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We collect a lot of natural examples, which can be
studied by the theory of Markov chains.

We introduce the most important notions and most
important theorems.

Compute the stationary distributions.
Recurrence properties of Markov chains.

We study the death and birth processes as a special
case of reversible Markov chains.

Exist distributions for absorbing Markov chains.
Branching processes.
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Examples of Markov chains
o Examples of Markov chains
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Gambler’s ruin
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Gambler’s ruin (cont.)

Example 1.1

We start with a gambling game, in which in every turn:
@ we win $1 with probability p = 0.4,
@ we lose $1 with probability 1 — p = 0.6.

The game stops if we reach a fixed amount of N = $4 or
if we lose all our money.

We start at $X;, where X, € {1,2,3}.
Let X, be the amount of money we have after n turns.
In this case
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06 06

X, has the "Markov property” . That is:
if we know X,,, any other information about the past is
irrelevant for predicting the next state of X, 1. Thus:

(1) ]P)(XnJrl :J‘ X = I.,anl - bnfly--wXO = bO)
=P (Xpr1=j| Xa=1).
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Homogeneous discrete-time Markov chain

Definition 1.2

Let S be a finite or a countably infinite (we call it
countable) set. We say that X, is a (time) homogeneous
discrete-time Markov chain on state space S, with

transition matrix P = p(/, /), if for any n, and any
i,j,bn_1,...,bg € S:

(2) II-])()<n+l = ./‘Xn = I.,anl = bnfla S 7X0 = bO)
= p(i,Jj)

We consider only time homogeneous Markov chains and
some times we abbreviate them MC. 7 /149
[ 140




Initial distribution

A Markov chain is determined by its initial distribution
and its transition matrix. The initial distribution
a = (a;)ies, (a; >0, 2 «; = 1) is the distribution of

the state from which a Markov chain starts. When we
insist that the Markov chain starts from a given i € S (in
this case &; =1 and oj =0 for j € S, j # i) then all
probabilities and expectations are denoted by

Pi(-),Ei [].

In some cases, we write P, (-), E,[] or we specify the
initial distribution « in words, and then we write simply
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In the Gambler's ruin example, if N = 4 then the
transition matrix P is a 5 x 5 matrix

0123 |4
0,1/0[0]0]O
106 0|04/ 00
2/ 0060 (040
3/ 0006|004

4/0]0,0]0 /|1

Here and many places later, the bold green numbers like
0,...,4 are the elements of the state space. So, they are
NOT part of the matrix. They are the indices. The
matrix above is a 5 x 5 matrix. For example: p(0,0) =1
and p(3,4) = 0.4.
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A simulation with Mathematica

Figure: Gamblar's ruin simulation

10/ 149



Examples of Mark

Andrey Markov, 1856 — 1922
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Ehrenfest chain

Example 1.3

We have two urns (left and right urn), in which there are
a total of N balls. We pick a random ball and take it
into the other urn. Let X, be the number of balls in the
left urn after the n®” draw. X, has the Markov-property,
because

pi,i+1)=

and p(/,j) = 0 otherwise,
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N = 4, the corresponding graph and transition matrix:

3 1

4 2 4
0| 1| 2 3| 4
0] 0 1 0 0 0
1[1/4] 0 [3/4] 0 | 0
200 [2/4] 0 [2/4] 0

3100 [3/4 0 |1/4

41 0 0 0 1 0
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A simulation with Mathematica
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Figure: A simulation for Ehrenfest chain simulatiiﬁ/ 149



Another simulation with Mathematica

2900000 s0000000000s0e 200 ¢ 0 S00000000 ¢ 00 s ® s0s0ces0es sever o0 oo

20 40 60 80 100 120 140

Figure: Another simulation for Ehrenfest chain simulation
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The Mathematica code for the previous
two simulations

0 10 0 o
o200
a a
'P:DiscreteMarkovProcess[{9, 0,1,0,0}, | © f ] i 0 ]
e 0 2ot
4 4
9 6 0610

data = RandomFunction [P, {0, 150} ]

Time: 0 to 150

TemporalData | Data points: 151 Paths: 1 ||

ListPlot[data - 1, Filling -» Axis, Ticks » {Automatic, {0, 1, 2, 3, 4}}]
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Compare the previous two chains |.
0.4 0.4
@Dl @ @
0.6 0.6

Figure: Gambler’s ruin chain:

Figure: Ehrenfest chain
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Compare the previous two chains |I.

First, we consider the Gambler's ruin case. Let us say we
start from state 2. In the gambler’ ruin case with
probability 0.16 we reach state 4 in two steps, and with
probability 0.36 we reach state 0 and then we stay there
forever. Therefore the states 0 and 4 are absorbing
states . That is the probability that starting from 2 we
ever return to 2 at least one more time is less than
p:=0.48 =1—(0.16 4+ 0.36). Then after the first
return, everything starts as before independently. So, the
probability that we return to 2 at least twice is less than
p?, and similarly, the probability that we return to 2 at
least n times is less than p”.
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Compare the previous two chains Ill.

So, the probability that we return to 2 infinitely many
times is n“_@o p" = 0. That is starting from 2, we visit 2
only finitely many times almost surely. We call those
states where we return only finitely many times almost
surely, transient states. Since the same reasoning
applies for states 1,3 we can see that in the Gambler's
ruin example, states 1,2, 3 are transient. The states
where we return infinitely many times almost surely are
called recurrent. Every state is either transient or
recurrent.
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Compare the previous two chains V.

We spend only finite time at each transient states. So, if
the state space S is finite, then we spend finite time
altogether at all transient states together. This implies
that

for a finite state MC we always have recurrent states .
Clearly the absorbing states {0, 4} are always recurrent
states. The following interesting questions will be
answered later. To answer the first of the following two
problems we need to learn about the so-called

exit distributions and to answer the second one we need
to study the so-called exit times .
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Compare the previous two chains V.

Problem 1.4

Starting from 2 what is the probability that the gambler
eventually wins? That is she gets to 47

We answer this on slide 59 in File MC 2, see also slide 48.
Problem 1.5
Starting from 2, what is the expected number of steps

until the gambler gets to either O (ruin) or to 4
(success)?

We answer this question on slide 93 in the following File.
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Compare the previous two chains VI.

Now we turn to the Ehrenfest chain:

Figure: Ehrenfest chain

We consider the case again when we start from state 2.
Then with 1/2-1/2 probability, we jump to either state 1
or 3.
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Compare the previous two chains VII.

