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1 We collect a lot of natural examples, which can be
studied by the theory of Markov chains.

2 We introduce the most important notions and most
important theorems.

3 Compute the stationary distributions.
4 Recurrence properties of Markov chains.
5 We study the death and birth processes as a special

case of reversible Markov chains.
6 Exist distributions for absorbing Markov chains.
7 Branching processes.
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Examples of Markov chains

Gambler’s ruin
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Examples of Markov chains

Gambler’s ruin (cont.)
Example 1.1

We start with a gambling game, in which in every turn:
we win $1 with probability p = 0.4,
we lose $1 with probability 1 − p = 0.6.

The game stops if we reach a fixed amount of N = $4 or
if we lose all our money.

We start at $X0, where X0 ∈ {1, 2, 3}.
Let Xn be the amount of money we have after n turns.
In this case
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Examples of Markov chains

0 1 2 3 41
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1

Xn has the ”Markov property” . That is:
if we know Xn, any other information about the past is
irrelevant for predicting the next state of Xn+1. Thus:

(1) P
(
Xn+1 = j

∣∣∣ Xn = i , Xn−1 = bn−1, . . . , X0 = b0
)

= P
(
Xn+1 = j

∣∣∣ Xn = i
)

.
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Examples of Markov chains

Homogeneous discrete-time Markov chain
Definition 1.2
Let S be a finite or a countably infinite (we call it
countable) set. We say that Xn is a (time) homogeneous
discrete-time Markov chain on state space S, with
transition matrix P = p(i , j), if for any n, and any
i , j , bn−1, . . . , b0 ∈ S:

(2) P
(
Xn+1 = j

∣∣∣Xn = i , Xn−1 = bn−1, . . . , X0 = b0
)

= p(i , j)

We consider only time homogeneous Markov chains and
some times we abbreviate them MC. 7 / 149



Examples of Markov chains

Initial distribution
A Markov chain is determined by its initial distribution
and its transition matrix . The initial distribution
α = (αi)i∈S , (αi ≥ 0, ∑

i∈S
αi = 1) is the distribution of

the state from which a Markov chain starts. When we
insist that the Markov chain starts from a given i ∈ S (in
this case αi = 1 and αj = 0 for j ∈ S, j ̸= i) then all
probabilities and expectations are denoted by

Pi (·) ,Ei [·] .

In some cases, we write Pα (·) , Eα [·] or we specify the
initial distribution α in words, and then we write simply
P (·) ,E [·].
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Examples of Markov chains

In the Gambler’s ruin example, if N = 4 then the
transition matrix P is a 5 × 5 matrix

0 1 2 3 4
0 1 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1

Here and many places later, the bold green numbers like
0, . . . , 4 are the elements of the state space. So, they are
NOT part of the matrix. They are the indices. The
matrix above is a 5 × 5 matrix. For example: p(0, 0) = 1
and p(3, 4) = 0.4.
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Examples of Markov chains

A simulation with Mathematica

Figure: Gamblar’s ruin simulation
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Examples of Markov chains

Andrey Markov, 1856 – 1922
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Examples of Markov chains

Ehrenfest chain
Example 1.3

We have two urns (left and right urn), in which there are
a total of N balls. We pick a random ball and take it
into the other urn. Let Xn be the number of balls in the
left urn after the nth draw. Xn has the Markov-property,
because

p(i , i + 1) = N − i
N , p(i , i − 1) = i

N if 0 ≤ i ≤ N

and p(i , j) = 0 otherwise.
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Examples of Markov chains

N = 4, the corresponding graph and transition matrix:

0 1 2 3 4
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1
4
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4
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1
2

3
4

1
4

1

0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0 13 / 149



Examples of Markov chains

A simulation with Mathematica

Figure: A simulation for Ehrenfest chain simulation14 / 149



Examples of Markov chains

Another simulation with Mathematica

Figure: Another simulation for Ehrenfest chain simulation
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Examples of Markov chains

The Mathematica code for the previous
two simulations
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Examples of Markov chains

Compare the previous two chains I.
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Figure: Gambler’s ruin chain:
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Figure: Ehrenfest chain
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Examples of Markov chains

Compare the previous two chains II.
First, we consider the Gambler’s ruin case. Let us say we
start from state 2. In the gambler’ ruin case with
probability 0.16 we reach state 4 in two steps, and with
probability 0.36 we reach state 0 and then we stay there
forever. Therefore the states 0 and 4 are absorbing
states . That is the probability that starting from 2 we
ever return to 2 at least one more time is less than
p := 0.48 = 1 − (0.16 + 0.36). Then after the first
return, everything starts as before independently. So, the
probability that we return to 2 at least twice is less than
p2, and similarly, the probability that we return to 2 at
least n times is less than pn.
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Examples of Markov chains

Compare the previous two chains III.

So, the probability that we return to 2 infinitely many
times is limn→∞ pn = 0. That is starting from 2, we visit 2
only finitely many times almost surely. We call those
states where we return only finitely many times almost
surely, transient states . Since the same reasoning
applies for states 1, 3 we can see that in the Gambler’s
ruin example, states 1, 2, 3 are transient. The states
where we return infinitely many times almost surely are
called recurrent . Every state is either transient or
recurrent.
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Examples of Markov chains

Compare the previous two chains IV.
We spend only finite time at each transient states. So, if
the state space S is finite, then we spend finite time
altogether at all transient states together. This implies
that
for a finite state MC we always have recurrent states .
Clearly the absorbing states {0, 4} are always recurrent
states. The following interesting questions will be
answered later. To answer the first of the following two
problems we need to learn about the so-called
exit distributions and to answer the second one we need
to study the so-called exit times .
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Examples of Markov chains

Compare the previous two chains V.
Problem 1.4

Starting from 2 what is the probability that the gambler
eventually wins? That is she gets to 4?

We answer this on slide 59 in File MC 2, see also slide 48.
Problem 1.5

Starting from 2, what is the expected number of steps
until the gambler gets to either 0 (ruin) or to 4
(success)?

We answer this question on slide 93 in the following File.
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Examples of Markov chains

Compare the previous two chains VI.
Now we turn to the Ehrenfest chain:
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Figure: Ehrenfest chain

We consider the case again when we start from state 2.
Then with 1/2-1/2 probability, we jump to either state 1
or 3.

