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Review: exponential distribution

In this chapter we follow [1, Chapter 2].

3/53



Review: exponential distribution (cont.)

Definition 1.1
We say that the random variable T has
exponential distribution with parameter A\, T ~ Exp()\)
if

P(T<t)=1-e? Vt>0.
Equivalently, T ~ Exp(}) if

e A if £ >0;
fT(t)_{o, if t < 0.
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Review: exponential distribution (cont.)

Some properties of exponential distribution (see [1,
Chapter 2]). Let T ~ Exp(A), T; ~ Exp(\)),
i=1,...,n, beindependent.
(a) P(T>t+s|T>t)=P(T >s).
memoryless property.
(b) E[T] =1/X and Var(T) = 1/)2.

(c) Ha S ~ Exp(1), then S/\ ~ Exp())
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Review: exponential distribution (cont.)

(d1) Exp(X) is the only distribution that satisfies
the following condition:

(1)
P(t < X <t+ At|X > t) = AAt + o(At),

=0.

: At
where: lim U(A)
At—0 t
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Review: exponential distribution (cont.)

(d2) Let Twin :=min{Ty,..., T,} and

I € {1,...,n} be the index for which
T; = Tmin- Then T.;, and | are independent
and T, = Exp(Ay + -+ A,) and

Hence,
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Review: exponential distribution (cont.)

(e) We are given n alarm clocks of exponential
distribution with parameter 1 and let t be a
very small number. The probability that the
first clock ringings in the time interval [0, ] is
approximately nut. So,

!i_r)rg)IP)(min{Tl,..., Tot <t)/t=nu.
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Review: exponential distribution (cont.)

(f) If T; = Exp(A), are independent, then
distribution of T = T; +--- 4+ T, is Gamma
distribution with parameter (n, \). So,

) Fr(t) = de M ((jt_)nl_)ll if t > 0.

Proof is available: [1, page 80]
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Review:

exponential distribution (cont.)

Recall: Density function of Gamma
distribution with parameter X, (a, A):

Ma) 7

AT i x > 0;
{ 0, if x <0.

and [(a) = Z’Oe_yya_ldy.

E[X] = i‘ and Var(X) = j;

10 /53



Review: exponential distribution (cont.)

(g) Let My :=max{Ty, T} . Then
My =T+ T, —min{Ty, T,}.
So, putting together this, (b) and (d2) we get
1

1 1
G) (M.} A1 A At
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Poisson distribution: review
X ~ Poi()), if

P(X=n)=e* 2 ifn=0,1,2,...

nl’

Properties of Poisson distribution: Let X ~ Poi()\)
and X; ~ Poi()\;), i =1,...,n be independent. Then

(i) E[T] = Var(T) = A

(ii) Let p(n) € (0,1): n-p(n) — A and
Y, = Binom(n, p(n)) . Then
Vi lim P(Y,=i)=1% e

(i) X1+ -+ X, =Poi(A + -+ \y).
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Poisson process: review

Now we follow [5, Chapter 3]. In this chapter time

t € [0,00) is continuous. Let N(t) be the number of
customers who enter into a shop until time t. We have
three condition about the rate of customers’ arrival.

(i) If h, K C [0,00) are disjoint, then the numbers of
customers arriving in /; and b are independent.

(i) In an arbitrary small time interval the average
number of customers arriving divided by the length of
the interval t converges to a constant as t — O.

(iii) Customers arrive one at a time.
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Poisson process: review (cont.)

Inorder to describe this with more mathematical precision
first we define the increments of the process N(t).

let n>2and 0< s <t <s<thp <--- <5, <t
The random variables

(4) N(t;) — N(s1),...,N(t,) — N(s,)

are called increments .
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(i") N(0) = 0 and the increments of N(t) are
independent.

(")
(5) P(N(t+ At) = N(t)) =1— AAt+ o(At).
(6) P(N(t+ At)= N(t)+1)= AAt+ o(At).
(i)

(7) P(N(t+ At) > N(t) + 2) = o(At).
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Poisson process

Definition 1.2

If some event (new customer arriving, a phone rings)
satisfies conditions (i')-(iii") the

number N(t) of events until time ¢ are called
Poisson(\) process. Time intervals between these

events (inter event times): 71,7, .... The time when the
n'" event happens:

(8) T, =11+ -+ 7,

So, N(s) =max{n: T, <s}.
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By definition it is immediate that
Lemma 1.3
@ NO)=0;

@ t— N(t) is a right continuous function with left
limit.