The probability that we do not return to 2 in any of the
next 2n steps is (1/4)". So, the probability that we
actually never return to state 2 is nli_@o (%)n = 0. So we
return to 2 almost surely. But when we are at 2 then the
whole argument repeats. So we obtain that we return to
2 infinitely many times almost surely. This means that 2
is a recurrent state. With a very similar argument, one
can show that the same holds for all the other states.
This means that all of the states are recurrent. In this
case, we can reach from every state to every state with
positive probability (after some steps). In such a
situation we say that the MC is irreducible .
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Compare the previous two chains VII.

Here we can ask the following question:
Problem 1.6

What is the expected number of steps so that starting
from i € {0,...,4} we get back to i for the first time?

The answer is the reciprocal of the i-th component of the
so-called stationary distribution which is a probability
vector m = (7;)ies, ™ > 0, ZS m; = 1 satisfying:

ic

(3) al . P=qxT

Question: When do we have stationary distributions?
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Examples of Markov chains

Theorem 1.7

Assume that card(S) = k, finite, and we also assume

that the probability transition matrix P is irreducible .

Then there is a unique stationary distribution with all

components positive. That is, there exists a unique

7w = (m;)jes such that .ZST(',' —=1landm >0foralli€§.
e

This follows from Theorem 7.4 (Perron-Frobenius
Theorem). However, since the proof is very nice | present
it here.
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Proof of Theorem 1.7, Slide |

Let / be the k X k identity matrix. Since the rows of
P — 1 add to 0, the rank of the matrix P — [ is less than
or equal to kK — 1, and there is a vector v # 0 such that

vl - P = v’ . Consider the MC with probability
transition matrix

Q=3(I+P).

This stays put with probability % and takes a step
according to P with also probability % (so-called lazy

chain). Let R:= Q~1!.
(4) vioP=vl — vI.Q=v andv' -R=Vv".

Now we prove that all elements of R are positivab/ 149



Proof of Theorem 1.7 Slide, I

The irreducibility of P implies the existence of a path, in
the associated directed graph, from x to y, for every

x #y, x,y € 5. Consider the shortest path between x
and y in the MC corresponding to P. It does not go
through twice on any element of S. So, the length of the
shortest path is at most k — 1. Since we can stay put in
the Markov chain corresponding to @ (the lazy chain) at
any states for any time, we get that there is a path
between any x # y in R of length kK — 1. The same
clearly holds also for x = y. This implies that for

R = (r(XJ/))x,yeS,
(5) r(x,y) >0, x,y€S. 27/149



Proof of Theorem 1.7 Slide, I

We defined the vector v by v7 - P =vT, v #£0 . Clearly
all (non-zero) constant multiple of v satisfies this
equation. Hence, we may assume that at least one of the
components of v is positive. Now we prove that

(6) v(x) >0, Vx € S.
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Proof of Theorem 1.7 Slide, |l

Assume that there are both negative and positive
components of v. Then by vi = v’ - R and r(x,y) > 0
for all x,y € S we get

(7)

v(y)| =

S v(x)rxy)< Sl rxy), Wy €S,

Now we use that R is a stochastic matrix, so all row
sums are equal to 1. That is X,cs r(x,y) =1, for all
x € S. Hence, by inequality (7):

2 vl < 2 vl

which is a contradiction. This completes the proof of (6).
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Proof of Theorem 1.7 Slide, |V

Now we prove the uniqueness of the stationary
distribution. This follows from the fact that

(8) rank(P — 1) = k — 1.

Namely, rank(P — ) < k — 1 has already been verified.
If rank(P — I) < k — 1 then there exists a vector w # 0,
w L vwithw’ -P=w'. We get, as above, that all the
coordinates of w have the same sign let say all
coordinates are positive. But then w L v cannot
happen. This completes the proof of the uniqueness.
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Mathematica code for the stationary
distribution

In this special case we use Mathematica we get

_ (1 131 i)
7T_<1674’8’4’16 '

0 10 0 o
te’oeo
4 4
2 2
=|©® - 0 - @0
p a4 4
eo et
4 a
0 6 06 1 0
invmatrep =

Inverse [ReplacePart [p - IdentityMatrix[Length[p[[1]1]]], {i_, Length[p[[1]]]} > 1]]

invmatrep[[Length[p[[1]]]]]
1 2 3 i1 1

l16” a” 8° 2 16/ 31/149



Finding Stationary distributions (simple cases)

e Finding Stationary distributions (simple cases)
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Finding Stationary distributions (simple cases)

Weather chain
Let X, be the weather on day n on a given island, with

) 1, if day n is rainy;
9) Xn = { 2, if day n is sunny

0.4

0.6c@<_\/@:>0.8

0.2

2
1/06|0.4
2/0.2/0.8

Question: What is the long-run fraction of sun§§ 7?’26




Finding Stationary distributions (simple cases)

7 for the Weather chain

. o |06 04 .
For weather chain: P = 02 08 | We are looking for

a random vector T = (1, m) for which:

0.6 0.4
(m.m2) -1 92 03 ] = (m,m).
The solution is ™ = (3, ). This follows from the general

result about the stationary distribution of two-states MC:
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Finding Stationary distributions (simple cases)

Stationary state for general two states MC

Lemma 2.1

A two-state MC'’s transition matrix can be written in the
following way:

1—-a a
P:{ b 1—b]

Then the stationary distribution is w = (be, ?’b)

The proof is trivial.
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Finding Stationary distributions (simple cases)

Social mobility chain

Let X, be a family's social class in the n'" generation, if
lower class:1 middle class:2 upper class:3

0.5

et

0.7/0.2/0.1
0.3]0.5]0.2

N

Question: Do the fractions of people in the three
classes stabilize after a long time?
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Finding Stationary distributions (simple cases)

For the social mobility chain

0.3 0.5 0.2
0.2 04 04

For the social mobility chain P =

0.7 0.2 0.1
the
equation of ' - P =" is

0.7m1 + 03m + 0213 = m
0277 + 05m + 0413 = m
0.17T1 + 0.27T2 + O.47T3 = T3

The 3™ equation gives us no more information than we
have already known. So, we can throw it away, and we
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

replace it with the condition that the sum of the
components of m equals to 1. We obtain after this
replacement:

0.7mp + 03m + 02w = m
(].O) 0.2m; + 0.5m + 0.4m; (D)
T+ T + m = 1
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

After straightforward algebraic manipulations we get:

—0.3m + 0.3m + 0.2m3
(11) O.27Tl + —0.571'2 + 0.47T3
™ + T + 3

x -A=(0,0,1),

where 77 is a row vector and
—-03 021
A= 03 -05 1
02 04 1

0
0
1
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Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

So
(12) n =(0,0,1) - A7}

Steps of computing vector 7:
@ Start with the transition matrix P,
@ subtract 1 from its diagonal elements,

© replace the last column with the vector whose all
elements are equal to 1.