22 / 149



Examples of Markov chains

Compare the previous two chains VII.
The probability that we do not return to 2 in any of the
next 2n steps is (1/4)n. So, the probability that we
actually never return to state 2 is limn→∞

(1
4
)n = 0. So we

return to 2 almost surely. But when we are at 2 then the
whole argument repeats. So we obtain that we return to
2 infinitely many times almost surely. This means that 2
is a recurrent state. With a very similar argument, one
can show that the same holds for all the other states.
This means that all of the states are recurrent. In this
case, we can reach from every state to every state with
positive probability (after some steps). In such a
situation we say that the MC is irreducible .
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Examples of Markov chains

Compare the previous two chains VII.
Here we can ask the following question:
Problem 1.6

What is the expected number of steps so that starting
from i ∈ {0, . . . , 4} we get back to i for the first time?

The answer is the reciprocal of the i-th component of the
so-called stationary distribution which is a probability
vector π = (πi)i∈S , πi ≥ 0, ∑

i∈S
πi = 1 satisfying:

(3) πT · P = πT

Question: When do we have stationary distributions?
24 / 149



Examples of Markov chains

Theorem 1.7

Assume that card(S) = k, finite , and we also assume
that the probability transition matrix P is irreducible .
Then there is a unique stationary distribution with all
components positive. That is, there exists a unique
π = (πi)i∈S such that ∑

i∈S
πi = 1 and πi > 0 for all i ∈ S .

This follows from Theorem 7.4 (Perron-Frobenius
Theorem). However, since the proof is very nice I present
it here.
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Examples of Markov chains

Proof of Theorem 1.7, Slide I
Let I be the k × k identity matrix. Since the rows of
P − I add to 0 , the rank of the matrix P − I is less than
or equal to k − 1, and there is a vector v ̸= 0 such that
vT · P = vT . Consider the MC with probability
transition matrix

Q = 1
2(I + P) .

This stays put with probability 1
2 and takes a step

according to P with also probability 1
2 (so-called lazy

chain). Let R := Qk−1 .

(4) vT · P = vT =⇒ vT · Q = vT and vT · R = vT .

Now we prove that all elements of R are positive. .26 / 149



Examples of Markov chains

Proof of Theorem 1.7 Slide, II
The irreducibility of P implies the existence of a path, in
the associated directed graph, from x to y , for every
x ̸= y , x , y ∈ S. Consider the shortest path between x
and y in the MC corresponding to P. It does not go
through twice on any element of S. So, the length of the
shortest path is at most k − 1. Since we can stay put in
the Markov chain corresponding to Q (the lazy chain) at
any states for any time, we get that there is a path
between any x ̸= y in R of length k − 1. The same
clearly holds also for x = y . This implies that for
R = (r(x , y))x ,y∈S ,

(5) r(x , y) > 0, x , y ∈ S . 27 / 149



Examples of Markov chains

Proof of Theorem 1.7 Slide, II

We defined the vector v by vT · P = vT , v ̸= 0 . Clearly
all (non-zero) constant multiple of v satisfies this
equation. Hence, we may assume that at least one of the
components of v is positive. Now we prove that

(6) v(x) > 0, ∀x ∈ S.
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Examples of Markov chains

Proof of Theorem 1.7 Slide, III
Assume that there are both negative and positive
components of v . Then by vT = vT · R and r(x , y) > 0
for all x , y ∈ S we get
(7)

|v(y)| =
∣∣∣∣∣∑x v(x)r(x , y)

∣∣∣∣∣< ∑
x

|v(x)| r(x , y), ∀y ∈ S.

Now we use that R is a stochastic matrix, so all row
sums are equal to 1. That is ∑y∈S r(x , y) = 1, for all
x ∈ S. Hence, by inequality (7):∑

y
|v(y)| <

∑
x

|v(x)| ,

which is a contradiction. This completes the proof of (6).
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Examples of Markov chains

Proof of Theorem 1.7 Slide, IV
Now we prove the uniqueness of the stationary
distribution. This follows from the fact that

(8) rank(P − I) = k − 1.

Namely, rank(P − I) ≤ k − 1 has already been verified.
If rank(P − I) < k − 1 then there exists a vector w ̸= 0,
w ⊥ v with wT · P = wT . We get, as above, that all the
coordinates of w have the same sign let say all
coordinates are positive. But then w ⊥ v cannot
happen. This completes the proof of the uniqueness.
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Examples of Markov chains

Mathematica code for the stationary
distribution
In this special case we use Mathematica we get
π =

( 1
16 , 1

4 , 3
8 , 1

4 , 1
16
)

.
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Finding Stationary distributions (simple cases)

1 Examples of Markov chains

2 Finding Stationary distributions (simple cases)

3 Chapman-Kolmogorov equation

4 The most important notions and the main theorems without proofs
The most important notions
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Definitions
Path diagram
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6 Limit Theorems
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Limit theorems for finite state space
Instead of proofs

7 Linear algebra
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Further examples
What if not aperiodic?
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Finding Stationary distributions (simple cases)

Weather chain
Let Xn be the weather on day n on a given island, with

(9) Xn :=
 1, if day n is rainy;

2, if day n is sunny

1 2

0.4

0.6 0.8

0.2

1 2
1 0.6 0.4
2 0.2 0.8

Question: What is the long-run fraction of sunny days?33 / 149



Finding Stationary distributions (simple cases)

π for the Weather chain

For weather chain: P =
 0.6 0.4

0.2 0.8

. We are looking for

a random vector πππ = (π1, π2) for which:

(π1, π2) ·
 0.6 0.4

0.2 0.8

 = (π1, π2).

The solution is πππ = (1
3 , 2

3). This follows from the general
result about the stationary distribution of two-states MC:
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Finding Stationary distributions (simple cases)

Stationary state for general two states MC

Lemma 2.1

A two-state MC’s transition matrix can be written in the
following way:

P =
 1 − a a

b 1 − b


Then the stationary distribution is πππ =

( b
a+b , a

a+b
)
.