More precisely: If y & {T1, T, ...} then
lim N(x) = lim N(x) = N(y).

On the other hand,

lim N(x) =k —1and lim N(x)=N(Tx) =k, k>1.
x—=Ty x—=Ty
x<Ty x>Ty
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Theorem 1.4

(a) Number of events happened in a fixed-length
to time interval | C R :

#{k: Ty € I} = Poi(\ - ty)

(b) T, 7,... are independent and 1; = Exp(\) .
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proof

Part (a) of this Theorem is usually proved in an
introductory probability class. Part (b) follows from
formulas (5) and (6) by simple computation. Namely, it
is obvious that 7; i.i.d. r.v.

Now we show that

(9) Tk ~ Exp(A)

Let x > 0 and for a large n: At = % Let y > 0 be
arbitrary and

Fi(x) =P(Ty <y+x|Ty_1=1y).
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proof (cont.)

Now we partition [y, y + x| as follows:
{lk =1y + (k=1)At,y + kAt]};_,; .

Let F,(x) be the sum of those probabilities when the ¢t
event happens in /. So:

Fg(X)

n—1
ST AL — AAL) 4+ n-o(At)
k=0
n—1
AMAE S (1= MNA)K +n-o(At)
k=0
1— (1= MAt)" +n-o(At)

(i) sl
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proof (cont.)

Using that x is fixed, the last part converges to 0 if
n — o0o. Thus

(10) Fi(x)=1— e,

If £ =1, applying the above reduction, for To = 0 we get
that 7 = Exp(A). Now from induction and with the law
of Total Probability, we get that 7, ~ Exp()\). The
independence of {71, 7,...} also comes from formula
(10).
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In summary

Summarizing what we have seen:

Theorem 1.5

The non-negative integer valued stochastic process
{N(s) : s > 0} is a Poisson(\) process if and only if
Q@ N(0)=0,

Q@ N(t+s)— N(s)=Poi(\t),

@ N(t) has independent increments.
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Poisson processes

Theorem 1.6

Let ty > O be arbitrary. Assume that in the time interval
[0, to] exactly one event of a Poisson process happened.
Then the distribution of the time when this event
happened is uniform in the interval [0, ty].

Proof
Let 0 <s<tyand P:=P(ry <5s|X;, =1). Then
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Poisson processes (cont.)

Proof (cont.)

P({n <s;n{N(t)=1})

® = F(N(x0) = 1)

_ P({N(s) =1} n{N(k) = 1})

P(N(to) =1)
P({N(s) = 1} N {N(to) —

N(s) = 0})

P(N(t) =1)

P({N(s) =1}) - P({N(t — s) = 0})

P(N(t) =1)
()\S)e—/\s . e—/\(to—s) m
(e o b




The following theorem can be proven in a similar way:
(see [7, page 126]):

Theorem 1.7
Llet0 =55 <5 <.---<s,<tandlet

F(si,...,s0) =P (T1 <s1,..., To < s5|N(t) = n).

Then

(11) mewq—%ﬁ( —5.1).

This complicated expression can be reformulated in the
following way:
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Let

U, ... U,

be independent Uniform|0, t| r.v.. We arrange them in
increasing order:

Vi< --- <V,

Theorem 1.8
Assuming that N(t) = n,

(T, ..., T Z(V,..., V),

where V1, ..., V, were defined above.
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Conditioning

In summary: what we have seen above it says that:
Assuming that we have n arrivals by time t,
the locations of these n arrivals are the same as

the location of n points thrown uniformly on the time
interval [0, t].

This implies that
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Conditioning (cont.)

Theorem 1.9

Assume that s <t and 0 < m < n Then

P(N(s) = m|N(t) = n) = ( 7 ) (5>m <1 - S>n_m.
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Poisson processes: two weaknesses

Problem 1.10

How many students arrive at Campus Canteen between
11:00 and 13:007

Can we use a Poisson process with a suitable parameter
to model this situation? To answer this, first we must
check conditions (i)-(iii) of the definition of Poisson
processes on slide 13.

