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The history of Branching Processes

In 1873 Francis Galton asked in Educational Times:
what is the probability of dying off of a name, a family
dying agnatically? Reverend Henry William Watson
answered it and they published a paper together in 1874:
On the probability of extinction of families. Thus the
correspondent MC is called Galton-Watson process. So
we only regard the number of sons in various
generations, because they carry on the name.
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Branching processes
Let’s regard a population, in which the 0th generation
only consists of one person and in the nth generation one
gives birth to k children (who will be counted in the
(n + 1)st generation) with probability pk (independently
of each other); with k = 0, 1, 2, . . .
Let Xn be the number of individuals in the nthgeneration.
The state space is N = {0, 1, 2, . . . }. If Y1, Y2, . . . are
i.i.d. random variables for which P (Ym = k) = pk , then
the transition matrix is p(0, 0) = 1 and
p(i , j) := P (Y1 + · · ·+ Yi = j) if i > 0 and j ≥ 0.
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Special case: The number of children has geometric
distribution.

pℓℓℓ := P (number of children = ℓℓℓ) = qℓℓℓp.

Then element (k , l) of the transition matrix:

p(k , ℓ) =
k + ℓ− 1

ℓ

pnqk .
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Random walks on Zd

Simple symmetric random walk on S = Zd :

(1) p(x , y) :=


1
2d , ha ∥x− y∥ = 1;
0, otherwise.

General random walk on S = Zd :
p : Zd → [0, 1]; ∑

x∈Zd
p(x) = 1, and the transition matrix

P = (p(x , y)):

p(x , y) := p(x− y).
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Two stage Markov chains

In this example Xn+1 is dependent of (Xn−1, Xn) .
Basketball chain
Consider a basketball player who makes a shot with the
following probabilities:
1/2, if both of his previous shots are missed
2/3, if he has hit one of his last two shots
3/4, if he has hit both of his last two shots.
So let Xn = S denote the success and Xn = M denote
the miss.
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Two stage Markov chains (cont.)
The state space is: {SS, SM, MS, MM} and the
transition matrix is:

SS SM MS MM
SS 3/4 1/4 0 0
SM 0 0 2/3 1/3
MS 2/3 1/3 0 0
MM 0 0 1/2 1/2

Explanation: If (Xn−1, Xn) = (S, M), then the
probability of (Xn, Xn+1) = (M, S) is equal to 2/3.
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Stationary distribution for the Basketball
chain

Following the rule shown above to compute stationary
distribution πππ, we subtract 1 from transition matrix P’s
diagonal elements and replace the last column with ones.

A =


−1/4 1/4 0 1

0 −1 2/3 1
2/3 1/3 −1 1

0 0 1/2 1


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Stationary distribution for the Basketball
chain (cont.)

Then A−1 =


−13

6 −
5
16

11
16

43
24

−1
6 −

17
16 −

1
16

31
24

−1 −3
8 −3

8
7
41

2
3
16

3
16

1
8

.

Its last row is πππ. Hence,

πππ =
(1

2 , 3
16 , 3

16 , 1
8
)

.
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Stationary distribution for the Basketball
chain (cont.)

Reminder: the order of components is (SS,SM,MS,MM).
(S: success, M: miss.) So, in the long term the ratio of
successes is:

πSS + πKS = π1 + π3 = 1
2 + 3

16 = 11
16 .
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Ehrenfest chain: Stationary distribution

Example 0.1 (πππ for the Ehrenfest chain)

Recall the definition of the Ehrenfest chain: Consider the
Markov Chain with state space S := {0, 1, 2, . . . , n} and

1 It jumps from 0 to 1 and from n to n − 1 with
probability 1.

2 For any 0 < i < n, it jumps from i to i − 1 with
probability i/n and from i to i + 1 with probability
1− i

n .
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Ehrenfest chain: Stationary distribution
(cont.)
Now compute the stationary state for this chain. The
transition matrix:

P :=



0 1 0 0 · · · 0
1
n 0 n−1

n 0 · · · 0
0 2

n 0 n−2
n · · · 0

0 0 . . . . . . . . . 0
0 0 0 n−1

n 0 1
n

0 0 0 0 1 0


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Ehrenfest chain: Stationary distribution
(cont.)

For πππT · P = πππT , thus using notation π−1 := πn+1 := 0
we obtain that:

(2) πk−1
(
1− k−1

n
)

+ πk+1
k+1

n = πk , k = 0, 1, . . . , n.

We introduce the generating function:

(3) g(x) =
n∑

k=0
x kπk .
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Ehrenfest chain: Stationary distribution
(cont.)
Multiply both sides of (2) by n and x k , then sum it up
for k from 1 to n:

n∑
k=1

(n − k + 1)x kπk−1 +
n−1∑
k=0

πk+1(k + 1)x k = n
n∑

k=0
x kπk︸ ︷︷ ︸

g(x)

.

By obvious manipulations of this formula we obtain:

(1 + x)g ′(x) = ng(x).
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Ehrenfest chain: Stationary distribution
(cont.)
After solving this differential equation we get:

g(x) = C(1 + x)n.

Using that π is a probability vector we get g(1) = 1.
Hence C = 2−n. That is:

(4) g(x) = 2−n (1 + x)n = 2−n
n∑

k=1

n
k

 · x k

Compare this to (3) to realize that πk = 2−n
(n

k
)

.
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Two steps back, one step forward chain
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πππ for the two steps back one step ahead
chain:
From the equation πππT · P = πππT : π0 = 1

2 (π0 + π1 + π2)
and ∀k ≥ 1 : πk = 1

2 (πk−1 + πk+2) . From these two
equations it comes by induction that

(5) ∀k ≥ 0 : πk = πk+1 + πk+2.

It is obviously satisfied by πk = (1− ρ)ρk , k ≥ 0, where
ρ is the golden ratio: ρ =

√
5−1
2 . Homework: there is no

other stationary distribution. So the process spends most
of its time (more than 99%) in the set {0, 1, . . . , 9}.
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Doubly stochastic Markov Chains

Definition 0.2
A MC is doubly stochastic if its probability matrix’s
column sum equals to 1. ∑

j
p(i , j) = 1 , ∀j .

Theorem 0.3
A MC with finite state space is doubly stochastic iff its
stationary distribution is the uniform distribution.

Proof.
Let us assume that #S = N , then

∑
x

πππ(x)p(x , y) = 1
N
∑
x

p(x , y) = 1
N = πππ(x).

18 / 178



Doubly stochastic Markov Chains

Examples

Example 0.4 (Random walk with periodic boundary
conditions)
Recall the definition of the random walk with periodic
boundary conditions from slide 144 in File MC I. It is
obviously doubly stochastic.
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Doubly stochastic Markov Chains

Modulo 6 jumps on a circle

Example 0.5
We roll the finite number series 0, 1, 2, . . . , 5 on to a
circle so that 5 and 0 be neighbours. Then we use such a
regular dice which has number

1 on three sides,
2 on two sides,
3 on one side.

We move forward as much as we scored (modulo 6).
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Doubly stochastic Markov Chains

Modulo 6 jumps on a circle (cont.)
The transition matrix is:

0 1 2 3 4 5
0 0 1/2 1/3 1/6 0 0
1 0 0 1/2 1/3 1/6 0
2 0 0 0 1/2 1/3 1/6
3 1/6 0 0 0 1/2 1/3
4 1/3 1/6 0 0 0 1/2
5 1/2 1/3 1/6 0 0 0

It can easily be seen that the elements of transition
matrix’s third power P3 are positive. Thus we see that
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Doubly stochastic Markov Chains

Modulo 6 jumps on a circle (cont.)

the chain is irreducible and aperiodic, so the conditions
of Convergence Theorem (Theorem 6.2 in File MC I) are
satisfied (obviously πππ(i) = 1/6, ∀i).
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Recurrence in case of countable infinite state space
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Recurrence in case of countable infinite state space

Recurrence of the simple Symmetric
random walk in Zd-ben

Theorem 1.1
In Rd the simple symmetric random walk is
recurrent (zero recurrent) if d = 1 or d = 2 but
transient for d ≥ 3 .