The proof is trivial.
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Finding Stationary distributions (simple cases)

Social mobility chain
Let Xn be a family’s social class in the nth generation, if
lower class:1 middle class:2 upper class:3

1

2

30.7

0.
2

0.1

0.
3

0.5

0.2

0.2

0.4

0.4

1 2 3
1 0.7 0.2 0.1
2 0.3 0.5 0.2
3 0.2 0.4 0.4

Question: Do the fractions of people in the three
classes stabilize after a long time?
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Finding Stationary distributions (simple cases)

For the social mobility chain

For the social mobility chain P =


0.7 0.2 0.1
0.3 0.5 0.2
0.2 0.4 0.4

 the

equation of πππT · P = πππT is

0.7π1 + 0.3π2 + 0.2π3 = π1
0.2π1 + 0.5π2 + 0.4π3 = π2
0.1π1 + 0.2π2 + 0.4π3 = π3

The 3rd equation gives us no more information than we
have already known. So, we can throw it away, and we
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

replace it with the condition that the sum of the
components of πππ equals to 1. We obtain after this
replacement:

(10)
0.7π1 + 0.3π2 + 0.2π3 = π1
0.2π1 + 0.5π2 + 0.4π3 = π2

π1 + π2 + π3 = 1
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)
After straightforward algebraic manipulations we get:

(11)
−0.3π1 + 0.3π2 + 0.2π3 = 0

0.2π1 + −0.5π2 + 0.4π3 = 0
π1 + π2 + π3 = 1

πππT · A = (0, 0, 1),
where πππT is a row vector and

A :=


−0.3 0.2 1

0.3 −0.5 1
0.2 0.4 1


39 / 149



Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)
So

(12) πππT = (0, 0, 1) · A−1

Steps of computing vector πππ:
1 Start with the transition matrix P,
2 subtract 1 from its diagonal elements,
3 replace the last column with the vector whose all

elements are equal to 1.
4 The matrix that we obtained is called A.
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

5 By formula (12): The last row of matrix A−1 is πππ.
In the case of the social mobility chain:

A−1 =


−90

47
20
47

70
47

−10
47 −50

47
60
4722

47
16
47

9
47

 .

And from it: πππ =
(22

47 , 16
47 , 9

47
)

.
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Chapman-Kolmogorov equation
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Chapman-Kolmogorov equation

Multistep transition probabilities

Let pm(i , j) be the probability that the Markov chain
with transition matrix P = p(i , j), starting from state i
is in state j after m steps .

(13) pm(i , j)
in general

̸= p(i , j) · · · p(i , j)︸ ︷︷ ︸
m
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

We would like to compute the m-step transition matrix
with P.
First observe that

(14) pm+n(i , j) = ∑
k

pm(i , k) · pn(k , j) .

This is called the Chapman-Kolmogorov equation.
The proof is obvious from the following Figure:
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

Figure: The Figure is from [2]
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

Theorem 3.1

The m-step transition probability P (Xn+m = j |Xn = i) is
the (i , j)-th element of the m-th power of the transition
matrix.
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Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

In the Gambler’s ruin example, where the transition
matrix was:

P 0 1 2 3 4
0 1 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1

47 / 149



Chapman-Kolmogorov equation

Multistep transition probabilities (cont.)

The limn→∞ Pn limit also exists, and we will see that it
equals to:

limn→∞ Pn 0 1 2 3 4
0 1 0 0 0 0
1 57/65 0 0 0 8/65
2 45/65 0 0 0 20/65
3 27/65 0 0 0 38/65
4 0 0 0 0 1
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Chapman-Kolmogorov equation

In the Ehrenfest chain example, where the transition
matrix was:

0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0

The limn→∞ Pn limit does NOT exist.
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The most important notions and the main theorems without proofs

1 Examples of Markov chains
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The most important notions and the main theorems without proofs The most important notions

A square matrix P is a stochastic matrix if all
elements are non negative and all the row-sums are
equal to 1.
For a stochastic matrix P we obtain the
corresponding adjacency matrix AP by replacing all
non-zero elements of P by 1. So, if

P =


0 0.5 0.5

0.2 0.1 0.7
0.7 0.3 0

 then AP =


0 1 1
1 1 1
1 1 0



51 / 149



The most important notions and the main theorems without proofs The most important notions

We are given a Markov Chain (MC) Xn with (finite
or countably infinite) state space S and transition
matrix P = (p(i , j))i ,j∈S (which is always a
stochastic matrix).
We write

Px(A) := P (A|X0 = x) .

Ex notates the expected value for the probability
Px .
The time of the first visit to y :

Ty := min {n ≥ 1 : Xn = y}
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The most important notions and the main theorems without proofs The most important notions

So, even if we start from y , Ty ̸= 0.
Let i , j ∈ S , where S is the state space. We say
that i and j communicate if there exists an n and
an m such that pn(i , j) > 0 and pm(j , i) > 0.
Observe that ”communicates with” is an
equivalence relation. The classes of the
corresponding partition of S are called
communication classes or simply classes .
If there is only one communication class (everybody
communicates with everybody) then we say that the
Markov Chain (MC) is irreducible .
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The most important notions and the main theorems without proofs The most important notions

Consider the MC with S := {1, 2, 3, 4} and

P :=


0 0.4 0 0.6

0.5 0 0.5 0
0 0.3 0 0.7

0.1 0 0.9 0

. Then

P2 =


0.26 0. 0.74 0.
0. 0.35 0. 0.65

0.22 0. 0.78 0.
0. 0.31 0. 0.69

 This chain is

irreducible because for every i , j ∈ S either
p(i , j) > 0 or p2(i , j) > 0 (here p2(i , j) is the
(i , j)-th element of P2.
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The most important notions and the main theorems without proofs The most important notions

The corresponding adjacency matrices for every n
are:

AP2n−1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , AP2n =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


For the chain above the greatest common divisor
(gcd):

(15) gcd {n : pn(i , i) > 0} = 2 for ∀i ∈ S.
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The most important notions and the main theorems without proofs The most important notions

Then we say that the period of every state is 2. In
general, the period of state i is

di := gcd {n : pn(i , i) > 0} .

