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Poisson process

Review: exponential distribution

In this chapter we follow [1, Chapter 2].
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Poisson process

Review: exponential distribution (cont.)

Definition 1.1
We say that the random variable T has
exponential distribution with parameter λ , T ∼ Exp(λ)
if

P (T ≤ t) = 1 − e−λt , ∀t ≥ 0.

Equivalently, T ∼ Exp(λ) if

fT (t) =
 λe−λt , if t ≥ 0;

0, if t < 0.
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Poisson process

Review: exponential distribution (cont.)

Some properties of exponential distribution (see [1,
Chapter 2]). Let T ∼ Exp(λ), Ti ∼ Exp(λi),
i = 1, . . . , n, be independent .

(a) P (T > t + s|T > t) = P (T > s).
memoryless property.

(b) E [T ] = 1/λ and Var(T ) = 1/λ2.
(c) Ha S ∼ Exp(1), then S/λ ∼ Exp(λ)
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Poisson process

Review: exponential distribution (cont.)

(d1) Exp(λ) is the only distribution that satisfies
the following condition:
(1)
P (t < X < t + ∆t|X > t) = λ∆t + o(∆t),

where: lim
∆t→0

o(∆t)
∆t = 0.
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Poisson process

Review: exponential distribution (cont.)

(d2) Let Tmin := min {T1, . . . , Tn} and
I ∈ {1, . . . , n} be the index for which
TI = Tmin. Then Tmin and I are independent
and Tmin = Exp(λ1 + · · · + λn) and

P (I = i) = λi

λ1 + · · · + λn
.

Hence,
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Poisson process

Review: exponential distribution (cont.)

(e) We are given n alarm clocks of exponential
distribution with parameter µµµ and let t be a
very small number. The probability that the
first clock ringings in the time interval [0, t] is
approximately nµt. So,
lim
t→0

P (min {T1, . . . , Tn} < t) /t = nµ .
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Poisson process

Review: exponential distribution (cont.)

(f) If Ti = Exp(λ), are independent, then
distribution of T = T1 + · · · + Tn is Gamma
distribution with parameter (n, λ). So,

(2) fT (t) = λe−λt (λt)n−1

(n − 1)! if t ≥ 0.

Proof is available: [1, page 80]
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Poisson process

Review: exponential distribution (cont.)

Recall: Density function of Gamma
distribution with parameter X , (α, λ):

f (x) =


λe−λx (λx)α−1

Γ(α) , if x ≥ 0;
0, if x < 0.

and Γ(α) =
∞∫
0

e−yyα−1dy .

E [X ] = α

λ
and Var(X ) = α

λ2 .
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Poisson process

Review: exponential distribution (cont.)

(g) Let M2 := max {T1, T2} . Then

M2 = T1 + T2 − min {T1, T2} .

So, putting together this, (b) and (d2) we get
(3) E [M2] = 1

λ1
+ 1

λ2
− 1

λ1 + λ2
.
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Poisson process

Poisson distribution: review
X ∼ Poi(λ) , if

P (X = n) = e−λ · λn

n! , if n = 0, 1, 2, . . .
Properties of Poisson distribution: Let X ∼ Poi(λ)
and Xi ∼ Poi(λi), i = 1, . . . , n be independent. Then

(i) E [T ] = Var(T ) = λ.
(ii) Let p(n) ∈ (0, 1): n · p(n) → λ and

Yn = Binom(n, p(n)) . Then
∀i : limn→∞P (Yn = i) = λi

i! · e−λ.

(iii) X1 + · · · + Xn = Poi(λ1 + · · · + λn).
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Poisson process

Poisson process: review

Now we follow [5, Chapter 3]. In this chapter time
t ∈ [0, ∞) is continuous. Let N(t) be the number of
customers who enter into a shop until time t. We have
three condition about the rate of customers’ arrival.
(i) If I1, I2 ⊂ [0, ∞) are disjoint, then the numbers of
customers arriving in I1 and I2 are independent.
(ii) In an arbitrary small time interval the average
number of customers arriving divided by the length of
the interval t converges to a constant as t → 0.
(iii) Customers arrive one at a time.
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Poisson process

Poisson process: review (cont.)