We will give the proof in the case when d = 1.
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Recurrence in case of countable infinite state space

One needs to be careful

In the case of countably infinite state space it can
happen that there are no recurrent states as the
following trivial example shows
Example 1.2 (Monotone increasing MC)
Let S be the set of non-negative integers and
p(i , i + 1) := 1 for all i ∈ S.
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Detailed balance condition and related topics

Doubly stochastic Markov Chains
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Detailed balance condition
πππ satisfies detailed balance condition , if ∀x , y

(6) πππ(x)p(x , y) = πππ(y)p(y , x)

If we sum both sides for y , we get that
∑
y

πππ(y)p(y , x) = πππ(x)
∑
y

p(x , y)︸ ︷︷ ︸
=1

= πππ(x) .

So, if a probability measure satisfies formula (6), then it
is a stationary distribution. There exist stationary
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Detailed balance condition (cont.)
distributions which do not satisfy the detailed balance
condition (6). For example, consider the MC whose
probability matrix is:

P =


0.5 0.5 0
0.3 0.1 0.6
0.2 0.4 0.4

 .

Then the stationary distribution π of P does not satisfy
(6). To get contradiction, assume that π satisfies (6).
From this and from the fact that p(1, 3) = 0 we get
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Detailed balance condition (cont.)
πππ(3) = 0. This and formula (6) yield that
πππ(2) = πππ(1) = 0 which is impossible. On the other
hand, P is a doubly stochastic matrix for which there is a
stationary distribution (the uniform distribution):
πππ = (1

3 , 1
3 , 1

3).
So, it can happen that there is a stationary distribution
but it does not satisfy (6). In spite of this, if we have a
guess about a probability vector that it could be the
stationary distribution, we can check it easily by
substituting it into formula (6).
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Reversible MC
Now we use [4, chapter 1.6]. Notation: For the MC
(Xn) we introduce

(7) X n
0 := (X0, . . . , Xn).

So for x := (x0, . . . , xn)

(8) {X n
0 = x} = {X0 = x0, . . . , Xn = xn}

and for an x = (x0, . . . , xn) let

(9) ←−x := (xn, xn−1, . . . x1, x0).
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Reversible MC (cont.)

It comes easily from formula (6) that:
(10)
πππ(x0)p(x0, x1)· · ·p(xn−1,xn)=πππ(xn)p(xn, xn−1)· · ·p(x1, x0).

Using notation x = (x0, . . . , xn) this implies that:

(11) Pπππ (X n
0 = x) = Pπππ

(
X n

0 =←−x
)

.

So if MC (Xn) has stationary distribution, and it satisfies
detailed balance condition, then the distribution of
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Reversible MC (cont.)

(X0, . . . , Xn) is the same as the distribution of
(Xn, . . . , X0).

Definition 2.1 (reversible MC)
A MC Xn is reversible if it has stationary distribution πππ
and πππ satisfies the detailed balance condition , that is
formula (6) holds.
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Reversible MC (cont.)

Example 2.2 (Simple random walk on graphs, slide 137
in File MC I)
Let us regard a simple random walk on graph
G = (V , E ). Using notation of slide 137 in File MC I,
the stationary distribution is: πππ(y) = deg(y)/2#E . It
can be easily seen (homework) that it satisfies detailed
balance condition:

πππ(x)p(x , y) = πππ(y)p(y , x) , ∀x , y ∈ S.
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Reversible MC (cont.)

Example 2.3 (Random walk with periodic boundary
condition)
Reminder: finite state space (with cardinality N ) rolled
onto a circle. We jump 1 clockwise with probability p
and anticlockwise with probability q = 1− p. The chain
is double stochastic, so πππ = ( 1

N , . . . , 1
N ). But

πππ(k)p(k , k + 1) = p
N and q

N = πππ(k + 1)p(k + 1, k)
and they are equal only if p = q. So in other instances
the detailed balance condition is not satisfied.
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Definition 2.4 (Chain with reversed time)

Given an irreducible MC Xn with transition matrix P and
stationary distribution πππ. Let us define the matrix
P̂ = (p̂(x , y)):

(12) p̂(x , y) := πππ(y)p(y ,x)
πππ(x) .

Then P̂ is a stochastic matrix (every element is
non-negative, the row-sums are 1.) So P̂ determines a
MC (X̂n), which we call time reversal of (Xn).

Obviously, if (Xn) is reversible, then P = P̂.
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Time reversal

Theorem 2.5
Using notation of Definition 2.4:

(a) πππ is stationary distribution not only for (Xn)
but for (X̂n), too, and

(b) for all x:

(13) Pπ (X n
0 = x) = Pπ

(
X̂ n

0 =←−x
)

,

where ←−x was defined in (9).
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Detailed balance condition and related topics Detailed balance condition and Reversible Markov Chains

Time reversal (cont.)
Proof.
Firstly we prove part (a):

∑
y

πππ(y)p̂(y , x) =
∑
y

πππ(y)π
ππ(x)p(x , y)

πππ(y) = πππ(x) .

Now we see part (b):

Pπππ (X n
0 = x) = πππ(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn)

= πππ(xn)p̂(xn, xn−1) · · · p̂(x2, x1)p̂(x1, x0)
= Pπππ

(
X̂ n

0 =←−x
)

.
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Detailed balance condition and related topics Birth and death processes

Birth and death processes

Birth and death processes are those MCs, whose state
space are

S := {k , k + 1, . . . , n} .

and we cannot jump more than 1. So the possible jumps
are: −1, 0, 1. The transition probability:

p(x , y) = 0 if |x − y | > 1 :
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Detailed balance condition and related topics Birth and death processes

Birth and death processes (cont.)

Then the transition matrix P is:

p(x , x + 1) = px if x < n
p(x , x − 1) = qx if x > k

p(x , x) = 1− px − qx if k ≤ x ≤ n.

and all other p(x , y) = 0. Warning: p + q ̸= 1 is
possible here!
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Detailed balance condition and related topics Birth and death processes

Birth and death processes (cont.)

Theorem 2.6

All birth and death processes are reversible.
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Detailed balance condition and related topics Birth and death processes

Birth and death processes (cont.)
Proof
We need to see that we can find a probability measure πππ
on S which satisfies formula (6), thus for x < n it must
be true for πππ:

πππ(x + 1) p(x + 1, x)︸ ︷︷ ︸
qx+1

= πππ(x) p(x , x + 1)︸ ︷︷ ︸
px

So, for (6), it is needed that

(14) πππ(x + 1) = px

qx+1
πππ(x) .

Iterating this for every 1 ≤ i ≤ n − k 41 / 178



Detailed balance condition and related topics Birth and death processes

Proof Cont.

(15) πππ(k + i) = πππ(k) · pk+i−1 · pk+i−2 · · · pk+1 · pk

qk+i · qk+i−1 · · · qk+2 · qk+1︸ ︷︷ ︸
ri

It is easy to see that if we choose πππ(k) such way that

(16) πππ(k) ·
1 +

n−k∑
i=1

ri

 = 1,

then πππ is a stationary distribution which satisfies the
detailed balance condition, so the chain is reversible.
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Detailed balance condition and related topics Birth and death processes

We have computed the stationary distribution for the
Ehrenfest Chain (see slide 11). We got that
πππ(k) = 2−N

(N
k
)
, but we needed an unpleasant reduction

involving generator functions. Now we can easily get this
from formula (15) because the Ehrenfest Chain is
obviously a birth and death process.
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Detailed balance condition and related topics Birth and death processes

Example 2.7 (πππ for the Ehrenfest chain )
Here: S = {0, 1, . . . , N}. From formula (15) we get that

ri =
N

i

 if 1 ≤ i ≤ N .

