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Countinuous-time MC introduction

Barbershop example

The following example is from [1, Section 4.3]
Example 1.1
In a barbershop, a single barber cuts hair. There is also a
waiting room with two chairs for two people (not
counting the one whose hair is being cut). We know the
following:
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Countinuous-time MC introduction

Barbershop example (cont.)

a Customers arrive at times of a rate 2 Poisson
process, where the units are people per hour, but
will leave if both chairs in the waiting room are
occupied.

b The barber can cut hair at rate 3, i.e. each
haircut requires an exponentially distributed
amount of time with mean 20 minutes,
independently of previous haircuts, and also of the
arrivals.
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Countinuous-time MC introduction

Barbershop example (cont.)

Questions:

a Find the equilibrium distribution.
b What fraction of potential customers enter service?
c What is the average amount of time in the system

for a customer who enters service?
d Which fraction of the time there are no customers

in the barbershop?
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Countinuous-time MC introduction

Some words about the barbershop
Example

All of the times are measured in hours. The time of the
hair cut is Exp(3). Let ∆t > 0 be very small.
In a time interval of length ∆t:

with probability 3 · ∆t + o(∆t) exactly one hair cut
will be finished (if there are any costumers in the
barbershop),
with probability 2 · ∆t + o(∆t) a new costumer
arrives.
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Countinuous-time MC introduction

Some words about the barbershop
Example (cont.)

In conclusion:
At time t + ∆t there will be one costumer less
than at time t with probability 3 · ∆t + o(∆t), if at
time t there were any costumers in the barbershop.
At time t + ∆t there will be one costumer more
than at time t with probability 2 · ∆t + o(∆t).
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Countinuous-time MC introduction

Some words about the barbershop
Example (cont.)

Let S := {0, 1, 2, 3} be the state space (the
possible number of costumers in the barbershop).
Let Xt be the number of costumers at time t
where t ∈ R+ := {t : t ≥ 0} non-negative real
number it indicates the time measured in hours.

Then for all 0 ≤ s0 < s1 < · · · < sn < s and for all
i0, . . . , in, j ∈ S we have

(1) P (Xt+s = j |Xs = i , Xsn = in, . . . , Xs0 = i0)
= P (Xt = j |X0 = i) .
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Countinuous-time MC introduction

Countinuous-time MC, introduction
Definition 1.2
In general, if Xt , t ≥ 0 takes values from a countable
state space S and for all 0 ≤ s0 < s1 < · · · < sn < s
and for all i0, . . . , in, j ∈ S, (1) holds that is
(2) P (Xt+s = j |Xs = i , Xsn = in, . . . , Xs0 = i0)

= P (Xt = j |X0 = i) =: pt(i , j) .

then we say that Xt is a time homogeneous
continuous-time Markov chain (MC).
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Countinuous-time MC introduction

Countinuous-time MC, introduction
(cont.)

Since all of the Markov chains consider in this course are
time homogeneous, we simply call them
continuous-time Markov chains .
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Countinuous-time MC introduction

Continuity condition : This is very
important!!!
Continuity condition: We always assume that the
transition matrix Pt = (pt(i , j))ij∈S , t > 0 is
continuous at zero . That is:

(3) lim
t→0

pt(i , j) = δi ,j =
 1, i = j ;

0, i ̸= j .

In this way

(4) P0 = Diag(1, 1, . . . , 1).
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Countinuous-time MC introduction

Continuity condition (cont.)

Observe that (3) holds for example in the barbershop
example:
Namely, for a small h > 0,

ph(i , i + 1) = 2 · h + o(h), ph(i , i − 1) = 3 · h + o(h)

and ph(i , j) = o(h) if |i − j | > 1.
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Countinuous-time MC introduction

Chapman-Kolmogorov
Lemma 1.3 (Chapman-Kolmogorov equality:)

(5) ∑
k

ps(i , k)pt(k , j) = ps+t(i , j).

In other words

(6) Pt+s = Pt · Ps .

Proof.
To get the chain from i to j in time s + t, it needs to be
somewhere after time s. 13 / 126



Countinuous-time MC introduction

Infinitesimal generator
Proposition 1.4

For a general, continuous-time MC with countable state
space, the following limits exists:

limh→0+
ph(i ,j)

h =: q(i , j), i ̸= j and(7)

limh→0+
1−ph(i ,i)

h =: λ(i) .(8)

Moreover,
0 ≤ q(i , j) < ∞, i ̸= j but 0 ≤ λ(i) ≤ ∞.