Inorder to describe this with more mathematical precision
first we define the increments of the process N(t).

Let n ≥ 2 and 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn.
The random variables

(4) N(t1) − N(s1), . . . , N(tn) − N(sn)

are called increments .

14 / 53



Poisson process

(i’) N(0) = 0 and the increments of N(t) are
independent.
(ii’)

(5) P (N(t + ∆t) = N(t)) = 1 − λ∆t + o(∆t).

(6) P (N(t + ∆t) = N(t) + 1) = λ∆t + o(∆t).

(iii’)

(7) P (N(t + ∆t) ≥ N(t) + 2) = o(∆t).
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Poisson process

Definition 1.2
If some event (new customer arriving, a phone rings)
satisfies conditions (i’)-(iii’) the
number N(t) of events until time t are called
Poisson(λ) process . Time intervals between these
events (inter event times): τ1, τ2, . . .. The time when the
nth event happens:

(8) Tn := τ1 + · · · + τn.

So, N(s) = max {n : Tn ≤ s} .
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Poisson process

By definition it is immediate that
Lemma 1.3

i N0) = 0;
ii t 7→ N(t) is a right continuous function with left

limit.
More precisely: If y ̸∈ {T1, T2, . . . } then

limx→y
x<y

N(x) = limx→y
x>y

N(x) = N(y).

On the other hand,

lim
x→Tk
x<Tk

N(x) = k − 1 and lim
x→Tk
x>Tk

N(x) = N(Tk) = k , k ≥ 1.
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Poisson process

Theorem 1.4
(a) Number of events happened in a fixed-length

t0 time interval I ⊂ R+:

# {k : Tk ∈ I} = Poi(λ · t0)

(b) τ1, τ2, . . . are independent and τi = Exp(λ) .
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Poisson process

proof
Part (a) of this Theorem is usually proved in an
introductory probability class. Part (b) follows from
formulas (5) and (6) by simple computation. Namely, it
is obvious that τi i.i.d. r.v.
Now we show that

(9) τk ∼ Exp(λ)

Let x > 0 and for a large n: ∆t = x
n . Let y ≥ 0 be

arbitrary and

Fℓ(x) := P (Tℓ ≤ y + x |Tℓ−1 = y) .
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Poisson process

proof (cont.)
Now we partition [y , y + x ] as follows:

{Ik = [y + (k − 1)∆t, y + k∆t]}n
k=1 .

Let Fℓ(x) be the sum of those probabilities when the ℓth

event happens in Ik . So:
Fℓ(x) =

n−1∑
k=0

λ∆t(1 − λ∆t)k + n · o(∆t)

= λ∆t
n−1∑
k=0

(1 − λ∆t)k + n · o(∆t)

= 1 − (1 − λ∆t)n + n · o(∆t)

= 1 −
(
1 − λ

x
n

)n
+ n · o

(x
n

)
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Poisson process

proof (cont.)
Using that x is fixed, the last part converges to 0 if
n → ∞. Thus

(10) Fℓ(x) = 1 − e−λx .

If ℓ = 1, applying the above reduction, for T0 = 0 we get
that τ1 = Exp(λ). Now from induction and with the law
of Total Probability, we get that τℓ ∼ Exp(λ). The
independence of {τ1, τ2, . . . } also comes from formula
(10).
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Poisson process

In summary

Summarizing what we have seen:
Theorem 1.5

The non-negative integer valued stochastic process
{N(s) : s ≥ 0} is a Poisson(λ) process if and only if

a N(0) = 0,
b N(t + s) − N(s) = Poi (λt),
c N(t) has independent increments.
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Poisson process

Poisson processes

Theorem 1.6

Let t0 > 0 be arbitrary. Assume that in the time interval
[0, t0] exactly one event of a Poisson process happened.
Then the distribution of the time when this event
happened is uniform in the interval [0, t0].