We will see that in a communication class all
elements have the same period. So, for an
irreducible MC all elements have the same period. If
this period is equal to 1 then we say that the
irreducible chain is aperiodic .
We say that a state i ∈ S is transient if the MC
returns to i finitely many times almost surely.
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The most important notions and the main theorems without proofs The most important notions

We say that a state i ∈ S is recurrent if the MC
returns to i infinitely many times almost surely.
Every state is either recurrent or transient.
If an element of a communication class is recurrent
then all other elements of this class are also
recurrent. These classes are the recurrent classes ,
while the other classes are the transient classes .
If a communication class is closed (no arrow goes
out of the class) then it is recurrent class. The
non-closed communication classes are the transient
class.
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The most important notions and the main theorems without proofs The most important notions

Let i ∈ S be a recurrent state. We say that i is
positive recurrent if the expected time of the first

return to i (starting from i) is finite.
Let i ∈ S be a recurrent state. We say that i is
null recurrent if the expected time of the first
return to i (starting from i) is infinite.
A state i ∈ S is ergodic if i aperiodic and positive
recurrent.
A Marov chain is ergodic if all of it states are
ergodic. In particular, a Markov chain is ergodic if
there is an N0 such that for every m ≥ N0 for every
i , j ∈ S the state j can be reached from i in m steps.
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The most important notions and the main theorems without proofs The most important notions

A state i ∈ S is absorbing if pii = 1 (we cannot go
anywhere from this state, it is a trap).
A Markov Chain is absorbing if every state can
reach an absorbing state.
Stationary distribution π is a probability measure
on S (π(i) ≥ 0 and ∑

i∈S
π(i) = 1) which satisfies:

(16) πT · P = πT

Convention: every vector is a column vector. When
I need a row vector, I write transpose of the vector
as above.
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The most important notions and the main theorems without proofs The most important notions

An example of irreducible classes
Example 4.1

1 2 3 4 5 6 7
1 0.7 0 0 0 0.3 0 0
2 0.1 0.2 0.3 0.4 0 0 0
3 0 0 0.5 0.3 0.2 0 0
4 0 0 0 0.5 0 0.5 0
5 0.6 0 0 0 0.4 0 0
6 0 0 0 0 0 0.2 0.8
7 0 0 0 1 0 0 0
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The most important notions and the main theorems without proofs The most important notions

Let us create a graph whose vertices are the elements of
state space S = {1, . . . , 7} and it has directed edge (i , j)
if p(i , j) > 0. A ⊂ S is closed if it is impossible to get
out. So

i ∈ A and j ̸∈ A then p(i , j) = 0.

In the example above: sets {1, 5} and {4, 6, 7} are
closed, so is their union, and even {1, 5, 4, 6, 7, 3} and S
itself are closed too.
B ⊂ S is irreducible if any two of its elements
communicate with one another: ∀i , j ∈ B, i ⇝ j .
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The most important notions and the main theorems without proofs The most important notions

So, in the graph we can get from every
element of B to any other through
directed edges; and the irreducible and
closed sets are: {1, 5} and {4, 6, 7}.
That is the irreducible classes are:
{1, 5} and {4, 6, 7}.
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Canonical from of non-negative matrices Definitions

Definitions I
Here we follow Senata’s book [8, Section 1.2]. For a
k ≥ 1 we use the shorthand notation

[k] := {1, . . . , k} .

We consider here only square matrices with non-negative
elements. If we replace all positive elements of such a
matrix to get its adjacency matrix . That is the
adjacency matrix is a 0 − 1 matrix. Let A = (ai ,j)n

i ,j=1 be
an n × n adjacency matrix. Then ai ,j ∈ {0, 1}.
We say that i , i1, . . . , ik−1, j is a chain of length of k
between i and j if

ai ,i1 · ai1,i2 · · · aik−1j = 1. 64 / 149



Canonical from of non-negative matrices Definitions

Definitions II

We can associate a directed graph GA = (E , V ) with
the adjacency matrix A such that

1 the set of vertices V = [n] and
2 the set of edges E is defined as follows: there is

directed edge between vertices i , j if and only if
ai ,j = 1.

In this way i , i1, . . . , ik−1, j is a chain of length of k
between i and j if and only if i , i1, . . . , ik−1, j is a chain of
length of k in the directed graph GA.
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Canonical from of non-negative matrices Definitions

Definitions III
Definition 5.1
We write

1 i → j if there is a path between i and j . Then i
and j communicate. If i ̸→ j then i and j does not
communicate.

2 i ↔ j if i → j and j → i .
3 i is transient if ∃j such that i → j but j ̸→ i
4 recurrent states are does which are NOT transient.
5 For a C ⊂ [n] we say that

1 C is irreducible if i ↔ j for all i , j ∈ [n].
2 C is closed if ∀i , j ∈ [n] i ∈ C , j ̸∈ C implies that i ̸→ j .
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Canonical from of non-negative matrices Definitions

If i is a recurrent state and i ↔ j then j is also a
recurrent state.

1 The recurrent states form classes in which
everybody communicates with everybody and a
member of such a clas does not communicate to
anyone out of the clas. These classes are the
recurrent self-communication classes.

2 Those transient states which communicate with
some other states can be divided into transient
classes such that any two member of such a class
communicate. These are the transient
communication classes.

3 There can be transient states that do not
communicate with any one. They together form a
class let us call it inessential class. 67 / 149



Canonical from of non-negative matrices Path diagram

Path-diagram I
The path diagram for the incidens matrix A = (ai ,j)n

i ,j=1:
1 Start with index 1. This is the first stage , and

determine all j for which a1,j = 1 . These j ’s form
the second stage .

2 Starting from all such j repeat the previous
procedure to form stage 3 and so on.

3 Stop when an index appears second time.
4 The diagram terminates when every index which

appears in the diagram has been repeated.
5 If some indices were left over start with any of them

and draw a similar diagram regarding the indices of
the previous diagrams as ”occoured in a previous
stage”. 68 / 149



Canonical from of non-negative matrices Path diagram

Path-diagram III
Now we follow all of these on an axample:
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Canonical from of non-negative matrices Path diagram

Path-diagram IV
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Canonical from of non-negative matrices Path diagram

Path-diagram V
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Canonical from of non-negative matrices Path diagram

Recurrent and tarnsient
self-communication classes

1 Diagram 1 =⇒ {3, 7} recurrent class, {1, 2}
transient class.

2 Diagram 2 =⇒ {4, 9} recurrent class,
3 Diagram 3 =⇒ {5} recurrent class,
4 Diagram 4 =⇒ {6} transient class,
5 Diagram 5 =⇒ {8} transient class,

The recurrent self-communication classes:
{5} , {4, 9} {3, 7} .
The transient self-communication classes:
{1, 2} , {6} , {8} .
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Canonical from of non-negative matrices Path diagram

Canonical form I
The so-called canonical form of the matrix on the
left-hand side is the matrix on the righ-hand side.
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Canonical from of non-negative matrices Path diagram

Canonical form II

Assume that a matrix T has canonical form:
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Canonical from of non-negative matrices Path diagram