Using that 1 +
N∑

i=1
ri = 2N we obtain that for

i = 0, . . . , N :

πππ(i) = 2−N
N

i

.
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Absorbing Chains

Doubly stochastic Markov Chains
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Absorbing Chains Exit distributions through examples

Two year collage

Example 3.1 (Two year collage)

At a two year collage the first year students are called
freshmen the second year students are the sophomores.

Freshmen: 60% of them become sophomores ,
25% of them remain freshmen, 15% of them exit
( E ) so leave the school.
Sophomores: 70% of them complete the courses
with Success ( S ), 20% of them remain sophomores
and 10% of them exit.

46 / 178



Absorbing Chains Exit distributions through examples

Two year collage (cont.)

Then if S = {1, 2, G , D} (freshmen, sophomores,
Graduate, Drop out) and Xn shows that a student is in
which state after n years, then Xn is a MC whose state
space is S and its transition matrix:

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1
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Absorbing Chains Exit distributions through examples

Two year collage (cont.)

Let h(x), x ∈ S be the probability that a student in state
x eventually graduates. Then we apply the
one step reasoning method. Namely, we do not know
h(1) and h(2) but after making one step on the chain
the following equations hold:

h(1) = 0.25h(1) + 0.6h(2)
h(2) = 0.2h(2) + 0.7.

From this h(2) = 7/8 and h(1) = 0.7.

48 / 178



Absorbing Chains Exit distributions through examples

Theorem 3.2

A MC is given with a finite state space S. Let a, b ∈ S
and C := S \ {a, b}. Let h : S → R+ be a function
satisfying:
(17)
h(a) = 1, h(b) = 0, ∀x ∈ C : h(x) = ∑

y∈S
p(x , y)h(y) .

Put
Vy = min {n ≥ 0 : Xn = y}.

Assume that ∀x ∈ C: Px (Va ∧ Vb <∞) = 1. Then

h(x) = Px(Va < Vb) .
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Absorbing Chains Exit distributions through examples

Proof

We frequently use the shorthand notation

a ∧ b := min {a, b} .

Let T := Va ∧ Vb. By assumption

(18) ∀x ∈ C , Px (T <∞) = 1.
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Absorbing Chains Exit distributions through examples

Proof (cont.)

First we express the probability Px (Va < Vb) in terms of
the expectation of a random variable. Namely, note that
by definition,

h(XT ) =
 1, if Va < Vb ;

0, if Vb < Va.

That is

(19) h(XT ) = 1{Va<Vb}
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Absorbing Chains Exit distributions through examples

Proof (cont.)

Hence, for all x ∈ C we have

(20) Px (Va < Vb) = Ex [h(XT )]

Now we prove that

(21) Ex [h(XT )] = limn→∞Ex [h(XT∧n)] .
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Absorbing Chains Exit distributions through examples

Proof (cont.)
To see this, recall that we assumed that the state space
#S <∞. So, M := max

x∈S
h(x) <∞, That is, on the one

hand, for all x ∈ C ,

(22) h(XT∧n) < M holds for all n.

On the other hand, using (18) (which says that T is
almost surely finite) we have that

(23) limn→∞ h(XT∧n) = h(XT ).
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Absorbing Chains Exit distributions through examples

Proof (cont.)
Putting together (23) and (22), we obtain that (21)
holds by Lebesgue Dominated Convergence Theorem .
Finally, we verify that

(24) Exh(XT∧n) = h(x) , ∀n > 1, ∀x ∈ C .

u1(x , a) := Px (X1 = a) = p(x , a) and for k ≥ 2

uk = Px (Xk = a, T = k) · h(a)︸ ︷︷ ︸
1

=
∑

x1,...,xk−1∈C
p(x , x1)p(x1, x2) · · · p(xk−1, a).
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Absorbing Chains Exit distributions through examples

Proof (cont.)
Moreover, let S0 := h(x) and

Sk :=
∑

x1,...,xk∈C
p(x , x1)p(x1, x2) · · · p(xk−1, xk)h(xk).

A careful case analysis yields that by (17) for k ≥ 1:

(25) Sk = Sk−1 − uk .

Observe that for a k ≤ n we have

(26) Ex [h(XT∧n), T = k] = Px (Xk = a, T = k) .
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Absorbing Chains Exit distributions through examples

Proof (cont.)
Using (25), (26), a telescoping sum in the third step and
the fact that S0 = h(x) we obtain:

Ex [h(XT∧n)] = Ex [h(XT∧n);T > n]+
n∑

k=1
Ex [h(XT∧n),T=k]

= Sn +
n∑

k=1
uk(27)

= h(x)︸ ︷︷ ︸
S0

+
n∑

k=1
(Sk − Sk−1︸ ︷︷ ︸

−uk

) +
n∑

k=1
uk(28)

= h(x) .■(29)
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Absorbing Chains Exit distributions through examples

Wright-Fisher model

This was introduced on slide 131 in File MC I.
The state space: S = {0, 1, . . . , 2N}. The absorbing
states: 0 and 2N . Question: what is the probability of
ending up in 2N , or in the model’s language: what is the
probability that once every gene becomes type a?
The transition matrix:

p(x , y) =
2N

y

( x
2N

)y (
1− x

2N

)N−y

︸ ︷︷ ︸
Binomial(2N,x/2N)

.
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Wright-Fisher model (cont.)

That is: the distribution of y ∈ {0, 1, . . . , 2N} where the
Markov chain jumps to from x ∈ {0, 1, . . . , 2N} is a
Binomial(2N , x/2N) random variable. We know that
expected value of a Binomial(2N , x/2N) r.v. is equal to
x . The same in formula:

(30) x =
2N∑
y=0

p(x , y) · y
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Wright-Fisher model (cont.)

Let us define a function: h(t) := t
2N , then by (30):

h(x) =
2N∑
y=0

p(x , y)h(y).

Let a = 2N and b = 0. Then h(a) = 1 and h(b) = 0.
Obviously:

Px (Va ∧ Vb <∞) > 0, ∀0 < x < N .
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Wright-Fisher model (cont.)

So, we can use Theorem 3.2, thus we get:

Px (V2N < V0) = h(x) = x
N .■

In summary: here we guessed the exit probability function
h(x) and to verify our guess we used Theorem 3.2.
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Example: Gambler’s ruin, unfair case

Now we use the notation introduced on slide 4 in File
MC I, where the Gambler’s ruin example was introduced
with the modification that now p ̸= 1/2 is arbitrary. Let

h(x) = Px (VN < V0) .

That is h(x) is the probability that a gambler starting
with $x eventually wins, that is reaches $N earlier than
$0. Obviously, h(N) = 1 and h(0) = 0. As usual, let
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Example: Gambler’s ruin, unfair case
(cont.)

q := 1− p and let 0 < x < N . Yet again we use the
one-step argument : After one step:

Xn+1 =
 x + 1, with probability p;

x − 1, with probability q.

So, for 0 < x < N :

(31) h(x) = ph(x + 1) + qh(x − 1).
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Example: Gambler’s ruin, unfair case
(cont.)

Obvious manipulations yield:

p (h(x + 1)− h(x)) = q (h(x)− h(x − 1)) .

Hence,

(32) h(x + 1)− h(x) = q
p (h(x)− h(x − 1))
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Example: Gambler’s ruin, unfair case
(cont.)
Let c := h(1)− h(0). So, from formula (32) for x ≥ 1

(33) h(x)− h(x − 1) = c
(q

p

)x−1
.

Using that h(N) = 1, h(0) = 0 and a telescopic sum in
the second step and (33) in the last step:

1 = h(N)− h(0) =
N∑

x=1
h(x)− h(x − 1) = c

N∑
x=1

(
q
p

)x−1
.
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Example: Gambler’s ruin, unfair case
(cont.)