Proof
Let 0 ≤ s ≤ t0 and P := P (τ1 ≤ s|Xt0 = 1) . Then
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Poisson process

Poisson processes (cont.)
Proof (cont.)

P = P ({τ1 ≤ s} ∩ {N(t0) = 1})
P (N(t0) = 1)

= P ({N(s) = 1} ∩ {N(t0) = 1})
P (N(t0) = 1)

= P ({N(s) = 1} ∩ {N(t0) − N(s) = 0})
P (N(t0) = 1)

= P ({N(s) = 1}) · P ({N(t0 − s) = 0})
P (N(t0) = 1)

= (λs)e−λs · e−λ(t0−s)

(λt0)e−λt0
= s

t0
.
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Poisson process

The following theorem can be proven in a similar way:
(see [7, page 126]):
Theorem 1.7
Let 0 = s0 < s1 ≤ · · · < sn < t and let

F (s1, . . . , sn) := P (T1 ≤ s1, . . . , Tn ≤ sn|N(t) = n) .

Then

(11) F (s1, . . . , sn) = n!
tn

n∏
j=1

(sj − sj−1) .

This complicated expression can be reformulated in the
following way:
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Poisson process

Let
U1, . . . , Un

be independent Uniform[0, t] r.v.. We arrange them in
increasing order:

V1 < · · · < Vn.

Theorem 1.8
Assuming that N(t) = n ,

(T1, . . . , Tn) d= (V1, . . . , Vn),

where V1, . . . , Vn were defined above.
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Poisson process

Conditioning

In summary: what we have seen above it says that:

Assuming that we have n arrivals by time t,

the locations of these n arrivals are the same as

the location of n points thrown uniformly on the time
interval [0, t].

This implies that
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Poisson process

Conditioning (cont.)

Theorem 1.9

Assume that s < t and 0 ≤ m ≤ n Then

P (N(s) = m|N(t) = n) =
 n

m

(s
t

)m (
1 − s

t

)n−m
.
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Poisson process

Poisson processes: two weaknesses

Problem 1.10

How many students arrive at Campus Canteen between
11:00 and 13:00?
Can we use a Poisson process with a suitable parameter
to model this situation? To answer this, first we must
check conditions (i)-(iii) of the definition of Poisson
processes on slide 13.

Here we face with two serious problems:
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Poisson process

Poisson processes: two weaknesses (cont.)

(a) By (ii) from slide 13: in a fixed tiny time
interval the number of arriving students is
approximately the length of the interval
multiplied by a constant .

(b) By (iii) 13: students come one by one at a
time.
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Poisson process

Poisson processes: two weaknesses (cont.)

As opposed to that at times when great lectures end,
much more students go to the canteen than in any other
times. So, ((a) is not satisfied). Moreover, often
students go to canteen together with friends ((b) is not
satisfied). Fortunately, we can use a variant of Poisson
process for answering the question above with the
following modifications:

To tackle the problem mentioned in (a) we use
non-homogeneous Poisson process.
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Poisson process

Poisson processes: two weaknesses (cont.)

To deal with the problem mentioned in (b) we
introduce Compund Poisson processes.
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Poisson process

Definition 1.11 (non-homogeneous Poisson process)

{N(s) : s ≥ 0} is non-homogeneous Poisson process
with rate λ(r) if

1 N(0) = 0,
2 increments of N(t) are independent,
3 N(t) − N(s) = Poi

(
t∫
s

λ(r)dr
)
.

