A

Z (x , y)dxdx =
∫
A

S(x , y)dxdy , ∀A ∈ F .
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Example (cont.)
If A ∈ F then A is of the form: A = B × [0, 1], where
B ⊂ [0, 1] Borel set. It is enough to check that (35)
holds only for the sets of the form [a, b] × [0, 1]. For
these sets (35) reads like

(36)
b∫

a

1∫
0

Z (x , y)dydx =
b∫

a

1∫
0

S(x , y)dydx =
b∫

a

1∫
0

(x + y)dydx .
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Example (cont.)
Using (i) from the one but last slide:
b∫

a

1∫
0

Z (x , y)dydx =
b∫

a
Z (x , 0)dx . On the other hand,

using that
1∫

0
(x + y)dy = x

2 + 1
6 we obtain that

(37)
b∫

a

1∫
0

(x + y)dydx =
b∫

a

(x
2 + 1

6
)

dx .

That is by (36) the two yellow formulas are equal for all
0 ≤ a < b ≤ 1. We use this for b = a + ∆x :
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Example (cont.)

(38)
a+∆x∫

a
Z (x , 0)dx =

a+∆x∫
a

(x
2 + 1

6

)
dx

We divide by ∆x on both sides and we let ∆x → 0 we
get from Newton-Leibnitz formula that

(39) Z (x , y) = Z (x , 0) = x
2 + 1

6 ∀(x , y) ∈ [0, 1]2.
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