© The matrix that we obtained is called A.

40 / 149



Finding Stationary distributions (simple cases)

For the social mobility chain (cont.)

@ By formula (12): The last row of matrix A ! is 7.
In the case of the social mobility chain:

90 20 70
And from it: ™ = (%,%,4—97).
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Chapman-Kolmogorov equation

e Chapman-Kolmogorov equation

42 /149



Multistep transition probabilities

Let p™(i,j) be the probability that the Markov chain
with transition matrix P = p(i,/), starting from state i
is in state j after m steps .

(13) oG ) i ) pi )

m
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Multistep transition probabilities (cont.)

We would like to compute the m-step transition matrix
with P.
First observe that

(14)  p(i) = SR k) (k)

This is called the Chapman-Kolmogorov equation.
The proof is obvious from the following Figure:
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Ch

apman-Kolmogorov equation

Multistep transition probabilities (cont.)

time () m m+n
. - L]
e e
— T
™ HH‘“&H —-» f________‘ff-_u j
. T .

Figure: The Figure is from [2]
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Multistep transition probabilities (cont.)

Theorem 3.1

The m-step transition probability P (X, m = j| X, = 1) is
the (i, j)-th element of the m-th power of the transition
matrix.
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Multistep transition probabilities (cont.)

In the Gambler's ruin example, where the transition

matrix was:

P01 2|3 |4
Oj1,010|0]O0
106/ 0|04/ 010
2/ 01/06| 0 04]0
310|006 01|04
4,0, 0001
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Multistep transition probabilities (cont.)

The n“—@o P” limit also exists, and we will see that it
equals to:

Tm P 0 [1[2[3] 4
0 1 |0/0]0] O
1 [57/65/0(0]0]| 8/65
2 [45/65/0]0]020/65
3 [27/65|0]0]0]38/65
4 0 |0[0[0] 1
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In the Ehrenfest chain example, where the transition
matrix was:

012 3] 4
0o 1 [0[0]0
1[1/4] 0 [3/4] 0 [ 0
2070 [2/4] 0 [2/4] 0
370 [0 [3/4] 0 |1/4
afo[o|o[1]o0

The nIi_>rgo P" limit does NOT exist.
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notions and the main theorems wi proofs

e The most important notions and the main theorems without proofs
o The most important notions
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The most important notions and the main theorems without proofs NN Tells=IM N

@ A square matrix P is a stochastic matrix if all
elements are non negative and all the row-sums are
equal to 1.

@ For a stochastic matrix P we obtain the
corresponding adjacency matrix Ap by replacing all
non-zero elements of P by 1. So, if

0 05 05 011
P=102 01 07 |thenAp=| 111
0.7 0.3 O 110
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The most important notions
e We are given a Markov Chain (MC) X, with (finite
or countably infinite) state space S and transition
matrix P = (p(i,j));;cs (which is always a
stochastic matrix).
o We write

P.(A) :=P(A|Xy = x) .

[E, notates the expected value for the probability
P,.
The time of the first visit to y:

T, =min{n>1:X,=y}
52/149



The most important notions and the main theorems without proofs NN Tells=IM N

So, even if we start from y, T, # 0.

@ Let i,j €S, where S is the state space. We say
that / and j communicate if there exists an n and
an m such that p"(i,j) > 0 and p™(j, i) > 0.

@ Observe that "communicates with” is an
equivalence relation. The classes of the
corresponding partition of S are called
communication classes or simply classes .

o If there is only one communication class (everybody

communicates with everybody) then we say that the
Markov Chain (MC) is irreducible .
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[MRGECERERWI Il The most important notions

e Consider the MC with S := {1,2,3,4} and
0 04 0 06
05 0 05 O
P=| 0 03 0 o7 [ Then
01 0 09 O
026 0. 0.74 0.
pr—| %, 0 OO0 | This chain i
0. 031 0. 0.69
irreducible because for every i,j € S either
p(i,j) > 0 or p?(i,j) > 0 (here p?(i,j) is the
(i, )-th element of P2,
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The most important notions and the main theorems without proofs NN Tells=IM N

@ The corresponding adjacency matrices for every n
are:

APanl — 7AP2” =

—_ O = O
O O
R O~ O
O = O K
O = O
—_ O = O
O = O =
R O~ O

@ For the chain above the greatest common divisor
(gcd):

(15) ged{n:p"(i,i) >0} =2forVies.
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The most important notions and the main theorems without proofs NN Tells=IM N

Then we say that the period of every state is 2. In
general, the period of state i is

d; :==ged{n: p"(i,i) > 0}.

We will see that in a communication class all
elements have the same period. So, for an
irreducible MC all elements have the same period. If
this period is equal to 1 then we say that the
irreducible chain is aperiodic .

@ We say that a state / € S is transient if the MC
returns to /i finitely many times almost surely.
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The most important notions and the main theorems without proofs NN Tells=IM N

@ We say that a state / € S is recurrent if the MC
returns to /i infinitely many times almost surely.
Every state is either recurrent or transient.

@ If an element of a communication class is recurrent
then all other elements of this class are also
recurrent. These classes are the recurrent classes,
while the other classes are the transient classes .

@ If a communication class is closed (no arrow goes
out of the class) then it is recurrent class. The
non-closed communication classes are the transient
class.
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The most important notions and the main theorems without proofs NN Tells=IM N

Let i € S be a recurrent state. We say that /i is
positive recurrent if the expected time of the first

return to i (starting from i) is finite.

Let i € S be a recurrent state. We say that / is
null recurrent if the expected time of the first

return to i (starting from i) is infinite.

A state i € S is ergodic if i aperiodic and positive

recurrent.

A Marov chain is ergodic if all of it states are

ergodic. In particular, a Markov chain is ergodic if

there is an Ny such that for every m > Ny for every

i,j € S the state j can be reached from i in m steps.
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U e B
@ A state j € Sis absorbing if p; =1 (we cannot go
anywhere from this state, it is a trap).