So q(i , j) is finite, but λ(i) can be infinite. If #S < ∞
then of course λ(i) is also finite. 14 / 126



Countinuous-time MC introduction

In summary
It follows from (7) and (8) that for every i ∈ S

(9) λ(i) =
∑
i ̸=j
j∈S

q(i , j).

For an i ̸= j , i , j ∈ S we have

(10) P (Xt+∆t = j |Xt = i) = q(i , j) · ∆t + o(∆t).

For all i ∈ S

(11) P (Xt+∆t = i |Xt = i) = 1 − λ(i) · ∆t + o(∆t).
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Countinuous-time MC introduction

Infinitesimal generator (cont.)

The proof of the previous Proposition is available in [4,
Theorems 1.1 and 1.2]. We define

q(i , i) := −λ(i) .

Then we form the matrix called Infinitesimal generator :

Q = (q(i , j))i ,j∈S .

That is
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Countinuous-time MC introduction

Infinitesimal generator (cont.)

Q =


−λ1 q(1, 2) q(1, 3) · · ·

q(2, 1) −λ2 q(2, 3) · · ·
q(3, 2) q(3, 2) −λ3 · · ·

... ... ... . . .


Clearly, ph(i , i) − 1 + ∑

i ̸=j
ph(i , j) = 0 for all h > 0, so

(12)
∑
j∈S

q(i , j) = 0 ∀i ∈ S.
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Countinuous-time MC introduction

Infinitesimal generator for the barbershop
example
In the barber shop example:by formula (1) on slide 6 and
formula (6) on slide 15 of File MC III:

q(i , i − 1) = 3 if i = 1, 2, 3
q(i , i + 1) = 2 if i = 0, 1, 2.

That is:

Q =

0 1 2 3
0 −2 2 0 0
1 3 −5 2 0
2 0 3 −5 2
3 0 0 3 −3

.
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Countinuous-time MC introduction

Infinitesimal generator, a comment

We get from Chapman-Kolmogorov equality, that if we
know the transition matrix for small t, then we know it
for all t, because Pnh = (Ph)n. This gives the idea, that
if we know the transition matrices’ derivative at 0 then
we know the transition matrix Pt for every t.
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Countinuous-time MC introduction

Theorem 1.5
Let Xt be a continuous-time MC with finite state space
S. As always, we assume that (3) holds. Then

(a) the transition matrix Pt = (pt(i , j)i ,j∈S)
satisfies the so-called Kolmogorov’s-forward
differential equation:

(13) d
dt Pt = Pt · Q, t ≥ 0 .

(b) The solution of (13) is Pt = ααα · etQ , where ααα
is the initial distribution of the MC at time
t = 0.
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Countinuous-time MC introduction

Proof
We have already used the following notation many times:
Px (Xt = y) := P (Xt = y |X0 = x) . Let us fix a small
t > 0 and x , y ∈ S. Using the Law of Total Probability:
Px (Xt+∆t = y) − Px (Xt = y)

= Px (Xt+∆t = y |Xt = y) · Px (Xt = y)
+
∑
u ̸=y

Px (Xt+∆t = y |Xt = u) · Px (Xt = u) −Px (Xt = y)

=
[
1 − λ( y )∆t + o(∆t) − 1

]
· Px (Xt = y)

+
∑
u ̸=y

([q(u, y)∆t + o(∆t)]) · Px (Xt = u).
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Countinuous-time MC introduction

Proof (cont.)
If we divide both sides by ∆t, and ∆t → 0, then

(14) d
dtPx (Xt = y)

= Px (Xt = y) (−λ(y)) + ∑
u ̸=y

Px (Xt = u) · q(u, y).

In the equation above, the left-hand side is the
(x , y)-element of matrix d

dt Pt , and the right-hand side is
the (x , y)-element of the matrix Pt · Q. Using that
x , y ∈ S and t > 0 were arbitrary, we get that
d
dt Pt = Pt · Q.
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations

Kolmogorov’s forward differential equation:

(15) d
dt Pt = Pt · Q

Kolmogorov backward differential equation:

(16) d
dt Pt = Q · Pt .
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations (cont.)