Put θ = q/p . Then c = (1− θ)/(1− θN). So

(34) h(x) = h(x)− h(0) = c
x−1∑
i=0

θi = 1−θx

1−θN .

From here if N →∞ we get that

(35) p > 1
2 ⇒ Px (V0 =∞) = 1−

(q
p

)x
.
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Example: Gambler’s ruin, unfair case
(cont.)

Corollary 3.3

Consider a random walk on Z, in which starting from all
x > 0 we go forward one step with probability p > 1

2 and
we go backward one step with probability q = 1− p.
Then the probability that starting from an arbitrary
x > 0 we never reach 0 is 1−

(
q
p

)x
> 0. That is every

state is transient.
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Example: Gambler’s ruin, fair case

We consider the Gambler’s ruin example with p = 1/2.
We use the unfair case (p ̸= 1/2)’s notation. The
argument is the same until formula (32).
But in case of p = 1/2 formula (32) shows that the
gradient of function h(x) is constant and h(0) = 0,
h(N) = 1 so if p = 1/2

Px (VN < V0) = h(x) = x/N .
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Tennis

The following problem is from [1, p.44].
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Tennis (cont.)
Example 3.4

In tennis a player wins the game if either she gets 4
points when the other player has not more than 2 points.
If the score is 4− 3 then the winner is the player who
makes a two pints advantage first. Assume that

The server wins the point with 0.6 probability,
Successive points are independent.

Question: What is the probability that the server wins if
the score now is 3− 3?
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Tennis (cont.)
Solution: Let Xn be the difference of the points scored
from the point of the server after 3− 3 until one of the
player has a 2 point advantage so that the game ends.
That is the state space is S := {−2,−1, 0, 1, 2} . Then
the transition matrix:

2 1 0 -1 -2
2 1 0 0 0 0
1 0.6 0 0.40.40.4 0 0
0 0 0.60.60.6 0 0.40.40.4 0
-1 0 0 0.60.60.6 0 0.4
-2 0 0 0 0 1
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Tennis

Let h(x) be the probability that the server wins when
staring from X0 = x . Obviously now the absorbing
states are {−2, 2} and C = {−1, 0, 1}. Clearly,

h(2) = 1 and h(−2) = 0.

From the one-step reasoning:

(36) h(x) = ∑
y

p(x , y)h(y) , ∀x ∈ C .
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Tennis (cont.)

h(1) = 0.6 · h(2)︸ ︷︷ ︸
1

+0.4h(0) = 0.4h(0) + 0.6(37)

h(0) = 0.6h(1) + 0.4h(−1)
h(−1) = 0.6h(0) + 0.4 · h(−2)︸ ︷︷ ︸

0

= 0.6h(0).

Let R = (r(x , y))x ,y∈C be the restriction of matrix P to
rows and columns of C , and let ĥ be the vector which
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Tennis (cont.)
we get by ignoring those coordinates of h which are
outside C . Then formula (37):

(38) ĥ− R · ĥ =


0.6
0
0


Which is:

1 −0.4 0
−0.6 1 −0.4

0 −0.6 0


︸ ︷︷ ︸

I−R

·


h(1)
h(0)

h(−1)

 =


0.6
0
0


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Tennis (cont.)

So


h(1)
h(0)

h(−1)

 = (I − R)−1 ·


0.6
0
0

 =


0.8769
0.6923
0.4154


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Exit time from the two year collage

Consider the two-year collage example on slide 46.
There,we asked what was the probability of a
k = 1, 2-year-student of graduating ever. Now, for the
same example we ask:
Question: On average, how much time is needed for a
student to get out of the school either by completing it
successfully or drop out (unsuccessfully).
Let g(x) be the expected number of years that an
x ∈ {1, 2}-year student leaves the school either because
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Exit time from the two year collage (cont.)

she graduates or because she drops out. We define
g(G) = g(D) = 0. Again, we use the one-step reasoning:

g(1) = 1 + 0.25g(1) + 0.6g(2)
g(2) = 1 + 0.2g(2).

This yields: g(2) = 1.25 and g(1) = 2.333.
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Exit time

Theorem 3.5

Let Xn be a MC with a finite state space S. Let A ⊂ S
and C := S \ A, and VA := min {n ≥ 0 : Xn ∈ A}. Let
g : S → R+ be a function which satisfies:

(a) Px (VA <∞) > 0 , ∀x ∈ C,
(b) g(a) = 0, ∀a ∈ A,
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Exit time (Cont.)
Theorem 3.5 (Cont.)

(c) ∀x ∈ C

(39) g(x) = 1 +
∑
y

p(x , y)g(y).

Then this function g is the expected exit time. That is

(40) g(x) = Ex [VA] .

Proof.
The proof goes similarly as the proof of Theorem 3.2.
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Waiting time for TT

Example 3.6

We flip a fair coin until we get two Tails (TT) in a row.
Question: what is the expected value of the number of
flips?

Solution: We call T the Tails and H the Heads. Let
TTT be the (random) number of flips until we get the
two Tails (the TT). Now we associate a MC (Xn) with
state space S := {0, 1, 2}, where Xn is the number of
consecutive Tails after the nth flip. So, if the nth flip
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Waiting time for TT (cont.)

results in a Head, then Xn = 0, if it is a Tail, then
Xn = 1 or Xn = 2 depending on Xn−1 (if it was Head or
Tail). State 2 is absorbing because we only flip the coin
until this happens. So, the transition matrix:

0 1 2
0 1/2 1/2 0
1 1/2 0 1/2
2 0 0 1
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Waiting time for TT (cont.)

Let

V2 := min {n ≥ 0 : Xn = 2} and g(x) := Ex [V2] .

Then from the one-step reasoning:

g(0) = 1 + 0.5g(0) + 0.5g(1)(41)
g(1) = 1 + 0.5g(0).
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Waiting time for TT (cont.)

Let 1 be the vector in R2, having both components
equal to 1. Then g(0) = 0 by formula (41):

(42) (I − R) · ĝ = 1,

where, as before, R is the matrix we get from P by
deleting the rows and columns corresponding to the
absorbing states (now the only absorbing state is 2) and
ĝ is the vector we get from vector g by deleting the
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Waiting time for TT (cont.)

components belonging to the absorbing states which is 2
as mentioned before. Hence from (42) we get

ĝ =
 g(0)

g(1)

 = (I − R)−1 · 1 =
 4 2

2 2

 · 1 =
 6

4


So, by Theorem 3.5, we have

E0 [V2] = g(0) = ĝ(0) = 6.
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Tennis at 3− 3
Consider the Tennis problem on slide 68 again.
Question: How long the game lasts if now the score is
4− 3, 3− 3 and 3− 4 from the point of the server?
Solution: Let g(x) be the expected time of the game if
x ∈ {1, 0,−1}. As we discussed, the absorbing states are
A := {−2, 2} and the state space is
S := {−2,−1, 0, 1, 2}. So, C : A \ A = {1, 0,−1}.
Using notation analogue to the previous problem:

R =


0 0.4 0

0.6 0 0.4
0 0.6 0


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Tennis at 3− 3 (cont.)
and from here:

I − R =


1 −0.4 0
−0.6 1 −0.4

0 −0.6 1


So, like the previous problem:


g(1)
g(0)

g(−1)

=(I − R)−1 1=


19/13 10/13 4/13
15/13 25/13 10/13
9/13 15/13 19/13




1
1
1


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Tennis at 3− 3 (cont.)

So, at 3− 3 the expected play-time:

(43) g(0) = 15 + 25 + 10
13 = 3.846.

86 / 178



Absorbing Chains Exit time through examples

Tennis at 3− 3 (cont.)