Canonical form III

Then the k-th power T k of T is of the form:
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Canonical from of non-negative matrices An example

Example 5.2

A =

1 2 3 4 5 6 7
1 1

4
1
4

1
4

1
4 0 0 0

2 0 5
6 0 0 1

6 0 0
3 1

2 0 1
8

1
8

1
8

1
8 0

4 0 0 0 1 0 0 0
5 0 1

3 0 0 2
3 0 0

6 0 1
8 0 1

8
1
8

1
2

1
8

7 0 0 0 1
2 0 1

2 0

1

2

3

4

5

6

7
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Canonical from of non-negative matrices An example

1

1

2

3

4

2

5

1

3

4

5

6

4

2

5

2

4

5

6

7

4

6
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Canonical from of non-negative matrices An example

Recurrent Classes: {2, 5} and {4}

Transient Classes: {1, 3} and {6, 7}

T =

4 2 5 6 7 3 1
4 1 0 0 0 0 0 0
2 0 5

6
1
6 0 0 0 0

5 0 1
3

2
3 0 0 0 0

6 1
8

1
8

1
8

1
2

1
8 0 0

7 1
2 0 0 1

2 0 0 0
3 1

8 0 1
8

1
8 0 1

8
1
2

1 1
4

1
4 0 0 0 1

4
1
4

=
 U 03,4

V W


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Canonical from of non-negative matrices An example

That is

U =


1 0 0
0 5

6
1
6

0 1
3

2
3

 , V =


1
8

1
8

1
81

2 0 0
1
8 0 1

81
4

1
4 0

 , W =


1
2

1
8 0 0

1
2 0 0 0
1
8 0 1

8
1
2

0 0 1
4

1
4

 ,

and 03,4 =


0 0 0 0
0 0 0 0
0 0 0 0

. Let I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, and

04,4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
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Canonical from of non-negative matrices An example

π :=
(

1 2 3 4 5 6 7
7 2 6 1 3 4 5

)
, π−1 :=

(
1 2 3 4 5 6 7
4 2 5 6 7 3 1

)

Π =



0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


, Π−1 =



0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0


.

In the matrix Π in the i-th row the 1 is at the position π(i). With
this notation:
(17) T (i , j) = A(π−1(i), π−1(j)), A(i , j) = T (π(i), π(j)).
By the definition of matrix products we get

(18) T = Π−1 · A · Π .
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Canonical from of non-negative matrices An example

We know that

(19) T n =
 Un 03,4

Sn W n

 .

Moreover,
1 Using that the matrix W corresponds to the

transient states we get that limn→∞ W n = 0.

2 We learned that limn→∞ Un =


1 0 0
0 2

3
1
3

0 2
3

1
3

 =: B .

So T∞ := limn→∞ T n =
 B 03,4

X 04,4

 , where X = limn→∞ Sn .
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Canonical from of non-negative matrices An example

Using that U 0
V W

 ·
 B 03,4

X 04,4

 = T ·T∞ = T∞ =
 B 03,4

X 04,4


We get that
(20) V · B + W · X = X = I · X .

On slide 79 we defined the matrices W , I , V , B we can
compute:

(21) X = (W − I)−1 · (−V · B) =


3
7

8
21

4
215

7
4
21

2
2158

119
122
357

61
35759

119
40
119

20
119

.
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Canonical from of non-negative matrices An example

Hence,

T∞ =
 B 03,4

X 04,4

 =



1 0 0 0 0 0 0
0 2

3
1
3 0 0 0 0

0 2
3

1
3 0 0 0 0

3
7

8
21

4
21 0 0 0 0

5
7

4
21

2
21 0 0 0 0

58
119

122
357

61
357 0 0 0 0

59
119

40
119

20
119 0 0 0 0


.

Finally we get for A∞ := limn→∞ An that
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Canonical from of non-negative matrices An example

A∞ = Π · T∞ · Π−1 =



0 40
119 0 59

119
20
119 0 0

0 2
3 0 0 1

3 0 0
0 122

357 0 58
119

61
357 0 0

0 0 0 1 0 0 0
0 2

3 0 0 1
3 0 0

0 8
21 0 3

7
4
21 0 0

0 4
21 0 5

7
2
21 0 0


,

where the permutation matrices Π and Π−1 were defined
on slide 80. This implies for example that starting from 5
after very many steps, the probability that we are at 2 is
appriximately 2

3 and that we are at 5 is approximately 1
3 .
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Limit Theorems

On the following slides we state the limit theorems.
One of the important consequence of the following
theorems is that under some not restrictive conditions,
the same thing happens as on slide 48. That is limn→∞ Pn

exists and equal to a matrix whose all rows are equal to
π.
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Limit Theorems Limit theorems for countable state space

Limit Theorems (Preparation)
Given a Markov Chain (Xn) on a
state space S (finite or countably infinite)
transition matrix P = (p(i , j))i ,j∈S .
pm(i , j) : the probability that starting from i we will
be in j after m steps.

Definition 6.1 (Abbreviations used below)

I: irreducible,
A: aperiodic,
R: all states are recurrent,
S: ∃π stationary distribution. 87 / 149



Limit Theorems Limit theorems for countable state space

The Limit theorems below hold for countable state
spaces. This means that the state space S is either
countably infinite of finite.
Theorem 6.2 (Convergence Theorem)

I and A and S implies that
(a) The MC is positive recurrent,
(b) limn→∞ pn(i , j) = πππ(j), ∀i , j
(c) ∀j , πππ(j) > 0.
(d) The stationary distribution is unique.
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Limit Theorems Limit theorems for countable state space

Theorem 6.3 (Asymptotic frequency)

I and R =⇒ limn→∞
#{k≤n:Xk=j}

n = 1
Ej [Tj ] , ∀j ∈ S,

where Ej [Tj ] is the expected time of the first return to j,
starting from j.

Theorem 6.4 (π is unique)

I and S =⇒ π(j) = 1
Ej [Tj ] , ∀j ∈ S.

In particular, π is unique.