These equations have a very important role, but studying
them would exceed the limits of this course. Suggested
reading: Péter Major’s lecture on Continuous-time
Markov Chains (A folytonos idejű Markov láncokról):
click here We make some comments without proofs:
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations: Conditions
Conditions

(F1) λ(i) < ∞, ∀i (defined in formula (7)).
(F2) For every fixed j the convergence in formula

(7) is uniform in i .

Interestingly, Kolmogorov’s backward differential
equation can have solutions which are not solutions of
Kolmogorov’s forward differential equation and which are
relevant from probability theory point of view (Satisfy
Chapman- Kolmogorov equation).
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Countinuous-time MC introduction

Kolmogorov’s forward and backward
differential equations: Conditions
Proposition 1.6

(a) If both of the conditions F1 and F2 hold then
Pt satisfies Kolmogorov’s forward differential
equation.

(b) If we only know that condition F1 holds then
Pt satisfies Kolmogorov’s backward
differential equation.

Recall again that we always assume that (3) holds (we
only consider chains with continuous transition matrix in
0). 26 / 126



Countinuous-time MC introduction

Exponential waiting times

For all x ∈ S let Tx be the time that the chain spends
at state x ∈ S after it has arrived at x .
Lemma 1.7

Let us assume that λx < ∞ holds for all x ∈ S . Then
(a) Tx = Exp(λx) holds for all x ∈ S and
(b) {Tx}x∈S are independent.
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Countinuous-time MC introduction

Exponential waiting times (cont.)
Proof of part (a)
Let

Gx(t) := P (Tx ≥ t) .

By the Markov property:

Gx(t + ∆t) = Gx(t)Gx(∆t) =
= Gx(t) [1 − λ(x)∆t + o(∆t)]

Hence,
G ′

x(t) = −λ(x)Gx(t) .
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Countinuous-time MC introduction

Exponential waiting times (cont.)

Proof of part (a) (cont.)
Clearly,

1 − P (Tx < t) = Gx(t) = e−tλ(x).

So Tx = Exp(λx). □
Proof of part (b) It is obvious from the Markov
property, that {Tx}x∈S are independent. □

29 / 126



Countinuous-time MC introduction

Routing matrix
Definition 1.8

Assume that λx < ∞ holds for all x ∈ S. Now we define
the so-called routing matrix : R = (r(x , y))x ,y∈S as
follows: the diagonal elements are all zeros: r(x , x) := 0
for all x ∈ S. Let x , y ∈ S be arbitrary distinct. Imagine
that the chain is in state x and it stays there for a while
then it jumps. Let U(x , y) be the event that the chain
jumps from x to y when it leaves x and we write r(x , y)
for the probability of the event U(x , y). The discrete
time MC corresponding to the transition matrix R is
called embedded chain .
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Countinuous-time MC introduction

Lemma 1.9

Assume that λx < ∞ holds for all x ∈ S. Let
R = (r(x , y))x ,y∈S be the routing matrix. Then

(17) r(x , y) = q(x ,y)
λx

, ∀x ̸= y .

Proof
Let U(x , y) be the event that when the chain jumps
from x to y . Let f be the density function of Tx . Then

(18) P (U(x , y)) =
∞∫

t=0
P (U(x , y)|Tx = t) · f (t)dt.
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Countinuous-time MC introduction

Proof (cont.)
By definition

P (U(x , y)|Tx = t) = lim
∆t→0

P (Xt+∆t = y |Xt = x)∑
z∈S\{x}

P (Xt+∆t = z |Xt = x)

= lim
∆t→0

q(x , y)∆t + o(∆t)
λ(x)∆t + o(∆t)

= q(x , y)
λ(x) ∀t-re

We substitute this back to formula (18) and we obtain
the assertion of the Lemma.
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Countinuous-time MC introduction

Stationary distribution, irreducibility

Like on the previous slides, here we do NOT assume that
#S < ∞.

Definition 1.10

Xt is irreducible , if from any state i , any state j can be
reached in finitely many steps. In other words, if
∃k0 = i , k1, . . . , kn−1, kn = j , that

(19) q(kℓ−1, kℓ) > 0, ∀ℓ = 1, . . . , n
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Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Lemma 1.11

If Xt is irreducible, then ∀t > 0 and ∀i , j , pt(i , j) > 0.
(No problem with the period.)
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Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Proof
Fix an i , j ∈ S and choose k1, k1, . . . , kn as in Definition
1.10. We obtain from formulas (7) and (19) that
∃h0 > 0, such that for every 0 < h < h0,
ph(kℓ−1, kℓ) > 0. From here

(20) ph′(i , j) > 0, ∀h′ < nh0
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Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)
Proof (cont.)
On the other hand, we know that the waiting time at j
has exponential distribution. Then for every s > 0:

(21) ps(j , j) ≥ P (Tj > s) = exp (−sλj) > 0.