Remark 3.7

Consider an absorbing MC with state space S, absorbing
states A and transient states C := S \ A. Let y ∈ C and
we denote the total number of visit to y including the
time 0 if we started from y by N(y). The
N(y) =

∞∑
n=0

1Xn=y . In this way
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Tennis at 3− 3 (cont.)
Remark 3.7 (Cont.)

(44) Ex [N(y)] =
∞∑

n=0
Rn(x , y) = (I − R)−1(x , y).

Let T be the duration until the chain gets into an
absorbing state. This is equal to the total time the MC
spends at all of the transient states together. That is

T =
∑
y∈C

N(y).

Hence by (44) 88 / 178
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Tennis at 3− 3 (cont.)
Remark 3.7 (Cont.)

Ex [T ] =
∑
y∈C

Ex [N(y)] =
∑
y∈C

(I − R)−1(x , y),(45)

which is the x -th component of the vector

(I − R)−1 · 1.

With this argument we proved that (I − R)−1(x , y) is
equal to the expectation of the number of visits to y
(counting the initial state if x = y) starting from x .
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Tennis at 3− 3 (cont.)

As a Corollary of this Remark we can see that in (43) the
summands

15
13 ,

25
13 ,

10
13

are the expected number of cases when the score is
1, 0,−1 respectively, before the game ends.
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Gambler’s ruin, p = 1/2: How long does
it last?

So: p(i , i + 1) = p(i , i − 1) = 1/2. A := {0, N},

VA := min {n ≥ 0 : Xn ∈ A}.

Let g(x) := Ex [VA] . Obviously

(46) g(0) = g(N) = 0.
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

If 0 < x < N :

g(x) = 1 + 1
2g(x + 1) + 1

2g(x − 1)

g(x + 1)− g(x) = g(x)− g(x − 1)− 2.

If c = g(1) = g(1)− g(0), then

(47) g(k)− g(k − 1) = c − 2(k − 1)
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

Using that g(N) = 0 and summing the previous
equations for 1 ≤ k ≤ N , we get telescopic sums. From
these:

0 = g(N) =
N∑

k=1
(g(k)− g(k − 1))

=
N∑

k=1
(c − 2(k − 1)) = cN − 2N(N−1)

2 .
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Gambler’s ruin, p = 1/2: How long does
it last? (cont.)

Hence, c = N − 1. Substituting this back to formula
(47) and summing it up we obtain that:

g(x) = x(N − x) .
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Gambler’s ruin, p ̸= 1/2: How long does
it last?

So, in this case: p(i , i + 1) = p ̸= 1/2 and
p(i , i − 1) = 1− p =: q. Let A := {0, N},
C := {1, . . . , N − 1},

VA := min {n ≥ 0 : Xn ∈ A}.

Let g(x) := Ex [VA] . Obviously

(48) g(0) = g(N) = 0.
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)

From the one-step reasoning:

(49) g(x) = 1 + p · g(x + 1) + q · g(x − 1) , x ∈ C .

These are N − 1 equations for the N − 1 unknowns:
(g(1), . . . , g(N − 1)). This system of equation is the
same that appeared in formula (39). Thus, from
Theorem 3.5 its solution can only be g(x) = Ex [VA].
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)
We can easily check that g(1), . . . , g(N − 1) is the
solution of the system of equation (49) if

g(x) = x
q − p −

N
q − p ·

1− (q/p)x

1− (q/p)N , 0 < x < N − 1.

So, the expected time of the game for 0 < x < N − 1:

(50) Ex [VA] = x
q − p −

N
q − p ·

1− (q/p)x

1− (q/p)N .
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Gambler’s ruin, p ̸= 1/2: How long does
it last? (cont.)
From now we always assume that x ∈ C . We use (50)
and distinguish two cases: if p < q , then

(51) lim
N→∞

N
1−(q/p)N = 0 thus g(x) ≈ x

q−p .

On the other hand, if p > q , then (q/p)N → 0, thus

(52) g(x) ≈ N−x
p−q [1− (q/p)x ] + x

p−q(q/p)x .
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This Subsection is based on Charles M. Grinstead, J.
Laurie Snell’s book. [2]. Click here for the book.

In this Section (unless we say otherwise) Xn is supposed
to be an absorbing MC on a finite state space S with

transition matrix P,
absorbing states A ⊂ S and
transient states C := S \ A.

We write a := #A and c := #C .

We will answer the following questions in general terms:
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Questions answered on this Subsection in
general terms

(Q1) What is the probability that the process will
end up in a given absorbing state? (Theorem
3.11.)

(Q2) What is expected exit time (expectation of
the time to get to any of the absorbing
states)? (Theorem 3.9.)

(Q3) What is the expected number of visits to a
transient state before finally getting to an
absorbing state. (Theorem 3.8.)
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We always assume that the c + a states of S are
arranged as follows: the first c states are the transient
states and the last a states are the absorbing states.
Then the transition matrix P is in the canonical form :

(53)
C A

C R Q
A 0a,c Ia

, that is P =
 R Q

0a,c Ia

 .

where
R is a c × c matrix,
Q is a non-zero c × a matrix
0a,c is an a × c zero matrix (all elements are zero),
Ia is an a × a identity matrix,
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The powers of P
Clearly,

(54) Pn =
 Rn ⋆

0a,c Ia

 ,

where ⋆ is a c × a matrix. We have actually proved that

(55) limn→∞Rn = 0c,c

The following Theorem answers question Q3. In special
cases we have already seen its proof. Alternatively, for
the proof see [2, p. 418, Theorem 11.4].
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The fundamental matrix
Theorem 3.8

As always in this Subsection, we assume that Xn is an
absorbing MC. Then

(a) Ic − R has an inverse N := (Ic − R)−1 which
is called the fundamental matrix .

(b) N = Ic + R + R2 + R3 + · · · .
(c) N = (ni ,j)c

i ,j=1 then ni ,j is the expected values
of the times the chain starting from i ∈ C
visits j ∈ C before the absorbtion happens.
Initial state is counted if i = j .
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Time to absorption
Let Xn be as in Theorem 3.8. We write

VA := min {n ≥ 0 : Xn ∈ A} .

We define the vector g = (g(x))x∈C , where

g(x) := Ex [VA] . where x ∈ C

That is the x ∈ C -th component g(x) of the vector g is
the expected number of steps until the absorbtion
happens if the MC starts from x .
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Time to absorption (cont.)

Theorem 3.9

Let Xn be an absorbing MC. We denote the column
vector with all components equal to 1 by 1 ∈ Rc . Then

(56) g = N · 1 .

We have actually proved this in the previous subsection
in special cases. For a proof see [2, p. 420, Theorem
11.5]. This theorem answers Question Q2. In the
following slides we will answer Question Q1.
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An auxiliary lemma
We often need the following simple lemma.
Lemma 3.10

Let X be a non-negative integer valued r.v.. Then

(57) E [X ] =
∞∑

k=1
P (X ≥ k) .

Proof.
Observe that X =

∞∑
k=1

1{X≥k}. Then

E [X ] =
∞∑

k=1
E
[
1{X≥k}

]
=
∞∑

k=1
P (X ≥ k).
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Absorption probabilities
Let B = (bi ,j)i∈C ,j∈A be a c × a matrix whose elements
are defined as follows: for an i ∈ C and j ∈ A we write

bi ,j := P (the chain starting from i is absorbed at j)

Theorem 3.11

Let Xn be an absorbing MC. Then

(58) B = N ·Q .

Now we present the proof in a shorter form the we
repeat in a more detailed form.
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Proof in short
Proof of Theorem 3.11 in short.
Let R0 := I. Then

bi ,j
(57)=

∞∑
n=0

∑
k∈C

r (n)
i ,k · qk,j

=
∑
k∈C

∞∑
n=0

r (n)
i ,k · qk,j

=
∑
k∈C

ni ,k · qk,j

= (N · R)i ,j .
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Proof of Theorem 3.11 with details

Proof of Theorem 3.11 with details
Fix an arbitrary i ∈ C and j ∈ A . Imagine that we
start from i and finally arrive at j on such a such path
which stay within C before arriving at j . Let m be the
length of this path. Observe that m = 2 means no states
in between i and j on the path and for m > 2 there are
n − 2 states in between i and j on the path and all of
them must be in C . So such a path is describe with
c1, . . . , cm−2 ∈ C .
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Proof of Theorem 3.11 with details (cont.)