Here we face with two serious problems:

29 /53



Poisson processes: two weaknesses (cont.)

(a) By (ii) from slide 13: in a fixed tiny time
interval the number of arriving students is
approximately the length of the interval
multiplied by a constant .

(b) By (iii) 13: students come one by one at a
time.
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Poisson processes: two weaknesses (cont.)

As opposed to that at times when great lectures end,
much more students go to the canteen than in any other
times. So, ((a) is not satisfied). Moreover, often
students go to canteen together with friends ((b) is not
satisfied). Fortunately, we can use a variant of Poisson
process for answering the question above with the
following modifications:

@ To tackle the problem mentioned in (a) we use
non-homogeneous Poisson process.
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Poisson processes: two weaknesses (cont.)

@ To deal with the problem mentioned in (b) we
introduce Compund Poisson processes.
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Definition 1.11 (non-homogeneous Poisson process)

{N(s) : s > 0} is non-homogeneous Poisson process
with rate A(r) if
@ N(0) =0,

@ increments of N(t) are independent,

@ N(t) — N(s) = Poi ( jA(r)dr).

The meaning of (3): Vt € [0,00), VA > 0:

P(N(t+ A)—N(t)=0)=1— A(t) A+ 0o(A)
P(N(t+A)— N(t)=1) = MNt) A+ o(A)
P(N(t+A)— N(t) >2) =0(A)
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Warning: In this case, unlike in the case of Poisson
processes , the inter even times 7, 7, . . .

@ 71,7,... are NOT independent,
@ 7;,,i=1,2,...do NOT have exponential
distribution.
t
Namely: let p(t) := [ A(x)dx. Let f., be the density
0
function of 71 and let f,, ,, be the joint density function
of (71, 72), then simple calculation shows that
Q 7.(t) = —4P(r > t) = A\(t)e 1.
Q f.(st)= A(s)e H5) . \(s + t)e (st =n(s)),
Hence, if A(r) is not constant, then 77 is not exponential
and 71, 7 are not independent.
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Compound Poisson processes

Example 1.12 (Motivating examle)

It is reasonable to assume that at McDonald's
drive-through section between 12 : 00 and 13 : 00 the
number of arriving cars is ~ Poisson(\). Let N(t) be
the cars arriving till time 12 + t. Let Y; be the number
of customers in the it" car. We can assume, that Y; i.i.d.
(independent identically distributed) and that Y; is
independent of the arrival times. Then number of
customers until time t

S(t)zyl—l—---—f—y/\/(t).

w
(@)
\\
(&)
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Theorem 1.13

Let Y1, Yo,... beiid. r.v. and we are also given a

non-negative integer valued r.v. N which is independent
of {Yi},. Let

S=Y1+---+VYy.
Then
Q@ IfE[Y].E[N] < co = E[S(t)] = E[N(t)] - E[Y]].
Q@ IfE|Y?],E [N <oo=
Var(S(t)) = E[N(t)] Var(Y;) + Var(N(t)) (E[Y])?.
@ /f N = Poisson(\) = Var(5(t)) = AtE [Yﬂ .
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process

Thinning

Let N(t) = Poisson(\) and let us associate i.i.d.

non-negative integer valued r.v. Y; to the i event, such
that Y; are independent of N(t). We define

(12) Ni(t) :=#{i <N(t): Yi=j}.

In Example 1.12, where Y; is the number of people in the
i-th car, N;(t) is the number of cars with j passengers
that arrive before time t.
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Thinning (cont.)

Theorem 1.14

Let N;(t) as on slide 37. Then N;(t) are independent
Poisson processes with rate:
N;(t) = Poisson(A - P(Y; =1)) .