The meaning of (3): ∀t ∈ [0, ∞), ∀∆ > 0:

P (N(t + ∆) − N(t) = 0) = 1 − λ(t) ∆ + o(∆)
P (N(t + ∆) − N(t) = 1) = λ(t) ∆ + o(∆)
P (N(t + ∆) − N(t) ≥ 2) = o(∆)
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Poisson process

Warning: In this case, unlike in the case of Poisson
processes , the inter even times τ1, τ2, . . .:

τ1, τ2, . . . are NOT independent,
τi , i = 1, 2, . . . do NOT have exponential
distribution.

Namely: let µ(t) :=
t∫
0

λ(x)dx . Let fτ1 be the density
function of τ1 and let fτ1,τ2 be the joint density function
of (τ1, τ2), then simple calculation shows that

1 fτ1(t) = − d
dtP (τ1 > t) = λ(t)e−µ(t).

2 fτ1,τ2(s, t) = λ(s)e−µ(s) · λ(s + t)e−(µ(s+t)−µ(s)).
Hence, if λ(r) is not constant, then τ1 is not exponential
and τ1, τ2 are not independent.
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Poisson process

Compound Poisson processes
Example 1.12 (Motivating examle)

It is reasonable to assume that at McDonald’s
drive-through section between 12 : 00 and 13 : 00 the
number of arriving cars is ∼ Poisson(λ). Let N(t) be
the cars arriving till time 12 + t. Let Yi be the number
of customers in the i th car. We can assume, that Yi i.i.d.
(independent identically distributed) and that Yi is
independent of the arrival times. Then number of
customers until time t

S(t) = Y1 + · · · + YN(t) .
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Poisson process

Theorem 1.13

Let Y1, Y2, . . . be i.i.d. r.v. and we are also given a
non-negative integer valued r.v. N which is independent
of {Yi}i . Let

S := Y1 + · · · + YN .

Then
1 If E [Yi ] ,E [N] < ∞ ⇒ E [S(t)] = E [N(t)] · E [Yi ].
2 If E

[
Y 2

i
]
,E

[
N2

]
< ∞ ⇒

Var(S(t)) = E [N(t)] Var(Yi) + Var(N(t)) (E [Yi ])2.
3 If N = Poisson(λ) ⇒ Var(S(t)) = λtE

[
Y 2

i
]
.

36 / 53



Poisson process

Thinning

Let N(t) = Poisson(λ) and let us associate i.i.d.
non-negative integer valued r.v. Yi to the i th event, such
that Yi are independent of N(t). We define

(12) Nj(t) := #
{
i ≤ N(t) : Yi = j

}
.

In Example 1.12, where Yi is the number of people in the
i-th car, Nj(t) is the number of cars with j passengers
that arrive before time t.

37 / 53



Poisson process

Thinning (cont.)

Theorem 1.14

Let Nj(t) as on slide 37. Then Nj(t) are independent
Poisson processes with rate:
Nj(t) = Poisson(λ · P (Yi = i)) .

The proof can be found at [1, Section 2.4]. This method
is called thinning a Poisson process because here we
take a Poisson process and split into more than one
Poisson processes.
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Poisson process

Thinning (cont.)
Example 1.15

Customers arrive in a bank according N(t) = Poisson(λ).
A wicked boy sitting close to the entrance, tosses a bias
coin which lands on head with probability 1/3 whenever
a new customer arrives. Whenever the coin lands head
the wicked boy pours a glass of water at the newly
arrived customer. If the coins lands on tail the boy does
not pour water at the newly arrived customer. Let W (t)
and D(t) be the number of customers who arrived at the
bank by time t and get wet and remained dry
respectively. Then D(t) and W (t) are independent and
W (t) = Poisson (λ/3) and D(t) = Poisson (2λ/3).39 / 53



Poisson process

Example
Example 1.16 ( Example for Thinning of a Poisson
process)
Assume that the arrival of customers into a bank is given
by a Poisson process of rate 10 per hour
N(t) ∼ Poisson(10). Moreover, the distribution of the
gender (male or female) of a customer is (1/2, 1/2)
independently of everything.
P (Yi = Male) = P (Yi = Female) = 1/2. Let NF (t)
and NM(t) be the number of female and male
costumers arrived by time t. Then NF (t) and NM(t) are
independent Poisson processes with rate 5.
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Poisson process