Proof of Theorem 3.11 with details (cont.)
Let us call the probability that such a path is realized
wi ,c1,...,cm−2,j , where the word c1, . . . , cm−2 is the empty
word if m = 2. Below we write n = m − 1 from the two
but last step:

110 / 178



Absorbing Chains Summary and the general theory

Proof of Theorem 3.11 with details (cont.)
Proof (cont.)

bi ,j =
∞∑

m=2

∑
c1,...,cm−2∈C

wi ,c1,...,cm−2,j

=
∞∑

m=2

∑
c1,...,cm−2∈C

pi ,c1 ·
m−2∏
k=1

pik ,ck+1 · pcn−1,j · pcm−1,j

=
∞∑

m=2

∑
c1,...,cm−2∈C

ri ,c1 ·
m−2∏
k=1

rck ,ck+1 · qcm−1,j

=
∞∑

n=0

∑
k∈C

r (n)
i ,k · qk,j

= (
∞∑

n=0
Rn ·Q)i ,j ,
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Proof of Theorem 3.11 with details (cont.)
Proof (cont.)

where
m−2∏
k=1

rck ,ck+1 := 1 if m = 2. Hence

(59) B =
∞∑

n=0
Rn ·Q

Recall that according to part (b) of Theorem 3.8 we
have N =

∞∑
n=0

Rn. Hence, by (59) we obtained that

(60) B = N ·Q. ■
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The problems considered

In this subsection Xn is an irreducible chain on the finite
state space S with transition matrix P and w assume
that #S ≥ 3. Let i , j , k ∈ S be three distinct elements
of S. We pose the following questions:

(Q4) What is the probability that the chain staring
from i ∈ S visits j ∈ S earlier than k ∈ S?

(Q5) What is the probability that the chain staring
from j ∈ S returns to j earlier than it visits
k ∈ S.
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The answer to question Q4

We prepare an absorbing MC from Xn by declaring some
of the states absorbing. Namely, let ej and ek be the
coordinate unit vectors in R#S which contains a 1 in
their j and k-th position respectively, and all other
components are zero. We replace of the j-th and k-th
rows of P by ej and ek respectively. The transition
probability matrix obtained in this way is denoted by
P (j ,k) and the corresponding MC is denoted by X (j ,k)

n .
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The answer to question Q4 (cont.)

Clearly, X (j ,k)
n is an absorbing MC with absorbing states

A := {j , k} transient states C := S \ C . Let

P (j ,k) =
 R(j ,k) Q(j ,k)

0a,c Ia


be the canonical form of P (j ,k) and let N(j ,k) be the
corresponding fundamental matrix:

N(j ,k) =
(
I − R(j ,k))−1

,
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The answer to question Q4 (cont.)
where I is the (#S − 2)× (#S − 2) identity matrix.
Now we apply Theorem 3.11 for the MC X (j ,k)

n . That is
we define the (#S − 2)× 2 matrix

(61) B(j ,k) = N(j ,k) ·Q(j ,k),

where the rows are indexed by the elements of C and the
columns are indexed by {j , k}.

Now we can answer question Q4:

We introduce:
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The answer to question Q4 (cont.)

(62)
ηi ,j ,k :=P (the chain starting from i visists j earlier than k)

Then by Theorem 3.11 and by the definition of matrix B
we obtain that

(63) ηi ,j ,k = b(j ,k)
i ,j ,
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The answer to question Q4 (cont.)

where b(j ,k)
i ,j is the j-the element of the i-th row of the

matrix B(j ,k)
i ,j defined in (61) and this answers question

Q4.
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The answer to question Q5

Fix an arbitrary distinct j , k ∈ S. Let τj ,k be the
probability that the chain staring from j ∈ S returns to j
earlier than it visits k ∈ S. We can use the one-step
reasoning. Namely, if the chain starting from j returns to
j for the first time before visiting k then the chain
starting from j cannot make its first step to k . So, in the
first step the chain either remains in j (with probability
p(j , j) and then it has arrived back to j without visiting
k) or it jumps to an i ̸=∈ {j , k} and then it will continue
starting now from i ̸∈ {j , k} and visits j earlier than k .
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The answer to question Q5 (cont.)

The probability of this is (by definition) ηi ,j ,k . So, the
one-step reasoning yields:

(64) τj ,k = pj ,j + ∑
i ̸∈{j ,k}

p(j , i) · ηi ,j ,k .
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Example 3.12 (Exercise 1.13 from Lawler’s book [5])
Let Xn be a MC on S = {1, 2, 3, 4, 5} with

P =



0 1
2

1
2 0 0

0 0 0 1
5

4
5

0 0 0 2
5

3
5

1 0 0 0 0
1
2 0 0 0 1

2



(a) Is this chain irreducible? Is it
aperiodic? (b) Find π. (c) What
is the expected number of steps
to return to 1 for the first time if
the chain starts from 1?

(d) What is the expected number of steps to get to 4 for
the first time, if the chain starts from 1? (e) What is the
probability that the chain visits 5 earlier than 3 if the
chain starts from 1? (f)What is the probability that the
chain starting from 3 returns to 3 earlier than it visits 5?
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The chain is irreducible and aperiodic. This answers (a)
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So, (b): π = (10
37 , 5

37 , 5
37 , 3

37 , 14
37). (c): 37/10. (d): 34

3 .
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(e)The answer in 4/9. (The
element in the first row
since we start from 1 and
the column which
corresponds to 5 (this is a
the second column).

B3,5 =

3 5
1 5

9
4
9

2 1
9

8
9

4 5
9

4
9
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That is

(65) η1,3,5 = 5
9 , η2,3,5 = 1

9 , η4,3,5 = 5
9 .

Now we can answer question (f) that is we compute τ3,5
which was defined as the probability that the chain
staring from 3 returns to 3 earlier than it visits 5.
Namely, by (64) we have

τ3,5 = p3,3 + p(3, 1)η1,3,5 + p(3, 2)η2,3,5 + p(3, 4)η4,3,5

= 0 + 0 · 59 + 0 · 19 + 2
5 ·

5
9

= 2
9 .
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Umbrellas example [1, Excercise 1.37]

Example 3.13
An individual has three umbrellas, some at her office,
and some at home. If she is leaving home in the morning
(or leaving work at night) and it is raining, she will take
an umbrella, if one is there. Otherwise, she gets wet.
Assume that independent of the past, it rains on each
trip with probability 0.2.
Question 1: Which percentage of time does she get
wet?
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Umbrellas example (cont.)
We approach this problem in the language of Markov
chains. The only idea:
Let S := {0, 1, 2, 3} and we write Xn for the number of
umbrellas at the current location.
Then the transition matrix P is:

0 1 2 3
0 0 0 0 1
1 0 0 0.8 0.2
2 0 0.8 0.2 0
3 0.8 0.2 0 0
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Umbrellas example (cont.)
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Umbrellas example (cont.)
This yields that the stationary distribution is

(66) π =
( 4

19 , 5
19 , 5

19 , 5
19
)

.

Hence it happens with probability 4/19 that the
individual does not have any umbrellas at her current
location. However, she does not necessarily get wet at all
of these occasions, since there is a rain only every 5th
days (independently of everything). So, she gets wet
with probability 4/(19 · 5) = 0.04210526.... Remark:
the stationary distribution could be computed by hands
easily since the system of equations is very simple.
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Umbrellas example (cont.)