@ A Markov Chain is absorbing if every state can
reach an absorbing state.

e Stationary distribution 7 is a probability measure
on S (m(i) >0 and 'st(i) = 1) which satisfies:
e
(16) T P=nxT

Convention: every vector is a column vector. When
| need a row vector, | write transpose of the vector
as above.
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[MRGECERERWI Il The most important notions

An example of irreducible classes
Example 4.1

(o<—6-
112134567 *\ :
10700003/ 010 |
2(01]02/03/04/ 0] 00 ~ O
3100050302/ 00 \
4700005 0105 0 \w/
506/ 00004 00 )
6|00 [0]0]002/08 /\
77000 1]0]0 0 \

C?"




The most important notions and the main theorems without proofs NN Tells=IM N

Let us create a graph whose vertices are the elements of
state space S = {1,...,7} and it has directed edge (/,)
if p(i,j) > 0. AC S is closed if it is impossible to get
out. So

i€ Aandj ¢ Athen p(i,j)=0.

In the example above: sets {1,5} and {4,6,7} are
closed, so is their union, and even {1,5,4,6,7,3} and S
itself are closed too.

B C S is irreducible if any two of its elements
communicate with one another: Vi.j € B, i~ j.
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The most important notions and the main theorems without proofs NN Tells=IM N

Co—0-
A
|

So, in the graph we can get from every
element of B to any other through
directed edges; and the irreducible and
closed sets are: {1,5} and {4,6,7}.
That is the irreducible classes are:
{1,5} and {4,6,7}.
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Canonical from of non-negative matrices

Canonical from of non-negative matrices
o Definitions
Path diagram
An example
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- [ ] -
Definitions |

Here we follow Senata's book [8, Section 1.2]. For a
k > 1 we use the shorthand notation

[kK] :={1,... k}.
We consider here only square matrices with non-negative
elements. If we replace all positive elements of such a
matrix to get its adjacency matrix. That is the
adjacency matrix is a 0 — 1 matrix. Let A = (a;;)7;_; be
an n x n adjacency matrix. Then a;; € {0, 1}.
We say that /, /i1, ..., ik_1,J is a chain of length of k
between i and jif

a’ Il a,l c aikil-/ — 1.
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Definitions

Definitions |l

We can associate a directed graph Ga = (E, V) with
the adjacency matrix A such that

@ the set of vertices V = [n] and

@ the set of edges E is defined as follows: there is
directed edge between vertices i/, if and only if

a,-ﬁj = 1.
In this way 7, i1, ..., ik_1,j is a chain of length of k
between i and j if and only if i, i1, ..., ix_1,j is a chain of

length of k in the directed graph G4.
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- [ ] -
Definitions 111

Definition 5.1
We write
@ / — j if there is a path between i and j. Then i
and j communicate. If i 4 j then i and j does not
communicate.
Q@ i<~jifi—jandj—i.
@ /is transient if 3j such that i — j but j A i
@ recurrent states are does which are NOT transient.
@ For a C C [n] we say that

@ Cisirreducible if i <> j for all i,j € [n].
@ Cisclosed if Vi,j € [n] i€ C,j ¢ C implies that i / j.
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D e
If i is a recurrent state and / <> j then j is also a
recurrent state.
© The recurrent states form classes in which
everybody communicates with everybody and a
member of such a clas does not communicate to
anyone out of the clas. These classes are the
recurrent self-communication classes.
© Those transient states which communicate with
some other states can be divided into transient
classes such that any two member of such a class
communicate. These are the transient
communication classes.
© There can be transient states that do not
communicate with any one. They together form a
class let us call it inessential class. 67 / 149



Path diagram

Path-diagram |

The path diagram for the incidens matrix A = (a;;)7,_;:

© 00 O

Start with index 1. This is the first stage , and
determine all j for which a;; = 1. These j's form
the second stage .

Starting from all such j repeat the previous
procedure to form stage 3 and so on.

Stop when an index appears second time.

The diagram terminates when every index which
appears in the diagram has been repeated.

If some indices were left over start with any of them
and draw a similar diagram regarding the indices of
the previous diagrams as "occoured in a previous
stage”. 68/149



.
Path-diagram Il

Now we follow all of these on an axample:

Diagram 1

1234567809 :

1I[1 1000000 0 < r
2[t 110001 00 é*’
310000001 00 . ’
410 0 01 0 0 0 0 1 Diagram 2

s[oooo0 1000 0 )

6lo 0o 100100 0

710 0 10000 0 0 < s
8]0 10001010 ~,
9o 0010000 1] T~
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Path diagram

Canonical from of non-negative matrices

Path-diagram IV

Diagram 3

§—=5
3 (Diagram 1’

Diagram 4

I 1
N COC OO T OO D —

OO OO0 O
O~ o OO O C O
OO oo —O —HO
nNnoocoo —-o0o00 0
T OO O OO O
MO — OO0 — =00
N— OO0 OO —O

e —- O OO0 OO
—

— NS NN 00N
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Path diagram

Canonical from of non-negative matrices

Path-diagram V

2 (Diagram 1)

8 =——— 6 (Diagram 4)

Diagram 3

I 1
NS OO T O OO D —

OO0 OO0 —AO
OO OO O C O
COoOOoOoOOoOO—O —HO
nNnoooo o000
T OOoOO- O OO O
MO — OO C — =00
N— O o0 OO —O

e —- O OO0 oo
—

— NS VN 00N
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Path diagram

Recurrent and tarnsient
self-communication classes

@ Diagram 1 = {3, 7} recurrent class, {1,2}
transient class.
@ Diagram 2 = {4, 9} recurrent class,
@ Diagram 3 = {5} recurrent class,
@ Diagram 4 = {6} transient class,
@ Diagram 5 = {8} transient class,
The recurrent self-communication classes:
{5, {49 {37}
The transient self-communication classes:
{12}, {6}, {8}.
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Path diagram

Canonical from of non-negative matrices

Canonical form |

The so-called canonical form of the matrix on the
left-hand side is the matrix on the righ-hand side.