89 / 149



Limit Theorems Limit theorems for countable state space

Theorem 6.5
Let f : S → R, s.t. ∑

i∈S
|f (i)| · π(i) < ∞. Then

(22) I and S =⇒ limn→∞
1
n ·

n∑
m=1

f (Xm) =
∑
i∈S

f (i) · π(i).
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Limit Theorems Limit theorems for finite state space

The Limit theorems below hold for finite state spaces.
Theorem 6.6 (Finite state space I)

#S < ∞ and I and A then
(a) π exists and unique,
(b) πi > 0 for all i ∈ S.
(c) For every initial distribution ααα on S we have

limn→∞ αααT · Pn = πT

The proof is [7, p. 19]. If #S < ∞ then the assumptions
of the theorem are equivalent to P is primitive: (∃k s.t.
Pk > 0 that is all elements of Pk are positive.)
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Limit Theorems Limit theorems for finite state space

Theorem 6.7 (Finite state space II)
#S < ∞ and I then

(a) π exists and unique,
(b) πi > 0 for all i ∈ S.
(c) But it is not necessarily true that for every

initial distribution ααα on S we have
limn→∞ αααT · Pn = πT

We give a proof only in the very special case when
card(S) = 2 and all elements of the transition probability
matrix is positive. That is
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Limit Theorems Instead of proofs

P =
 1 − p p

q 1 − q


where 0 < p, q < 1. This matrix has eigenvalues 1 and
1 − p − q. We diagonalize P = Q · D · Q−1 , where:

Q =
 1 −p

1 q

 , Q−1 =
 q/(p + q) p/(p + q)

−1/(p + q) 1/(p + q)


D =

 1 0
0 1 − p − q

 .

The columns of Q are right eigenvectors of P and the
rows of Q−1 are left eigenvectors. The eigenvectors are
unique up to a multiplicative constant.
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Limit Theorems Instead of proofs

The constant is chosen such that the left eigenvector for
eigenvalue 1 is a probability vector:

π = (q/(p + q), p/(p + q))

is the unique invariant probability distribution for P. In
the following computation the key fact is the observation
that

(23) 1 > |1 − p − q| .
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Limit Theorems Instead of proofs

Pn =
(
QDQ−1

)n
= QDnQ−1 = Q

[
1 0
0 (1 − p − q)n

]
Q−1

=
[

[q + p(1 − p − q)n] /(p + q) [p − p(1 − p − q)n] /(p + q)
[q − q(1 − p − q)n] /(p + q) [p + q(1 − p − q)n] /(p + q)

]

Using that |1 − p − q| < 1, we get

lim
n→∞

Pn =
[

q/(p + q) p/(p + q)
q/(p + q) p/(p + q)

]
=
[

π
π

]
.
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Linear algebra

Notation

Let A = (aij) be matrix of N × N . We are assuming
from now on that A is nonnegative .
Hence aij ≥ 0.

a(m)
ij denotes element (i , j) of matrix Am.
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Linear algebra

Notation (cont.)

Definition 7.1 (Adjacency matrix of directed graphs)
Let G = (V , E ) be a directed graph. We denote the set
of vertices by V and the set of edges by E .
The adjacency matrix of graph G (the matrix of its
vertices): AG = (aij)

(24) aij =
 1, if (i , j) ∈ E ;

0, otherwise.

98 / 149



Linear algebra

Notation (cont.)

It is easy to see that

(25) a(m)
ij = # {paths with length m from i to j} .

On the other hand, for every nonnegative N × N matrix
A there exists a directed graph GA in which
V (G) := {1, . . . , N} and

(i , j) ∈ E (G) if and only if aij > 0.
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Linear algebra

Notation (cont.)

Definition 7.2 ( irreducible matrices )
Matrix A is irreducible , if ∀(i , j), ∃m = m(i , j), so that
a(m)

ij > 0

It’s obvious that A is irreducible if and only if GA is
strongly connected, so there is a path in each direction
between each pair of vertices of the graph.
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Linear algebra

Notation (cont.)

Definition 7.3 ( Primitive matrices )
We say that a nonnegative matrix A is primitive , if
∃M : ∀i , j , a(M)

ij > 0

If a matrix is irreducible and aperiodic then this
matrix is primitive (see [7, p. 19]).
It is easy to see that if a nonnegative matrix is
irreducible and at least one of its diagonal elements
is nonzero, then it is primitive.
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Linear algebra

Notation (cont.)

The proof of the following Perron-Frobenius Theorem is
available for example in the Appendix of the book
Karlin-Taylor [5].
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Linear algebra

Perron-Frobenius Theorem I
Theorem 7.4

Let A be a N × N nonnegative matrix. Then
(i) A has eigenvalue λ ∈ R+

0 (so called as
Perron-Frobenius eigenvalue) such that no
other eigenvalues of A are greater than λ in
absolute value.

(ii) min
i

N∑
j=1

aij ≤ λ ≤ max
i

N∑
j=1

aij .

(iii) We can choose the left and right eigenvectors
u and v of λ so that all of their components
are nonnegative.

uT · A = λuT , A · v = λ · v. 103 / 149



Linear algebra

Perron-Frobenius Theorem II
From now on we normalize u and v so that

(26)
N∑

i=1
ui = 1 and

N∑
i=1

uivi = 1 .

If we additionally assume that A is irreducible , then:
(iv) λ is eigenvalue with multiplicity 1 and all

elements of u and v are strictly positive.
(v) λ is the only eigenvalue for which there exists

an eigenvector with only nonnegative
elements.
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Linear algebra

Perron-Frobenius Theorem III

And if we assume that A is primitive , then:
(vi) ∀i , j :

(27) limn→∞ λ−na(n)
ij = ujvi ,

where u, v are the left and right eigenvectors
with positive components corresponding to λ
which satisfy condition (26).
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Linear algebra

Application for Markov chains

In our case the matrix A is te transition matrix P which
is a stochastic matrix. Then all row sums are equal to
1.This implies that

λ = 1 according to (ii) on slide 103 and
v = (1, . . . , 1).
uT · P = uT by (iii) on slide 103 and by (26). That
is the stationary distribution π = u.
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Linear algebra

Application for Markov chains (cont.)
Then (vi) on slide 105 reads like: ∀i , j ∈ S
(28) limn→∞ pn

i ,j = uj = πj ,

here pn
i ,j was defined on slide 43. So, Theorem 6.6 is a

corollary of the Peron-Frobenius Therem.
Moreover, let Π be an |S| × |S| matrix, (where |S| is
the cardinality of S) such that all rows of Π are equal
to π. Then
(29) limn→∞ Pn = Π .