Namely, we want to find a probability vector
π = (π1, π2, π3, π4) such that
(67)

(π0, π1, π2, π3) ·


0 0 0 1
0 0 8

10
2
10

0 8
10

2
10 0

8
10

2
10 0 0

 = (π0, π1, π2, π3)

This yields the system of equations:
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Umbrellas: answer of Question 1
0.8π(3) = π(0)(68)

0.8π(2) + 0.2π(3) = π(1)
0.8π(1) + 0.2π(2) = π(2)

π(0) + π(1) + π(2) + π(3) = 1
As on slide 37 in File MC I, we throw away the last
equation and substituted it by the condition that the
sum of the components of π is equal to one, since the
last equation of the original system would give no more
information than the retained first three equations do.
The solution of the system (68) is really obvious high
school mathematics.
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Doubly stochastic Markov Chains

1 Recurrence in case of countable infinite state space

2 Detailed balance condition and related topics
Detailed balance condition and Reversible Markov Chains
Birth and death processes

3 Absorbing Chains
Exit distributions through examples
Exit time through examples
Summary and the general theory
Application to Irreducible chains
All of these with Mathematica

4 Branching Processes
Generator functions
Branching Processes

5 Stopping time, Strong Markov property

6 Transient and recurrent states
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Notation used in this Section
In this Section we always that X is a such r.v.
which takes only non-negative integers.
∀k ∈ N-re let pk := P (X = k) .
The generator function of the r.v. X is

gX (s) := E
[
sX ] =

∞∑
k=0

pk · sk .

The most basic properties of generator functions (in
short: g.f. )
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Generator functions

(a) A generator function uniquely determines the
cumulative distribution function.

(b) The generator function of the sum of two
independent r.v. which take only non-negative
integers, is the product of the generator
functions of these r.v..
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Generator functions (cont.)

(c) Let g(x) be the generator function of the r.v.
X . Then

E [X (X − 1) · · · (X − k)] = g (k+1)(1),

where g (k+1) is the k + 1-th derivative of g .
Hence by a simple calculation we get:
(69)

E [X ] = g ′(1) és E
[
X 2] = g ′′(1) + g ′(1).
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Generator functions (cont.)

(d) g(1) = 1 since (pk) is a probability vector.
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Generator functions (cont.)
Lemma 4.1

Let X and N be independent non-negative integer valued
r.v. with generator functions gX és gN . Moreover, let
X1, X2, . . . be i.i.d. r.v. having the same distribution as
X . We define the r.v.:

R := X1 + · · ·+ XN .

Then the generator function of R is:

(70) gR(s) = gN(gX (s)).

Before the proof of the Lemma we remark that an
important corollary of Lemma 4.1 is as follows: Using
properties (c) and (d) from slide 137 we obtain that
(71)

E [R] = g ′R(1) = g ′N(gX (1)︸ ︷︷ ︸
1

) · g ′X (1) = E [N] · E [X ] .

Proof.

gR(s) def of gR= E
[
sR] def of R= E

[
sX1+···+XN

]
tower prop.= E

E [
sX1+···+XN

] ∣∣∣∣∣∣N


=
∞∑

n=0
E
E [

sX1+···+Xn
] ∣∣∣∣∣∣N = n

 · P (N = n)

=
∞∑

n=0
E
[
sX1+···+Xn

]
︸ ︷︷ ︸

gn
X (s)

·P (N = n)

= E
[
gN

X (s)
] def of gN= gN (gX (s)) .
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Branching Processes with more details

We introduced Branching Processes on slide 3. Given a
probability vector (pk)∞k=0 which we call offspring
distribution . A population develops according to the
following rule: At the beginning there is one individual
on level 0. Then for all n ≥ 0, each individual on level n
independently gives birth to k offsprings with probability
pk . The same with notations:
Let Y be a non-negative integer valued r.v. such that
P (Y = k) = pk . Fix an arbitrary n ≥ 0. Let Xn denote
the number of level n individuals. The level n individuals
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Branching Processes with more details
(cont.)

{1, 2, . . . , Xn} give birth to Y (n)
1 , · · · , Y (n)

Xn
individuals.

So, the number of level n + 1 individuals is:

(72) Xn+1 = Y (n)
1 + · · ·+ Y (n)

Xn
.

We always assume that
{
Y (n)

m
}

m,n are i.i.d. r.v. with

Y (n)
m

d= Y .
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Branching Processes with more details
(cont.)
That is

P
(
Y (n)

m = k
)

= pk .

We can consider (Xn) as a Markov Chain with state
space S = {0, 1, 2, . . . } and the transition matrix
P = (pi ,j) is given by
(73)

p(i , j) = P (Y1 + · · ·+ Yi = j) for i > 0 and j ≥ 0,

where {Yi}∞i=1 are i.i.d. with Yk
d= Y .
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Branching Processes with more details
(cont.)

Let
gn := E

[
sXn

]
,

That is gn is the generator function of Xn, (which was
defined as the number of level n individuals). Let

g(s) := g1(s) := gY (s) =
∞∑

n=0
pn · sn.
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Branching Processes with more details
(cont.)

Clearly, for all m, the generator function of Ym is the
same:

g(s) = gYm(s) ∀m.

To get a better understanding of the generator function
gn we apply Lemma 4.1 with the following substitutions:

Xn → N , Yi → Xi , Xn+1 → R .
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Branching Processes with more details
(cont.)

The we obtain from Lemma 4.1 that

gn+1 = gn(g(s)).

From here, we obtain by mathematical induction that

(74) gn(s) = g ◦ · · · ◦ g︸ ︷︷ ︸
n

(s) =: gn (s).

145 / 178



Branching Processes Branching Processes

Branching Processes with more details
(cont.)

Apply this for s = 0 to get:

(75) P (Xn = 0) = gn(0).

Hence P (Extinction ) = limn→∞P(Xn = 0), where
Extinction is the event the the Brancing Process dies out
in finitely many steps.
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E [Y ]=g ′(1)<1 =⇒ limn→∞P(Xn = 0) = 1

g(s)

g(0) g2(0) g3(0)
g4(0)

0 1

1
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Summary: pn is the probability that
an individual has exactly n offsprings.
Then the expected number of
offsprings of an individual is
m :=

∞∑
n=1

pn · n. Consider the
generator function:
g(s) :=

∞∑
n=0

pn · sn . The graph of g

goes through (1, 1). Let ℓ be the
tangent line to g at s = 1. The
slope of ℓ is g ′(1) = m. If m > 1
then ℓ ∩ [0, 1]2 is below the line
y = x . Hence ∃ a q ∈ [0, 1) with
g(q) = q. Looking at the Figure:

0 ≤ g ′(q) < 1. So, for
gn := g ◦ · · · ◦ g︸ ︷︷ ︸

n
, we

have gn(0)→ q. That
is by (75) q is the
probability of extinction.

`

q

q
g(s)
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Notation

We study discrete time Markov chain Xn on the
countable (finite or countably infinite) state space S with
transition matrix P = (p(i , j))i ,j∈S .

Px(A) := P (A|X0 = x) .

Ex notates the expected value for the probability Px .
We frequently use the hitting time:

Ty := min {n ≥ 1 : Xn = y .}
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Notation (cont.)

The probability that the chain of starting at x will ever
get to y :

ρxy := Px (Ty <∞)

Intuitively: we feel that ρ2
yy is the probability of the event

that {starting from y , we will come back to y twice}
because we feel that whatever happens after we got back
to y first is independent of what had happened before.
To make this feeling precise we introduce the notion of
stopping time or Markov-time.
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Notation (cont.)