I
OO o oo

9

OO O—

<t

Coocoooleal-~1

] /

NS OO OO - O -

7
oo oo o-—~loo
~rOoOoOol-Oolo—~oo
nooolo-lo~—o
ol —~loocloco o
<+ o~ ~lccloocec e
neloooolooo o
L I
Vi OV en I~ — NS 00

r |
O CC OO OO O ™

(== I - Bt v B - B B
el B = ]
oo Oo0O0O0O
Nnoooo—~
tTooo—~O
O -0 0o
N = -0 OO

——-—O OO
| I—

OO~
[l - e Y )
—\ o -
[ o I o o
DO O
— -0 O
SO~ O

cCO oo

— e n N

O~ 00 O



Path diagram

Canonical form Il

Assume that a matrix T has canonical form:

(7,0 ... 0...[0
0T :
02 ' Q,
T= . _ Qz
00 ... T. |0 0 | 0
R Q S Qw
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Canonical form Il

Path diagram

Then the k-th power TX of T is of the form:

T* =
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O O |0 |0 O HYO m
O O O HIOO |O HIcHIN —
/
O | O IO NI O O
N~
F i O I |O Hica—ia
oM YO Yo o o |o
AN HISPOI9O | O IO
— <O HINO O OO
g N | (1O~

An example

A

Example 5.2
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o

=
=

a

Recurrent Classes: {2,5} and {4}

Transient Classes: {1,3} and {6,7}

TR
S
D>
SN—
I
OO |0 ||O O NI
MO OO ||O O o
OO |0 |HIO OO
O oo o |Ha-a-g O
O O HloNIMHIo O Hig O
Al (O wio—HINHINO O i
< | O[O |HIog— N 00— <
< (AN WD O (D= |
I
I~
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o
=
=
a

That is

\J
O O —HlaHI

O O —HloHI
—oO O O

= A 00 O

—00 O —lo O
—loO O —HiIx

— | 00— | O\ | 0O | <

o O O o
o O O o
o O O o
o O O o

04

79 /149



Canonical from of non-negative matrices An example

W_(l234567>7T1__<1234567)
~\7261345)" T{4256731
0000001 0001000
0100000 0100000
0000010 0000100
N=(1000000/|,M*=|00000T10
0010000 0000001
0001000 0010000
0000100 1000000

In the matrix 1 in the i-th row the 1 is at the position (7). With
this notation:

17)  T@) =A@, 7G),  AlL) = T(r(i), ().
By the definition of matrix products we get

(18) T=N"1A-N.
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We know that

(19) o (Y0sa )
S, | wW"
Moreover,

@ Using that the matrix W corresponds to the
transient states we get that nli%rgO w"=20.

0
B0
So Ty := lim 77 = (Ji) , where X' = lim_ S, .

X | 044

1
@ We learned that nli_>rrolo U= ( 0

wINwIN O
wWiFWI— O
N~—— —
I
Oy
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Using that

Ui o0 . B 03’4 :T-TOO:TOO: B 03’4
Vi W X | 0244 X | 044
We get that
(20) V.-B+W - X=X=1-X.

On slide 79 we defined the matrices W, I, V', B we can
compute:

(1) X=W-N"'(-V-B)=| & & 3
15199 34507 32507
119 119 119
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1 0 O0]0O0O0O
og%oooo
0O £ /10000
T:m:3g‘310000
o0 X [1044 gzl 221
’ > L 210000
éﬁﬁOOOO
0o 3y 3y
1—19@@0000

Finally we get for A := lim A" that
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ofi‘gofﬁ)f%%oo
ogooéoo

2 8 61
1 0%01%935*700
Ao=N-To-Nt=|10 0 0 1 0 00|,
0 2 00 L 00
0o 203 oo

241 g221
0 4 0 2 = 00

where the permutation matrices 1 and M~ were defined
on slide 80. This implies for example that starting from 5
after very many steps, the probability that we are at 2 is
appriximately % and that we are at 5 is approximately %
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mit Theorems

o Limit Theorems

Limit theorems for countable state space
o Limit theorems for finite state space
o Instead of proofs
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Limit Theorems

On the following slides we state the limit theorems.
One of the important consequence of the following
theorems is that under some not restrictive conditions,
the same thing happens as on slide 48. That is nILngo P"
exists and equal to a matrix whose all rows are equal to
.
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Limit theorems for countable state space

Limit Theorems (Preparation)
@ Given a Markov Chain (X,) on a

@ state space S (finite or countably infinite)

o transition matrix P = (p(i,})); jes -

@ p"(i,j): the probability that starting from i we will
be in j after m steps.

Definition 6.1 (Abbreviations used below)

@ 7: irreducible,

o A: aperiodic,

@ R: all states are recurrent,

e §: dr stationary distribution.

(©0)
-~
—
O

\\



Limit theorems for countable state space

The Limit theorems below hold for countable state
spaces. This means that the state space S is either
countably infinite of finite.

Theorem 6.2 (Convergence Theorem)

Z and A and S implies that
(a) The MC is positive recurrent,
(b) lim p"(i.}) = 7(j), Vi)
(c) Vi, w(j) > 0.
(d) The stationary distribution is unique.
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Limit theorems for countable state space

Theorem 6.3 (Asymptotic frequency)
. #{k<mXy=j} _
Z and R = lim e E[T],VJGS
where E; [ T;] is the expected time of the first return to j,
starting from j.

Theorem 6.4 (7 is unique)

7 and S :W(j):ﬁ, VjesS.
In particular, 7 is unique.
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Theorem 6.5
Letf:S =R, st _Zs|f(i)\ - (i) < oo. Then
e

(22) Z and § = lim

n—o0

1
n

m=1 ieS

Limit theorems for countable state spac

€

Y (Xn) = X () - (),
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Limit theorems for finite state space

The Limit theorems below hold for finite state spaces.

Theorem 6.6 (Finite state space I)

#S < oo andZ and A then
(a) 7 exists and unique,
(b) m; >0 for all i € S.

(c) For every initial distribution o on S we have
lima” -P"=7"
n—o00

The proof is [7, p. 19]. If #S < oo then the assumptions
of the theorem are equivalent to P is primitive: (Jk s.t.
Pk > 0 that is all elements of P¥ are positive.)
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Theorem 6.7 (Finite state space Il)

#S < 00 and I then
(a) 7 exists and unique,
(b) mj >0 foralli €S.
(c) But it is not necessarily true that for every

initial distribution a« on S we have

lima’” -P"=xT
n—o0

We give a proof only in the very special case when
card(S) = 2 and all elements of the transition probability
matrix is positive. That is
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Instead of proofs

p_|1=-pP P
g l-—gq

where 0 < p, g < 1. This matrix has eigenvalues 1 and
1 —p—q. We diagonalize P=Q-D-Q !, where:

o-[1 7] o-[ o )

1 0
o-[3, 0]

The columns of @ are right eigenvectors of P and the
rows of Q! are left eigenvectors. The eigenvectors are
unique up to a multiplicative constant.
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Instead of proofs

The constant is chosen such that the left eigenvector for
eigenvalue 1 is a probability vector:

= (q/(p+q).p/(P+ q))

is the unique invariant probability distribution for P. In
the following computation the key fact is the observation
that

(23) 1>[1-p—gql.
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Instead of proofs

P”:(QDQl)":QD”leQll 0 1@1
:[[qﬂv(l—p—q) /(p+q) [p—p(l—p—q)”]/(erq)]
L—p—9)1/(p+q) [p+a(l—p—q)T/(p+q)

]
)]
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Linear algebra

o Linear algebra

@ What if not irreducible?
Further examples
o What if not aperiodic?
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Linear algebra

Notation

Let A= (a;) be matrix of N x N. We are assuming

from now on that A is nonnegative .
Hence a; > 0.