Let 0 < h < h0 and s > 0 s.t. t = s + nh. Then from
formulas (20) and (21):

pt(i , j) ≥ pnh(i , j) · ps(j , j) > 0. □
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Countinuous-time MC introduction

Definition 1.12
Probability vector πππ is called stationary distribution , if

(22) ∀t > 0 : πππT · Pt = πππT , ∀t > 0.

Because it is hard to check such a condition
simultaneously for every t, the following Lemma will be
useful:
Lemma 1.13

The probability vector πππ is the stationary distribution iff

(23) πππT · Q = 0.
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Countinuous-time MC introduction

Stationary distribution
Proof
Assume, that πππT · Pt = πππT holds for all t > 0. By
Kolmogorov’s forward differential equation:

0 = d
dt

(
πππT · Pt

)
( j )

=
∑
i

π(i)
∑
k

pt(i , k) · q(k , j)

=
∑
k

∑
i

π(i)pt(i , k)︸ ︷︷ ︸
π(k)

q(k , j).
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Countinuous-time MC introduction

Proof (cont.)
So, the j th component of the vector πππT · Q is 0 for every
j . This means that πππT · Q = 0.
The other direction: Assume, that πππT · Q = 0. Using
Kolmogorov backward differential equation in the second
step and the fact that P0 = Diag(1, . . . , 1) we get

39 / 126



Countinuous-time MC introduction

Proof (cont.)

d
dt

∑
i

π(i)pt(i , j)
 =

∑
i

π(i)p′
t(i , j)

=
∑
i

π(i)
∑
k

q(i , k)pt(k , j)

=
∑
k

∑
i

π(i)q(i , k)︸ ︷︷ ︸
0

pt(k , j) = 0.

Hence, πππT Pt is constant. So, it is equal to
πππT P0 = πππT · Diag(1, . . . , 1) = πππT . □
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Countinuous-time MC introduction

Limiting behavior
Theorem 1.14

Consider a continuous-time and irreducible MC for which
there exists a stationary distribution πππ. Then

(24) lim
t→∞

pt(i , j) = π(j), ∀i ∈ S.

Proof.
Because of Lemma 1.11 for every h > 0 matrix Ph is
irreducible and aperiodic. Thus using Theorem 6.2 from
file MC I: we get limn→∞ pnh(i , j) = π(j).
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Countinuous-time MC introduction

Detailed balance condition

Extending the notion for discrete-time MC, we say that
detailed balance condition holds if:
Definition 1.15

(25) π(k)q(k , j) = π(j)q(j , k) , ∀j ̸= k .

42 / 126



Countinuous-time MC introduction

Detailed balance condition (cont.)

Theorem 1.16
Let π be a probability vector (∑

i∈S
πi = 1 and πi ≥ 0). If

π satisfies (25) then πππ is stationary distribution.
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Countinuous-time MC introduction

Detailed balance condition (cont.)
Proof.
Fix an arbitrary j ∈ S

∑
k ̸=j ,k∈S

π(k)q(k , j) = π(j)
∑

k ̸=j ,k∈S
q(k , j) = π(j)λj ,

in other words, ∀j :
∑

k ̸=j ,k∈S
π(k)q(k , j) − π(j)λj = 0.

Observe that the left-hand side is the j th component of
vector πππT · Q.
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Finite-state continuous-time MC

The chain from given rates if #S < ∞
Informal construction of the chain:

Let us assume, that the chain is at state i at a given
time t ≥ 0. If λi = 0, then it remains in i forever, if
λi > 0, then the chain remains in i for time Exp(λi) and
then it jumps to j with probability r(i , j), where r(i , j)
was defined on slide 30.

Now we give another description of the continuous time
finite sate MC. To understand it recall part (e) on slide 7
from File MC III.
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Finite-state continuous-time MC

The chain from given rates if #S < ∞
(cont.)
The same in other words:
Assume that the chain now is at state i . Imagine that at
every state j ̸= i there is a clock with parameter
Exp(q(i , j)). The chain jumps:

when the first clock rings,
to the state where the first clock rings.