Definition 5.1 (Stopping time)

T is a stoppingtime if we can decide whether the event
{T = n} (we stop at time n) occur or does not occur by
looking at the values X0, . . . , Xn.
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Stopping time

We can see easily that Ty is a stopping time, because

{Ty = n} = {X1 ̸= y , . . . , Xn−1 ̸= y , Xn = y} .
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Stopping time (cont.)
Example 5.2

T ≡ k constant time is stopping time.
The first time when Xn enters a given set A.
T (A) := min {n : Xn ∈ A} is a stopping time.
For a fixed k : the first time when the process enters
into a given A ⊂ S set for the k th time is also a
stopping time. (We will prove this later.)

Counter example: The last time when the process
enters a given set is not a stopping time because we
need to know the whole future to check it.

154 / 178



Stopping time, Strong Markov property

Stopping time (cont.)

Lemma 5.3

The
sum
maximum
minimum

of two stopping times is stopping time.
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Strong Markov property

Theorem 5.4
Let Xn be Markov chain with transition matrix:
P = (p(i , j)) and T be a stopping time. Assuming that
T = n and XT = y, every further piece of information
about X0, . . . , XT is irrelevant for the future (to estimate
values of XT+k) and for k ≥ 0: XT+k behaves like the
original Markov chain started from y.

In the case of T ≡ k we get back the Markov property.
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Strong Markov property (cont.)

We only prove now that

(76) P (XT+1 = z |XT = y , T = n) = p(y , z).

For an arbitrary x = (x0, . . . , xn), where xi ∈ S, let
X n

0 (x) be and event defined by

X n
0 (x) = {X0 = x0, . . . , Xn = xn} .

We define
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Strong Markov property (cont.)

Vn := {x : X n
0 (x) =⇒ (T = n and XT = y)} .

In other words: Vn is the set of those x = (x0, . . . , xn),
for which:

X0 = x0, . . . , Xn = xn =⇒ T = n and XT = y
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Strong Markov property (cont.)
P (XT+1 = z , XT = y , T = n) =

=
∑

x∈Vn

P (Xn+1 = z , X n
0 (x)) =

=
∑

x∈Vn

P (Xn+1 = z |X n
0 (x))︸ ︷︷ ︸

p(y ,z)

·P (X n
0 (x)) =

= p(y , z)
∑

x∈Vn

P (X n
0 (x)) =

= p(y , z) · P (T = n, XT = y) .

We divide both sides by P (T = n, XT = y) and this
yields (76).
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Transient and recurrent states

Recurrent and transient states

Let T 1
y := Ty and

T k
y := min

{
n > T k−1

y : Xn = y
}

the time of the k th return to y . Because of the strong
Markov property

Py
(
T k

y <∞
)

= ρk
yy .
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Recurrent and transient states (cont.)

If ρyy < 1 , then the probability of the event that
the chain process comes back to y : ρk

yy → 0. Thus,
there’s a time when the process no longer gets back
to y . These y states are called transient .
If ρyy = 1 . Then for ∀k : ρk

yy = 1. Thus the process
gets back to y infinitely many times. Then these y
states are called recurrent .
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Recurrent and transient states (cont.)

The following simple observation will be useful:
Lemma 6.1

If Px (Ty ≤ k) ≥ α > 0 ∀x ∈ S, then

Px (Ty > nk) ≤ (1− α)n .

Namely, the probability that in the first n steps we have
not visited y is less than 1− α, the same is true for the
subsequent n − 1 blocks of paths of length k .
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Recurrent and transient states (cont.)

Definition 6.2
We say that x communicates with y ( x ⇝ y) if the
probability of reaching y from x in some (not necessarily
in one) steps is positive. In other words:

x ⇝ y if ρxy = Px (Ty <∞) > 0.

It follows from Markov property that

(77) If x ⇝ y and y ⇝ z then x ⇝ z .
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Recurrent and transient states (cont.)

Lemma 6.3

If ρxy > 0 and ρyx < 1, then x is transient.

This is trivial, because since the event {starting from x
we can get to y in finitely many steps} has positive
probability and the event {from y we don’t get back to
x} also has positive probability. By Markov property:
{starting from x we never get back to x} has also
positive probability, so x is transient.
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Recurrence and transience

Unless we say otherwise, we do not assume that
#S <∞. Recall:

T k
y = min

{
n > T k−1

y : Xn = y
}

and ρxy = Px (Ty <∞).
From the strong Markov property:

(78) Px
(
T k

y <∞
)

= ρxy · ρk−1
yy
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Recurrence and transience (cont.)
Let

N(y) := # {n ≥ 1 : Xn = y} .

Obviously,

(79) {N(y) ≥ k} =
{
T k

y <∞
}

.

Hence, whenever ρyy < 1 (that is y is transient) we have

ExN(y) =
∞∑

k=1
Px (N(y) ≥ k) =

∞∑
k=1

Px
{
T k

y <∞
}

(78)= ρxy
∞∑

k=1
ρk−1

yy = ρxy

1− ρyy
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Recurrence and transience (cont.)
So have obtained that

(80) ρyy < 1 =⇒ ExN(y) = ρxy

1− ρyy
.

That’s why EyN(y) <∞ iff ρyy < 1. On the other hand
we will prove hat
Lemma 6.4

ExN(y) =
∞∑

n=1
pn(x , y).
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Recurrence and transience (cont.)
Proof.
N(y) =

∞∑
n=1

1Xn=y . Taking expected value:

ExN(y) =
∞∑

n=1
Ex [1Xn=y ] =

∞∑
n=1

Px (Xn = y)︸ ︷︷ ︸
pn(x ,y)

=
∞∑

n=1
pn(x , y).
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Recurrence and transience (cont.)

As a corollary of Lemma 6.4 and (80) we get:

Theorem 6.5

An element y ∈ S is recurrent if and only if:
∞∑

n=1
pn(y , y) = Ey [N(y)] =∞.
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Now we prove, using Theorem 6.5 that the
Simple Symmetric Random Walk (SSRW) on Z is
recurrent. Recall that SSRW is defined on Z by the
transition probability matrix:

p(i , i + 1) = p(i , i − 1) = 1
2 , for all i ∈ Z.

Theorem 6.6

SSRW is null-recurrent on Z. (The same is true on Z2,
but the SSRW is transient in Zd for d ≥ 3.)

We use Stirling-formula in the proof:
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Transient and recurrent states

(81) 1 <
n!√

2πn · (n/e)n < e1/(12n).

Hence we get

(82)
2n

n

 ∼ 22n
√

πn ,

where ∼ means that the ratio of the two sides tends to 1.
Proof
First we prove that SSRW is recurrent on Z.
Remark: Starting from 0 we get to 0 in 2n steps iff we
make n steps to the right and n steps to the left. The
probability of each of these paths is (1/2)2n and the
number of these paths is

(2n
n
)
. 172 / 178
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Proof (Cont.)
Hence,

p2n(0, 0) =
2n

n

 (1/2)2n

∼ 1√
πn ,

where we used the formula given in (82). So,

∞∑
n=1

pn(0, 0) ≥
∞∑

n=1
p2n(0, 0) = const ·

∞∑
n=1

n−1/2 = ∞.

Now we use Theorem 6.5 to conclude that the simple
symmetric random walk on Z is recurrent. 173 / 178
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Proof (Cont.)
Now we prove null-recurrence: Let Ek be the
expected number of steps required to reach k starting
from 0 for the first time. By definition, E0 is not zero
but the expected number of steps of the first return to 0.
If we want to get into k > 1 from 0, first we have to
reach 1, then 2, and so on; and the expected number of
getting from i to i + 1 is the same for all i ∈ Z. Hence,

Ek = kE1.
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Proof (Cont.)
From the 1-step argument:

E1 = 1 + 1
2 · 0 + 1

2 · E2,

because from −1 we can get into 1 in two steps. From
this:

E1 = 1 + E1 so E1 =∞ .

Then by the 1-step argumnet we get

E0 = 1 + 1
2E−1 + 1

2E1,

So E0 =∞ , thus the chain is null-recurrent. 175 / 178
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