Observe that (28) is the same as (29) in terms of
components. Speed of convergence:see [6, Theorem 4.9].107 / 149



Linear algebra

#S < ∞, irreducible with period d
Theorem 7.5

Assume that #S < ∞, P is irreducible, periodic with
period d > 1. Then P has d eigenvalues with absolute
value 1, each of them is simple. In particular 1 is a
simple eigenvalue that is there is a unique invariant
probability vector π corresponding to the eigenvalue 1.
Let ααα be a probability distribution on S. That is
ααα = (αi)i∈S with ∑

i∈S
αi = 1 and αi ≥ 0. Then

(30) limn→∞
1
d
(
αααT · Pn+1 + · · · + αααT · Pn+d

)
= π.

This Theorem is a corollary of Theorem 6.2. 108 / 149



Linear algebra What if not irreducible?

A 9-states example (a reducible chain)

1

2

3

4

5

6

7

8

9

P :=



1
4

3
4 0 0 0 0 0 0 0

1
8

3
8

1
4 0 0 0 1

4 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1

3 0 0 0 0 2
3

0 0 0 0 1 0 0 0 0
0 0 1

4 0 0 3
4 0 0 0

0 0 1 0 0 0 0 0 0
0 1

4 0 0 0 1
2 0 1

4 0
0 0 0 1

3 0 0 0 0 2
3


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Linear algebra What if not irreducible?

Continuation
This shows that {1, 2}, {6} and {8} are transient
classes. This implies that their measure by the stationary
distribution must be zero. On each of the recurrent
classes we have different stationary distributions which
have nothing to do with each other. On the class {3, 7},
{4, 9} and {5} the stationary distributions in this order
are: π̂ :=

(
0, 0, 1

2 , 0, 0, 0, 1
2 , 0, 0

)
.

π̃ :=
(
0, 0, 0, 1

3 , 0, 0, 0, 0, 2
3
)

,

π := (0, 0, 0, 0, 1, 0, 0, 0, 0) .

Let π := α1π̂ + α2π̃ + α3π , where αi ≥ 0 and
α1 + α2 + α3 = 1. Then π is one of the uncountably
many stationary distributions of the chain. 110 / 149



Linear algebra What if not irreducible?

Continuation
We obtained π̃ on the previous slide by the Mathematica

Explanation: The very first number in the code is 4. It
says that we are in the recurrence class that contains 4.
The very last number is 9. This gives the measure of
state 9 for that stationary distribution which is supported
by the recurrence class that contains 4. 111 / 149



Linear algebra What if not irreducible?

Another 9 states example
Example 7.6

Find the all of the
stationary
distributions for the
Markov chain given
by P , where P is:

P =



1
2

1
2 0 0 0 0 0 0 0

1
4

1
4

1
4 0 0 0 1

4 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1

3
1
3 0 0 0 1

3
0 0 0 1

2
1
2 0 0 0 0

0 0 1
2 0 0 1

2 0 0 0
0 0 1

2 0 0 0 0 1
2 0

0 1
3 0 0 0 1

3 0 1
3 0

0 0 0 1
2 0 0 0 0 1

2


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Another 9 states example (cont.)

That is the irreducible classes are
{1, 2, 3, 6, 7, 8} (above) and, {4, 5, 9} (below). Then we
run the Mathematica code on the next slide. The only
thing missing from this code is the definition of the
matrix p which should be defined first as P.
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Another 9 states example (cont.)
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Another 9 states example (cont.)
That is let

π(1) :=
( 2

31 , 4
31 , 7

31 , 0, 0, 4
31 , 8

31 , 6
31 , 0

)
,

π(2) :=
(
0, 0, 0, 3

7 , 2
7 , 0, 0, 0, 2

7 ,
)

.

Then for every ααα = (α1, α2) with α1, α2 > 0 and
α1 + α2 = 1 the vector

(31) π = α1 · π(1) + α2 · π(2)

is a stationary distribution and all stationary distributions
π can be presented of the form as in (31) for suitable α1,
α2. 115 / 149
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Example 7.7 (Triangle-square chain)

5

6

7 1

4

2

3

0.7

0.
2

0.1

0.
3

0.5

0.2

0.2

0.4

0.4

0.
6

0.4

0.5

0.5

0.3

0.70.
9

0.1

Transient states: 1, 2, 3, Recurrent states: 4, 5, 6, 7.
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Example 7.7 (cont.)

It is enough to focus on the right hand side square
shaped part. That is the subgraph of vertices {1, 2, 3, 4}.
The transition matrix is:

P =


0 0.4 0 0.6

0.1 0 0.9 0
0 0.7 0 0.3

0.5 0 0.5 0


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Example 7.7 (cont.)
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Stationary distribution with Mathematica
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P = S · D · S−1

S=


−1 1 −3

√
3

5
3
√

3
5

1 1 −3
5 −3

5
−1 1

√
3

5 −
√

3
5

1 1 1 1

, D=


−1 0 0 0
0 1 0 0
0 0 −

√
3

5 0
0 0 0

√
3

5



Let Dodd=


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, Deven=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


limn→∞ D2n+1 = Dodd , limn→∞ D2n = Deven

limn→∞ P2n+1 = S · Dodd · S−1, and
limn→∞ P2n = S · Deven · S−1.
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Cont.

This yields that

limn→∞ P2n+1 =


0 5

8 0 3
81

4 0 3
4 0

0 5
8 0 3

81
4 0 3

4 0

 limn→∞ P2n =


1
4 0 3

4 0
0 5

8 0 3
81

4 0 3
4 0

0 5
8 0 3

8



and limn→∞
1
2
(
P2n+1 + P2n+1

)
=


1
8

5
16

3
8

3
161

8
5
16

3
8

3
161

8
5
16

3
8

3
161

8
5
16

3
8

3
16

. Note

that all row vectors are the same and identical to π.
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Inventory chain Durrett, Example 1.6

s, S storage strategy:
Given s < S
Let Xn be the amount of stock on hand at the end
of day n.

Strategy:
If Xn ≤ s we fill up the stock during the night so
that the stock at the beginning of day n + 1 is S.
If Xn > s we do not do anything.

122 / 149



Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)
Let Dn+1 be the demand of this item on day n + 1.