The equivalence of this characterization follows from
Lemmas 1.7 and 1.9 (see slides 27 and 31).
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Finite-state continuous-time MC

Lemma 2.1

Let Xt be an irreducible , continuous MC with finite
state space. We denote the infinitesimal generator by
Q , as usual. Then

(a) There exists a unique probability vector πππ
which is the left eigenvector of Q with
eigenvalue 0.

(b) The real part of any non-zero eigenvalues of
Q is negative.
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Finite-state continuous-time MC

Proof of part (a):
Let a > |maxi ,j q(i , j)|. Then

P := (1/a)Q + I

is an irreducible stochastic matrix. Let πππ be the left
eigenvector of P for eigenvalue 1. Obviously, πππT · Q = 0
if and only if πππT · P = πππT . This yields existence and
uniqueness of πππ.

For the proof of Part (b) see [5, Exercise 3.4].
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Finite-state continuous-time MC

Example: a special chain with two states

Let S = {1, 2} and we know, that q(1, 2) = 1 and
q(2, 1) = 2. Then λ(1) = 1 and λ(2) = 2. In other
words,

Q =
 −1 1

2 −2


We know, that

(26) Pt = etQ.
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Finite-state continuous-time MC

Example: a special chain with two states
(cont.)
To compute this, we must diagonalizate Q:

D =
 0 0

0 −3

 , R =
 1 1

1 −2

 , R−1 =
 2/3 1/3

1/3 −1/3


So

Q = R · D · R−1

From here
etQ = R ·

 1 0
0 e−3t

 · R−1
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Finite-state continuous-time MC

Example: a special chain with two states
(cont.)
In other words:

etQ =
 2/3 1/3

2/3 1/3

 + e−3t
 1/3 −1/3

−2/3 2/3



Obviously for πππT = (2/3, 1/3),

lim
t→∞

Pt =
 πππT

πππT

 =
 2/3 1/3

2/3 1/3

 .
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Finite-state continuous-time MC

Chains with two states in general
In general: let us assume that for some λ, µ > 0

Q =
 −λ λ

µ −µ


The one can prove, like above, that

(27) Pt =
 µ

λ+µ
λ

λ+µ
µ

λ+µ
λ

λ+µ

 + e−t(µ+λ)
 λ

λ+µ − λ
λ+µ

− µ
λ+µ

µ
λ+µ


In other words, for πππT := ( µ

λ+µ , λ
λ+µ)

lim
t→0

Pt =
 πππT

πππT

 .
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Finite-state continuous-time MC

A chain with four states

Example 2.2

Let us consider the continuous MC, whose infinitesimal
generator is

Q =


−3 1 1 1

0 −3 2 1
1 2 −4 1
0 0 1 −1

 .

Compute the stationary distribution for this chain.
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Finite-state continuous-time MC

Figure: Simulation for Example 2.2
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Birth and death processes

Birth and death Chains
The state space S may be finite or countably infinite:
S = {0, 1, 2, . . . N}, where N ≤ ∞ and we are allowed to
make only one step ahead (birth) with rate λn or one
step back one step (death) with rate µn . That is

q(n, n + 1) = λn for n < N(28)
q(n, n − 1) = µn for n > 0.(29)

This means that
P (Xt+∆t = n|Xt = n) = 1 −

(
µn + λn

)
∆t+o(∆t)

P (Xt+∆t = n + 1|Xt = n) = λn ∆t + o(∆t)
P (Xt+∆t = n − 1|Xt = n) = µn ∆t + o(∆t).
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Birth and death processes

Barbershop again
Recall from slide 18 that in the barbershop example
S = {0, 1, 2, 3} and the infinitesimal generator:

(30) Q =

0 1 2 3
0 −2 2 0 0
1 3 −5 2 0
2 0 3 −5 2
3 0 0 3 −3

.