(m)

jj

denotes element (i, ) of matrix A”.
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Notation (cont.)

Definition 7.1 (Adjacency matrix of directed graphs)

Let G = (V/, E) be a directed graph. We denote the set
of vertices by V' and the set of edges by E.
The adjacency matrix of graph G (the matrix of its

vertices): Ag = (aj)

(24) 30':{ 1, if (i,j) € E;

0, otherwise.
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Notation (cont.)

It is easy to see that

(25)  a™ = # {paths with length m from i to j}.

i

On the other hand, for every nonnegative N x N matrix
A there exists a directed graph G4 in which
V(G) :={1,...,N} and

(i,j) € E(G) if and only if a; > 0.
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Notation (cont.)

Definition 7.2 (lirreducible matrices )

Matrix A is irreducible , if ¥(i,j), 3m = m(i, ), so that
a,g-m) >0

It's obvious that A is irreducible if and only if G4 is
strongly connected, so there is a path in each direction
between each pair of vertices of the graph.
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Notation (cont.)

Definition 7.3 ( Primitive matrices )

We say that a nonnegative matrix A is primitive, if

M - vi,j, atM

,J>0

e If a matrix is irreducible and aperiodic then this
matrix is primitive (see [7, p. 19]).

@ It is easy to see that if a nonnegative matrix is
irreducible and at least one of its diagonal elements
is nonzero, then it is primitive.
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inear algebra

Notation (cont.)

The proof of the following Perron-Frobenius Theorem is
available for example in the Appendix of the book
Karlin-Taylor [5].
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Perron-Frobenius Theorem |

Theorem 7.4

Let A be a N x N nonnegative matrix. Then

(i) A has eigenvalue A € R{ (so called as
Perron-Frobenius eigenvalue) such that no
other eigenvalues of A are greater than \ in
abso/ute value.

(ii) min Z a; < A < max Zl ajj.

j= i
(iii) We can choose the left and right eigenvectors
u and v of \ so that all of their components
are nonnegative.

u"-A=Xxu", A-v=X-v. 103/149




Linear

algebra

Perron-Frobenius Theorem ||

From now on we normalize u and v so that
N N

(26) 'Zl u, = 1 and 'Zl uvi = 1.
1= 1=

If we additionally assume that A is irreducible, then:

(iv) A is eigenvalue with multiplicity 1 and all
elements of u and v are strictly positive.
(v) A is the only eigenvalue for which there exists

an eigenvector with only nonnegative
elements.

104 / 149



Linear algebra

Perron-Frobenius Theorem Il

And if we assume that A is primitive, then:
(vi) Vi, J:

27 lim A~"a\") = u;v;
(27) Vi s

N—00 ij

where u, v are the left and right eigenvectors

with positive components corresponding to A
which satisfy condition (26).
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Application for Markov chains

In our case the matrix A is te transition matrix P which
is a stochastic matrix. Then all row sums are equal to
1.This implies that

@ )\ = 1 according to (ii) on slide 103 and
ov={(1,...,1).

e u’ - P =u' by (iii) on slide 103 and by (26). That
is the stationary distribution 7 = u.
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Application for Markov chains (cont.)

Then (vi) on slide 105 reads like: Vi,j € S
(28) lim pl’Zj = Uj = T,

n— 00

here p{’J was defined on slide 43. So, Theorem 6.6 is a
corollary of the Peron-Frobenius Therem.

Moreover, let Tl be an |S| x |S| matrix, (where |S| is
the cardinality of S) such that all rows of I1 are equal
to m. Then

(29) lim P"=1.

Observe that (28) is the same as (29) in terms of
components. Speed of convergence:see [6, Theore
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Linear algebra

#S < 00, irreducible with period d

Theorem 7.5

Assume that #5S < oo, P is irreducible, periodic with
period d > 1. Then P has d eigenvalues with absolute
value 1, each of them is simple. In particular 1 is a
simple eigenvalue that is there is a unique invariant
probability vector m corresponding to the eigenvalue 1.
Let a be a probability distribution on S. That is
a = (aj)jes with _ZS aj=1and a; > 0. Then

S
(30) lim % (@™ - P 4. +a - P =mx.

n—oo

This Theorem is a corollary of Theorem 6.2.

108 / 149



(@)}
O O OamO OO 02,3M

)
.

oNoNoNeNolNolNoRE Yol
01,41000000%
000003,401,201
OO OO OO OoOOo
O O O —nmO O O O —m
O —HSTO O O s O O

. Mmoo O O O O —HIsT O
A\

~
@
=
5]
3
o
L
o
o
c
=
o
©
S

L HIeO O 0 O O O O

( ,V u@ a

A 9-states example (a reducible chain




Linear

algebra What if not irreducible?

Continuation
This shows that {1,2}, {6} and {8} are transient

classes. This implies that their measure by the stationary
distribution must be zero. On each of the recurrent
classes we have different stationary distributions which
have nothing to do with each other. On the class {3, 7},
{4,9} and {5} the stationary distributions in this order

(0,0,3,0,0,0,3,0,0).

R) R

7=
(00()10()00 2,
= (

are:

Y 37
0,0,0,0,1,0,0,0,0).
Let T = a7 + a7 + 3@, where «; > 0 and
a1+ ap + a3 = 1. Then 7 is one of the uncountably
many stationary distributions of the chain. 110 / 149



Continuation

We obtained 7 on the previous slide by the Mathematica

PDF [StationaryDistribution [

1 3 b - S B

1
DiscreteMar‘kovProcess[tt, {{—, ~,0,0,0,0,0,0, e}, {—, -, -,08,0,0, —, 0, e},
4 a 8 8 4 4

1 2
{(0,0,0,0,0,0,1, 0, 0}, {9, 0,0, -,0,0,0,0, _}) {6,0,0,0,1,0,0, 0,0},
3 3

: | 3 1 1 1
{e.e. -, 0,0, -,0,0,0}, (0,0,1,0,0,0,0,0,0), {0, -,0,0,0, -, 0, -, 0},
4 4 4 2 4

1 2
{e. e, 0, LA ;}}”, 9]
g

Explanation: The very first number in the code is 4. It
says that we are in the recurrence class that contains 4.
The very last number is 9. This gives the measure of
state 9 for that stationary distribution which is supported
by the recurrence class that contains 4. 111 /149



Another 9 states example

Example 7.6

Find the all of the
stationary
distributions for the

Markov chain given
by P, where P is:

P pu—

What if not irreduci

O O O O O O ORI

QOWHRQO O O O ONFNIF

O ONFVIF O O OO

ble?