The proof can be found at [1, Section 2.4]. This method
is called thinning a Poisson process because here we
take a Poisson process and split into more than one
Poisson processes.
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Thinning (cont.)
Example 1.15

Customers arrive in a bank according N(t) = Poisson(A\).
A wicked boy sitting close to the entrance, tosses a bias
coin which lands on head with probability 1/3 whenever
a new customer arrives. Whenever the coin lands head
the wicked boy pours a glass of water at the newly
arrived customer. If the coins lands on tail the boy does
not pour water at the newly arrived customer. Let W(t)
and D(t) be the number of customers who arrived at the
bank by time t and get wet and remained dry
respectively. Then D(t) and W(t) are independent and
W (t) = Poisson (A/3) and D(t) Pmsson(QA/%b /53




Example

Example 1.16 ( Example for Thinning of a Poisson
process)

Assume that the arrival of customers into a bank is given
by a Poisson process of rate 10 per hour

N(t) ~ Poisson(10). Moreover, the distribution of the
gender (male or female) of a customer is (1/2,1/2)
independently of everything.

P(Y; = Male) = P(Y; = Female) = 1/2. Let Ng(t)
and Ny (t) be the number of female and male

costumers arrived by time t. Then Ng(t) and Ny(t) are
independent Poisson processes with rate 5.
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Thinning of the nonhomogeneous Poisson
Processes

One can easily extend the previous result for the case of
the nonhomogeneous Poisson processes:

Theorem 1.17
Given a Poisson process with rate A\. We retain a point
that lands at time s with probability p(s) and we throw

it away with probability 1 — p(s). Then N(t) number of
points that we retained by a time t results is a
nonhomogeneous Poisson process with rate Ap(s).
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Thinning of the nonhomogeneous Poisson
Processes (cont.)

Example 1.18 (M/G /oo queue)

© There are infinitely many telephone lines,
© Beginnings of calls follow Poisson process,
@ Let G be the cumulative distribution function of

the length T of the calls: G(t) := (T <t). We
assume that G(0) =0 and E[T] =

Input: is a Poisson process that is Markov and the
service time is General and there are infinitely many
queues. Question: the number of calls in the system
after long time. 42 / 53




Thinning of the nonhomogeneous Poisson
Processes (cont.)

First we assume that the systems is empty at time zero.
Consider a call that started at time s. Then it has been
finished by time t with probability G(t — s). Hence, the
probability that a call started at time s is still in progress
is 1 — G(t —s). (This was probability p(s) in Theorem
1.17). So, by Definition1.11, the number of calls in
progress at time t: is a Poisson distribution with rate:

(13) [ A1—G(t—s)ds = [_(1-G(r))dr
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Thinning of the nonhomogeneous Poisson
Processes (cont.)

Letting t — oc:

(14) A [ (1= G(r)dr = M.
r=0
Namely, if T is the length of the calls then
p=E[T]= [ P(T>r)dr=[" (1-G(r)dr.
r=0

This means that the average number of the calls in the
system is the product of the rate at which calls enter
times the average duration of the calls. 44 / 53



Superposition of Poisson processes

Theorem 1.19

Suppose Ny(t),...Ny(t) are independent Poisson
processes with rates

)\17"'7)‘57

then
Ni(t) + -« + Ny(t)

is a Poisson process with rate \; + - - -+ Ay .

For the proof see [1, Setion 2.4.2]
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Poisson Race

Example 1.20

Given a Poisson process of red arrivals with rate A and
an independent Poisson process of green arrivals with
rate u, what is the probability that we will get 6 red
arrivals before a total of 4 green ones?

An observation:
It is easy to see that following event happens

E := {at least 6 red arrivals in the first 9 arrivals} .

iff we have 6 red arrivals before a total of 4 green e

ones.
c /0
0/35
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Poisson Race (cont.)

The idea of the Solution:

In virtue of Theorem 1.20 we can look at this process as
running a usual Poisson process of parameter 1 + \ (the
total arrivals of green and red together) and thinning it
to get the process of green arrivals and the process of
red arrivals. Namely, each arrival of the Poisson(\ + p)

process is painted red with probability p := ﬁ)\u and
painted green with probability 1 — p = /\iu . These

painted process are independent Poisson(\) and
Poisson(u) processes respectively.
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Poisson Race (cont.)

Solution
Recall that p := . Then

P(E) = 26 ( 0 ) p(1— p) -

If A\ =p =1 then P(E) = 39 = 0.273.
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