This is a birth and death chain with

(31) λ0 = λ1 = λ2 = 2 and µ1 = µ2 = µ3 = 3.
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Birth and death processes

Stationary distribution
Theorem 3.1
Let Xn be a birth and death chain with:
S = {0, 1, . . . , N}, where N ≤ ∞.
q(n, n + 1) = λn if n < N and q(n, n − 1) = µn if n > 0.
µ0 = 0 and λN = 0, if N < ∞. Then

(32) π(n) = λn−1λn−2···λ0
µnµn−1···µ1

π(0)

satisfies detaliled balance condition, so it gives stationary
distribution, if

N∑
n=1

λn−1λn−2···λ0
µnµn−1···µ1

< ∞ (which is always
satisfied, if N < ∞).
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Birth and death processes

Stationary distribution for the barbershop
S := {0, 1, 2, 3} using (31):

µi = 3, i = 1, 2, 3 and λi = 2, i = 0, 1, 2.

If π(0) = c , then repeated applications of (32) gives:

(33) π(1) = 2c
3 , π(2) = 22

32c , π(3) = 23

33c .

3∑
i=0

π(i) = 1 yields c
(
1 + 2

3 +
(2

3
)2 +

(2
3
)3) = 1. From

this we get c and substitute it back to (33). We get

(34) π(0) = 27
65 , π(1) = 18

65 , π(2) = 12
65 , π(3) = 8

65 .
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Conclusion

This gives answer to the question (a) asked on slide 3
The answer of question (b) (from the same place) is as
follows: there are three customers at π(3) = 8

65 part of
the time.This means that 57/65 = 87.7% of potential
customers who enter the barbershop have eventually get
their haircut. We will answer question (c) later.
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M/M/s queuing
Example 3.2 (M/M/s queuing)

Let us imagine a bank, where customers are being served
by s ≤ ∞ servers, and they are waiting in one queue if
there are more customers than servers. It is reasonable
to assume, that customers arrive by a Poisson(λ)
process and the serving times are independent Exp(µ) .

Jump rates:

q(n, n + 1) = λ and q(n, n − 1) =
 nµ, if 1 ≤ n ≤ s;

sµ, if n ≥ s.
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Stationary distribution for M/M/∞
queuing

Example 3.3 (M/M/∞ queuing)

q(n, n + 1) = λ and q(n, n − 1) = nµ.

Then π(n) = (λ/µ)n

n! π(0). So, we choose π(0) = e−λ/µ

and then we see that the stationary distribution is
Poi(λ/µ).
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M/M/s queuing with balking I
Recall example 3.2 about M/M/s queuing (on slide 62):

q(n, n + 1) = λ and q(n, n − 1) =
 nµ, if 0 ≤ n ≤ s;

sµ, if n ≥ s.
We modify it slightly: Customers arrive at times of a
Poisson process with rate λ but only join the queue with
probability an if there are n customers in line. and with
probability 1 − an the customers leave. So it is a birth
and death process with the following rates:

λn = λan and µn =
 nµ, if 0 ≤ n ≤ s;

sµ, if n ≥ s.
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M/M/s queuing with balking II
Theorem 3.4

If an → 0, then there exists stationary distribution.

Proof.
By (32), π(n + 1) = anλ

sµ π(n) holds for n ≥ s. There
exists an N , s.t. if n > N , then anλ

sµ < 1
2 . Thus for all

n > max {N , s} we have π(n + 1) <
(1

2
)n−N

π(N). Thus∑
n≥1

π(n) < ∞. By Theorem 3.1 there exists stationary
distribution.
If s = 1 and an = 1/(n + 1), then πππ = Poi(λ/µ).
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Branching processes

Example 3.5 (Branching processes)

In this example each individual dies with rate µ and gives
birth to a new individual with rate λ and we start with
one individual. So, the state space is S = {0, 1, 2, 3, . . . }
that is, the set of the non-negative integers and the rates
are

q(n, n + 1) = λn and q(n, n − 1) = µn if n ≥ 1.

We start with one individual.
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Branching process with imigration

Example 3.6 (Branching process with immigration)

Let us assume, that every individual dies with rate µ ,
and new children are born with rate λ as above.
Furthermore, there are incoming members with rate ν .
Then

q(n, n + 1) = nλ + ν and q(n, n − 1) = nµ.
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Example: fast growing population model

Example 3.7

Let
µn ≡ 0 and λn = λ · n2, λ > 0

In this case the population growths very fast and it
becomes infinite in finite time. We study this
phenomenon in the next few slides:
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Pure birth processes

Definition 3.8
Pure birth processes are such birth and death processes,
that ∀n : µn = 0.