N, O O ONIFWwIFO O O

O O O ONFwIrO O O

QwWrRrONFO O O O O

O O O O O O RO

QOwrHIFO O O O O O
NIFO O O OwrroO O O
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Further examples

Another 9 states example (cont )

-e/ e

That is the irreducible classes are”

(above) and, {4,5,9} (below). Then we
run the Mathematica code on the next slide. The only
thing missing from this code is the definition of the
matrix p which should be defined first as P.

|/V \\‘
A

Co——e~——e)
\_ ~— — I~ — ‘7//
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Another 9 states example (cont.)

pbig=p[[{1, 2, 3,6, 7, 8}, {1, 2, 3,6, 7, 8}]]
psmall = p[[{4, 5,9}, {4, 5, 9}]]

invmatrep =
Inverse[ReplacePart[pbig - IdentityMatrix[Length[pbig[[1]]]],
{i_, Length[pbig[[1]]1} »1]]
invmatrep[ [Length[pbig[[1]]1]]

(2 4 7 4 8 6,
1 31° 31° 31” 31/

31°31° 31° 31° 31° 31
invmatrep =
Inverse[ReplacePart[psmall - IdentityMatrix[Length[psmall[[1]]]1],
{i_, Length[psmall[[1]]]} > 1]]
invmatrep[ [Length[psmall[[1]]1]1]]

N w
NN
.
NN
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Linear algebra Further examples

Another 9 states example (cont.)

That is let
) = (321 ’ 317 371’0 0, 341 ’ 31 36170)
7 = (0,0,0,2,2,0,0,0,3,).

Then for every a = (a1, ap) with ag,ap > 0 and
a1 + ap = 1 the vector

(31) =01 -1+ ay 7@

is a stationary distribution and all stationary distributions
7 can be presented of the form as in (31) for suitable a4,
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What if not aperiodic?

0.4

Transient states: 1,2, 3, Recurrent states: 4,5,6, 7.
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inear algebra

Example 7.7 (cont.)

What if not aperiodic?

It is enough to focus on the right hand side square
shaped part. That is the subgraph of vertices {1, 2, 3, 4}.
The transition matrix is:

0 04 0 06
01 0 09 O
0 07 0 03
05 0 05 O

P=
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Stationary distribution with Mathematica

Clear[p]
e - o =
10 10
L e L oo
10 10
P =
e L o
1e 10
Z 09 > o
10 10
Mo, 2.0 L 02 0 Coals o Lo 20 120, )]
L 5 5] 10 10 10 107 L2 2
invmatrep =
Inverse [ReplacePart[p - IdentityMatrix[Length[p[[1]]1]1], {i_, Length[p[[1]]]} = 1]]
61 25 17 113 5 25 5 25 39 85 83 173 i 5 3 3

0y, SO Sy ST Ey 241 | L | | R L Nl
88’ 176° 88" 176J° 111’ 22° 11" 22J° 188’ 176’ 88’ 176)° 18” 16" 8° 16)/

invmatrep[[Length[p[[1]]1]1]]

15 3 3
E] 116’

8’ 16° 8

119 / 149



What if not aperiodic?

P=5.D.571

11 @%\@ -10 0 O
11 3 3 01 0 0
=l ;1 v _vi Pl o0 -8 o
5 5 > A
11 1 1 00 0 ¥
1000 1000

0 100 0100

Let Doa=] o 9 0 0 | P==| 0 0 0 0
0 000 0000

lim D*™! = Dygq, lim D*" = Deyen

lim P?"1 =S Doy - S71, and
nlLrPJO P2n — 5 * Deven ° 5_1-
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Linear algebra What if not aperiodic?

Cont.

This yields that

3 1 3
05 0% 2 950
: 2n+1 _| 4 4 2n — 8 8
AP0 s 0 3 | AMPTE 10 3 g
;030 0203
1 5 3 3
i v i¥
and nle% (P2”+1 + P2”+1) =1 § ¥ § % | Note
i v 3¥
8 16 8 16

that all row vectors are the same and identical to 7.
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What if not aperiodic?

Inventory chain Durrett, Example 1.6

s, S storage strategy:
e Givens < S

@ Let X, be the amount of stock on hand at the end
of day n.

Strategy:

o If X, < s we fill up the stock during the night so
that the stock at the beginning of day n+ 1 is S.

e If X, > s we do not do anything.
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)

Let D, be the demand of this item on day n + 1.
Using the x™ := max {x, 0} notation:

X (Xn — Dps1)™, if X, > s;
"7 (S = Do)ty if X, <.
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Linear

algebra

What if not aperiodic?

Inventory chain Durrett, Example 1.6

(cont.)

In an example with s =1,5 =5 and

]P)(D,H_l == O) = 03, P(D,H_l = ].) - 04
P(Dps1 =2) = 0.2, P(Dpyy =3) =0.1

0|12 3 4|5
00| 001{02/0.4|0.3
1/0/|01]01/0.2/04/03
2/03/04/03/ 0|00
3/01/02/04(03] 0|0
410 1/01{0.2|04/03| 0
5/0,01]01{02]0.4/(0.3
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)

For s =1 and S = 5 the stationary distribution is:

B {177 379 225 105 98 1029}
11948’ 2435’ 974’ 487’ 487 9740

Assume that the profit of every single item is $12, but
the daily storage fee is $2.
Question:
@ What is the long-term profit on this item for the
previous choice of s, 57
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Linear algebra What if not aperiodic?

Inventory chain Durrett, Example 1.6
(cont.)

@ How should we choose values of s, S to maximize
the profit?
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Linear algebra What if not aperiodic?