Thinning of the nonhomogeneous Poisson
Processes
One can easily extend the previous result for the case of
the nonhomogeneous Poisson processes:
Theorem 1.17

Given a Poisson process with rate λ. We retain a point
that lands at time s with probability p(s) and we throw
it away with probability 1 − p(s) . Then N(t) number of
points that we retained by a time t results is a
nonhomogeneous Poisson process with rate λp(s).
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Poisson process

Thinning of the nonhomogeneous Poisson
Processes (cont.)
Example 1.18 (M/G/∞ queue)

a There are infinitely many telephone lines,
b Beginnings of calls follow Poisson process,
c Let G be the cumulative distribution function of

the length T of the calls: G(t) := P (T ≤ t). We
assume that G(0) = 0 and E [T ] = µ.

Input: is a Poisson process that is Markov and the
service time is General and there are infinitely many
queues. Question: the number of calls in the system
after long time. 42 / 53



Poisson process

Thinning of the nonhomogeneous Poisson
Processes (cont.)
First we assume that the systems is empty at time zero.
Consider a call that started at time s. Then it has been
finished by time t with probability G(t − s). Hence, the
probability that a call started at time s is still in progress
is 1 − G(t − s). (This was probability p(s) in Theorem
1.17). So, by Definition1.11, the number of calls in
progress at time t: is a Poisson distribution with rate:

(13)
∫ t

s=0
λ(1 − G(t − s))ds = λ

∫ t

r=0
(1 − G(r))dr

43 / 53



Poisson process

Thinning of the nonhomogeneous Poisson
Processes (cont.)
Letting t → ∞:

(14) λ
∞∫

r=0
(1 − G(r))dr = λµ.

Namely, if T is the length of the calls then

µ = E [T ] =
∞∫

r=0
P (T ≥ r) dr =

∫ ∞

r=0
(1 − G(r))dr .

This means that the average number of the calls in the
system is the product of the rate at which calls enter
times the average duration of the calls. 44 / 53



Poisson process

Superposition of Poisson processes
Theorem 1.19

Suppose N1(t), ...Nℓ(t) are independent Poisson
processes with rates

λ1, ..., λℓ,

then
N1(t) + · · · + Nℓ(t)

is a Poisson process with rate λ1 + · · · + λℓ .

For the proof see [1, Setion 2.4.2]
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Poisson process

Poisson Race
Example 1.20

Given a Poisson process of red arrivals with rate λ and
an independent Poisson process of green arrivals with
rate µ, what is the probability that we will get 6 red
arrivals before a total of 4 green ones?

An observation:
It is easy to see that following event happens

E := {at least 6 red arrivals in the first 9 arrivals} .

iff we have 6 red arrivals before a total of 4 green ones.
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Poisson process

Poisson Race (cont.)
The idea of the Solution:
In virtue of Theorem 1.20 we can look at this process as
running a usual Poisson process of parameter µ + λ (the
total arrivals of green and red together) and thinning it
to get the process of green arrivals and the process of
red arrivals. Namely, each arrival of the Poisson(λ + µ)
process is painted red with probability p := λ

λ+µ and
painted green with probability 1 − p = µ

λ+µ . These
painted process are independent Poisson(λ) and
Poisson(µ) processes respectively.
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Poisson Race (cont.)

Solution
Recall that p := λ

λ+µ . Then

P (E ) =
9∑

k=6

 9
k

 pk(1 − p)9−k .

If λ = µ = 1
2 then P (E ) = 140

512 = 0.273.
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Examples

M/G/∞ queue, 42
Example for Thinning of a Poisson process, 40
Poisson Race, 46
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