Theorem 3.9

(a) If
∞∑

n=0
1
λn

= ∞, then
∞∑
j=i

pt(i , j) = 1, ∀t ≥ 0.

(b) If
∞∑

n=0
1
λn

< ∞, then
∞∑
j=i

pt(i , j) < 1, ∀t > 0.
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Pure birth processes (cont.)

Explanation: Let Xn be the waiting time for jump from
n to n + 1. We have learned that Xn ∼ Exp(λn). The
r.v. {Xn}∞

n=1 are independent and E [Xn] = 1/λn. The
time of the n-th jump is Tn :=

n∑
i=1

Xn. Then

E [Tn] =
N∑

n=1
1/λn. When

∞∑
n=1

1/λn = ∞, then from
Kolmogorov’s Three-Series Theorem (next slide)
Tn → ∞ almost surely, but if

∞∑
n=1

1/λn < ∞, then
{Tn}∞

n=1 is bounded, so ∃T < ∞, that the population
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Pure birth processes (cont.)

growths to infinity before time T . Now we explain this
with details:
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Pure birth processes (cont.)
Theorem 3.10 (Kolmogorov’s Three-Series Theorem)

Let X1, X2, . . . be independent r.v.. The Random series
∞∑

i=1
Xi converges a.s. iff all of the following three series

are convergent. If at least one of these series is not
convergent, then

∞∑
i=1

Xi is divergent a.s..

1
∞∑

n=1
P (|Xn| > 1) < ∞.

2
∞∑

n=1
E
[
Xn · 1{|Xn|≤1}

]
is convergent.

3
∞∑

n=1
Var

(
Xn · 1{|Xn|≤1}

)
< ∞.
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Explosion in the pure birth process
Proof of part (a) of Theorem 3.9

Let us assume, that
∞∑

n=1
1/λn = ∞. Let

Xn ∼ Exp(λn), Yn = Xn · 1Xn≤1, Zn = Xn · 1Xn>1.

Using that E [Xn] = 1/λn

(35) E [Yn] = 1/λn − E [Zn] .

Now we compute E [Zn]:
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Explosion in the pure birth process (cont.)

E [Zn] =
∞∫
0
P (Zn ≥ t) dt(36)

=
1∫

0
P (Zn ≥ t) dt +

∞∫
1
P (Zn ≥ t) dt

= e−λn + e−λn

λn
.

From here and formula (35):

(37) E [Yn] = 1 − e−λn

λn
− e−λn.
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Explosion in the pure birth process (cont.)
First observe that the first sum in Kolmogorov’s
Three-Series Theorem is

(38)
∞∑

n=1
P (|Xn| > 1) =

∞∑
n=1

e−λn.

Assume that

(39)
∞∑

n=1
e−λn = ∞

Then
∞∑

n=1
Xn is divergent almost surely by Kolmogorov’s

Three-Series Theorem. Observe that (39) can happen
only if

∞∑
n=1

1
λn

= ∞.
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Explosion in the pure birth process (cont.)
Now assume that

(40)
∞∑

n=1

1
λn

= ∞ but
∞∑

n=1
e−λn < ∞.

Then it follows from (37) that the second series in
Kolmogorov’s Three-Series Theorem is divergent so in
this case also

∞∑
n=1

Xn is divergent almost surely. This and
the argument on the previous slide together implies that
part (a) of Theorem 3.9 holds. Now to prove part (b),
we assume that

(41)
∞∑

n=1

1
λn

< ∞.
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Explosion in the pure birth process (cont.)

Then clearly
∞∑

n=1
e−λn < ∞, so the first and the second

series are convergent in the Kolmogorov’s Three-Series
Theorem. Now we prove that the third series is also
convergent. For this, we observe that
(42)
Var(Yn)≤Var(Xn) + E [Yn]E [Zn]= 1

λ2
n
+E [Yn]E [Zn] .

The fact that the right hand side is summable follows
from (41), (37) and (36). □
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Embedded MC
Recall that on slide (30) we introduced the routing
matrix r(i , j) := q(i , j)/λi , if i ̸= j and r(i , i) = 0,
where λi = ∑

j ̸=i
q(i , j) . This is a stochastic matrix which

determines a discrete-time MC, called embedded MC .
Let

Vk := min {t ≥ 0 : Xt = k}
and

Tk := min {t > 0 : Xt = k and ∃s < t, Xs ̸= k}.
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Embedded MC (cont.)
Example 3.11 (M/M/1 queuing)
q(i , i + 1) = λ, if i ≥ 0 and q(i , i − 1) = µ if i ≥ 1.
The embedded MC: r(0, 1) = 1 and

r(i , i + 1) = λ

λ + µ
, i ≥ 1, r(i , i − 1) = µ

λ + µ
, i ≥ 1.