Repair chain

A machine has 3 critical components which can go
wrong, but the machine operates until all of them stops
working. If at least two components are broken, they get
repaired for the next day. We assume that on a single
day maximum 1 component can go wrong, and the
probability of component 1, 2 and 3 failing is (in order)
0.01, 0.02 and 0.04.

If we are to model this process with a Markov chain, it is

recommended to use state space of broken parts:
{0,1,2,3,12,13,23} . The transition matrix is:
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What if not aperiodic?

Repair chain (cont.)

0 1 2 3 12|13 | 23
0 /0.93/0.01{0.02{0.04| O 0 0
1] 0 09 0 0 [0.02/0.04] O
210 0 [095] 0 [(0.01] O |0.04
3|0 0 0 [097] 0 |0.01]0.02
12| 1 0 0 0 0 0 0
13| 1 0 0 0 0 0 0
13| 1 0 0 0 0 0 0
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Linear algebra What if not aperiodic?

Repair chain (cont.)

Question: How many components are used of type 1,2
and 3 in 1000 days?
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Renair chain (Fant )

rax

160 260 3(50 41%0 / 149500



inear algebra What if not aperiodic?

Repair ¢

Figure: Prepared with Wolfram mathematica
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Linear algebra What if not aperiodic?

Repair chain (cont.)

Stationary distribution:

7w = (0.336,0.056,0.134, 0.448,0.002, 0.006, 0.014)
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What if not aperiodic?

Wright-Fisher model

Example 7.8

A (fixed size) generation consists of 2/V genes with type
either a or A. If there are j € {0,...,2N} a-type gene
in the parent population, then the next generaton's
building will be determined with 2N independent
bmomlal trials, with probabllltles

P = 5% » =1— :L . So, if X, is the number of

a-type genes in the nt generatlon, then the appropriate
Markov-chain is:

P0G = KXo =) = PG 0 = (¥)pfa™ "
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Linear algebra What if not aperiodic?

The transition matrix for the
Wright-Fisher model when 2N = 6

1 0 O 0 O 0 O

15625 3125 3125 625 125 5 1

4666456 7 76 15552 1%884 1552 77476 46?56

24 24 2 24 24 7
7%9 33 153 729 153 33 %9

© 7 % % $ § 8

o M A A% s
46656 7776 15552 11664 15552 7776 46656
0O 0 O 0 0 0 1
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Linear algebra What if not aperiodic?

In the Wright-Fisher model above we have absorbing
states when x = 0 and x = 2. This means that if the
process ever reaches one of these states, it remains there
forever.

We modify the model so that there will be no absorbing
state:
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Figure: Simulation for the Wright-Fisher model, 2N = 6, starting
from 2

136 / 149



What if not aperiodic?

erght Fisher model with mutations

Example 7.9

In this model every gene can mutate before creating the
new generation. An a can mutate into A with probability
a1 and the reverse side has probability as;.

In this case the transition matrix is the same, but now,
for the mutation, the probabilities are modified.

pPj =

and

qj =

2J/v(1 —an) (1 N J) 2

21/'\/@1 + (1 - j) (1—ay).




What if not aperiodic?

Slmple RW on simple graphs

Example 7.10

1,234
0 [1/2]1/2] 0
1/3, 0 [1/3]1/3
1/4|1/4| 0 |1/4|1/4
0 [1/2]1/2] 0
500 10
Simple graph and the transition matrix of the
corresponding simple random walk (RW) on this graph.

From every vertex we move to a uniformly chosen
neighbour. (Described more precisely on the ni>3t85|/'df4b

BN =

OO OOl




What if not aperiodic?

Let G = (V, E) be a simple graph (no loops, no double
edges), where as usual, V is the set of vertices and E is
the set of edges. We denote the degree of vertex x € V
by deg(x). The simple random walk on G is Markov
chain on state space S which is defined by the following
transition matrix:

1 .
(32) p(x,y) = | B’ (x.y) € E;
0, otherwise.
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What if not aperiodic?

algebra

Example 7.10 (Cont.)

Using the mathematica 11 code on the next slide we

obtain that the stationary distribution:

= (%% 1 1 L) (the last command on the next slide

results the 5-th component of 7). The mean first
passage matrix is M = (mj;)?,_;, where m;; is the
expected number (> 1) of steps to get from /i to j for
the first time.

I
»B o sReg o
= A0 WNIoR|©
»|F o »[Ra[5 o

—

[ENY

NIV o STENT NN o
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Linear algebra What if not aperiodic?

Mean First Passage Time Matrix

= (m;;) and we know the diagonal: m;; = - In
general we need to solve the system of equatlons for all

i #

mij =pij-1+ g&: pik-(L+me)= 1+ k%é:j Pik - Mk -
y
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Example 7.10 (Cont.)

e tloo
2 3
162 %p
3 3 3
¢’=DiscreteMarkovProcess[(6, 0;1,0;0); |2 L g 2 ]
4 4 4 4
e tloeo
= 2
0 0160 0
DiscreteMarkovProcess‘ 0,0,1, 0, 0},
1 A 1 o L | 1 2 g 1 2 R
*‘9,E.E,eaeng,e,g;g,eu 2’2 0,1,1 95 5994},(9,9,1,9,9

D = FirstPassageTimeDistribution[®, 4];
Mean[D]

21
4

PDF [StationaryDistribution[?], 5]
The second and third commands computes the value
m34 = 2'. The last command yields that 7(5) = ;.

ﬁ.
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What if not aperiodic?

Knight moves on chessboard

8

7
6

L~

= N W

y )

2

Simple RW on the
graph G, where

G=(E,V):
Vi={1,...,8}%,
and for

(i17j1)7 (i27j2) € v
((i17.j1)7 (i27.j2)) € E
iff either:

or

1 — jo| =2&|ih — ih| =1
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What if not aperiodic?

RW with absorbing boundary :

E@/q\@ﬁ/:\@;im\p/@:i

0/1/2|3|4
0/{1/0/0/0/|0
1/ g|0[p|0]0
2/0/g|0|p|0
3/0[{0/qg|0]p
410(0/0/0/|1
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What if not aperiodic?

RW with reflecting boundary

e e el e
1 P P
01234
0/0|1{0/0/0
11q10(p0]0
2101 ¢0[p|0
3/0{0/qg|0]p
4/0/0/0]1]0
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What if not aperiodic?

RW with periodic boundary conditions

T | OO |Oolo
O OoOQ | OT | =~
oQ|OT | ON
Q[ OT | OO Ww
O|T | Oon|

BWN=O
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Simple random walk. Click here for the online
version.
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2019. Click here to download from the authors
website
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