Using the x+ := max {x , 0} notation:

Xn+1 =
 (Xn − Dn+1)+ , if Xn > s;

(S − Dn+1)+, if Xn ≤ s.
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Inventory chain Durrett, Example 1.6
(cont.)
In an example with s = 1, S = 5 and
P(Dn+1 = 0) = 0.3, P(Dn+1 = 1) = 0.4
P(Dn+1 = 2) = 0.2, P(Dn+1 = 3) = 0.1

0 1 2 3 4 5
0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3
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Inventory chain Durrett, Example 1.6
(cont.)
For s = 1 and S = 5 the stationary distribution is:

π =
{ 177

1948 ,
379
2435 ,

225
974 ,

105
487 ,

98
487 ,

1029
9740

}

Assume that the profit of every single item is $12, but
the daily storage fee is $2.
Question:

What is the long-term profit on this item for the
previous choice of s, S?
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Inventory chain Durrett, Example 1.6
(cont.)

How should we choose values of s, S to maximize
the profit?
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Repair chain

A machine has 3 critical components which can go
wrong, but the machine operates until all of them stops
working. If at least two components are broken, they get
repaired for the next day. We assume that on a single
day maximum 1 component can go wrong, and the
probability of component 1, 2 and 3 failing is (in order)
0.01, 0.02 and 0.04.
If we are to model this process with a Markov chain, it is
recommended to use state space of broken parts:
{0, 1, 2, 3, 12, 13, 23} . The transition matrix is:
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Repair chain (cont.)

0 1 2 3 12 13 23
0 0.93 0.01 0.02 0.04 0 0 0
1 0 0.94 0 0 0.02 0.04 0
2 0 0 0.95 0 0.01 0 0.04
3 0 0 0 0.97 0 0.01 0.02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
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Repair chain (cont.)

Question: How many components are used of type 1, 2
and 3 in 1000 days?
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Repair chain (cont.)
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Repair chain (cont.)

Figure: Prepared with Wolfram mathematica
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Repair chain (cont.)

Stationary distribution:

π = (0.336, 0.056, 0.134, 0.448, 0.002, 0.006, 0.014)
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Wright-Fisher model
Example 7.8

A (fixed size) generation consists of 2N genes with type
either a or A . If there are j ∈ {0, . . . , 2N} a-type gene
in the parent population, then the next generaton’s
building will be determined with 2N independent
binomial trials, with probabilities
pj = j

2N , qj = 1 − j
2N . So, if Xn is the number of

a-type genes in the nth generation, then the appropriate
Markov-chain is:
P (Xn+1 = k|Xn = j) = p(j , k) =

(2N
k
)
pk

j q2N−k
j .
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The transition matrix for the
Wright-Fisher model when 2N = 6

1 0 0 0 0 0 0
15625
46656

3125
7776

3125
15552

625
11664

125
15552

5
7776

1
4665664

729
64
243

80
243

160
729

20
243

4
243

1
7291

64
3
32

15
64

5
16

15
64

3
32

1
641

729
4

243
20
243

160
729

80
243

64
243

64
7291

46656
5

7776
125

15552
625

11664
3125
15552

3125
7776

15625
46656

0 0 0 0 0 0 1


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In the Wright-Fisher model above we have absorbing
states when x = 0 and x = 2N . This means that if the
process ever reaches one of these states, it remains there
forever.

We modify the model so that there will be no absorbing
state:
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Figure: Simulation for the Wright-Fisher model, 2N = 6, starting
from 2
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Wright-Fisher model with mutations
Example 7.9

In this model every gene can mutate before creating the
new generation. An a can mutate into A with probability
α1 and the reverse side has probability α2.
In this case the transition matrix is the same, but now,
for the mutation, the probabilities are modified.

pj = j
2N (1 − α1) +

(
1 − j

2N

)
α2,

and
qj = j

2N α1 +
(
1 − j

2N

)
(1 − α2).
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Simple RW on simple graphs
Example 7.10

3 51

2 4

1 2 3 4 5
1 0 1/2 1/2 0 0
2 1/3 0 1/3 1/3 0
3 1/4 1/4 0 1/4 1/4
4 0 1/2 1/2 0 0
5 0 0 1 0 0

Simple graph and the transition matrix of the
corresponding simple random walk (RW) on this graph.
From every vertex we move to a uniformly chosen
neighbour. (Described more precisely on the next slide.)138 / 149
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Let G = (V , E ) be a simple graph (no loops, no double
edges), where as usual, V is the set of vertices and E is
the set of edges. We denote the degree of vertex x ∈ V
by deg(x). The simple random walk on G is Markov
chain on state space S which is defined by the following
transition matrix:

(32) p(x , y) =


1
deg(x) , (x , y) ∈ E ;

0, otherwise.
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Example 7.10 (Cont.)
Using the mathematica 11 code on the next slide we
obtain that the stationary distribution:
π = (1

6 , 1
4 , 1

3 , 1
6 , 1

12) (the last command on the next slide
results the 5-th component of π). The mean first
passage matrix is M = (mi ,j)5

i ,j=1, where mi ,j is the
expected number (≥ 1) of steps to get from i to j for
the first time.

M =



6 11
4

9
4 6 53

419
4 4 5

2
19
4

27
221

4
7
2 3 21

4 11
6 11

4
9
4 6 53

425
4

9
2 1 25

4 12


.
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Mean First Passage Time Matrix

M = (mi ,j) and we know the diagonal: mi ,i = 1
πi

. In
general we need to solve the system of equations for all
i ̸= j :

mi ,j = pi ,j · 1 +
∑
k ̸=j

pi ,k · (1 + mk,j) = 1 + ∑
k ̸=j

pi ,k · mk,j .
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Example 7.10 (Cont.)

The second and third commands computes the value
m3,4 = 21

4 . The last command yields that π(5) = 1
12 .
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Knight moves on chessboard
Simple RW on the
graph G , where
G = (E , V ):
V := {1, . . . , 8}2 ,
and for
(i1, j1), (i2, j2) ∈ V
((i1, j1), (i2, j2)) ∈ E
iff either:
|i1 − i2|=2&|j1 − j2|=1
or
|j1 − j2|=2&|i1 − i2|=1
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RW with absorbing boundary :

0 1 2 3 4
1

q

p

q

p

q

p

1

0 1 2 3 4
0 1 0 0 0 0
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 0 0 0 0 1
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RW with reflecting boundary

0 1 2 3 4

1

q

p

q

p

q

p

1

0 1 2 3 4
0 0 1 0 0 0
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 0 0 0 1 0
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RW with periodic boundary conditions

0 1 2 3 4p

q

q

p

q

p

q

p

p

q

0 1 2 3 4
0 0 p 0 0 q
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 p 0 0 q 0
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