It is a random walk with partly reflective bounds. So, as
seen

is positive recurrent, if λ < µ.
is null recurrent, if λ = µ.
is transient, if λ > µ.
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Example 3.12 (Branching processes)
q(i , i + 1) = λi and q(i , i − 1) = µi . State zero is an
absorbing one, but for i ≥ 1:

r(i , i + 1) = λ

λ + µ
and r(i , i − 1) = µ

λ + µ
.

If λ < µ, then absorbing happens at zero almost surely,
but

(43) if λ > µ then ρ := P1 (T0 < ∞) = µ
λ < 1.

So for x ≥ 1 : Px (T0 < ∞) =
(

µ
λ

)x .
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Proving this:

ρ = µ

λ + µ
· 1 + λ

λ + µ
· ρ2.

So when the chain leaves state 1, then either it goes to 0
and then dies out with probability 1 or goes to 2 and
then branches of both children should die out, which has
probability ρ2. From here ρ = µ

λ . The last statement
comes from that if we want to go from x to 0, then first
we must reach x − 1, x − 2.
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Exit distributions with embedded MC

Question: if there are some absorbing states (we denote
it by A), then what is the probability that the chain gets
to a ∈ A?
Let A ⊂ S and a ∈ A.

VA := min {t ≥ 0 : Xt ∈ A} , h(i) := Pi (XVA = a).

Then if b ∈ A \ {a}:

h(a) = 1, h(b) = 0.

82 / 126



Birth and death processes

Exit distributions with embedded MC
(cont.)
So we only need to specify h(i) for ∀i ̸∈ A. To do this,
we must see, that: ∀i ̸∈ A:

(44) h(i) =
∑
j ̸=i

q(i , j)
λi

· h(j) where λi =
∑
j ̸=i

q(i , j).

Hence ∀i ̸∈ A :

(45) ∑
j

q(i , j)h(j) = 0 , where q(i , i) = −λi .
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Exit distributions with embedded MC
(cont.)

So for all i ̸∈ A we have an equation, from what we can
determine h(i), i ̸∈ A.
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Expected time of exit: theory
We write the analogue of (45) for the expected exit time.

VA := min {t ≥ 0 : Xt ∈ A} , g(i) := Ei [VA].

So g(i) = 0, if i ∈ A. As usual

λi =
∑
j ̸=i

q(i , j) and r(i , j) := q(i , j)
λi

.

We know, that the chain in the i th state remains for time
Exp(λi) and then jumps into state j ̸= i with probability
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Expected time of exit: theory (cont.)
r(i , j). Using the fact that E [Exp(λi)] = 1/λi we get,
that:

i ̸∈ A : g(i) = 1
λi

+
∑
j ̸=i

q(i , j)
λi

g(j).

By rearranging it and using that q(i , i) = −λi :

(46) i ̸∈ A : ∑
j

q(i , j)g(j) = −1.

If S is finite, these are #S − #A equations for #S − #A
unknowns g(i), i ̸∈ A.
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Expected time of exit: At the barber’s
Recall Barbershop Example: Customers are served by
rate 3 and they arrive by rate 2, but they leave, if both
chairs are occupied on: In other words

q(i , i − 1) = 3 if i = 1, 2, 3
q(i , i + 1) = 2 if i = 0, 1, 2.

Transition matrix for the embedded MC:
0 1 2 3

0 0 1 0 0
1 3/5 0 2/5 0
2 0 3/5 0 2/5
3 0 0 1 0 87 / 126
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Expected time of exit: At the barber’s
(cont.)
So now A = {0}, g(0) = 0, g(i) = Ei [V0]. Let

g :=


g(1)
g(2)
g(3)

 and 1 =


1
1
1

.

Then equation system (46) is equivalent with:

(47) Q̃ · g = −1 ,

88 / 126



Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

where Q̃ is the restriction of matrix Q for columns
belonging to S \ A (now those who are not 0). This
equivalence comes from that know thatg(i) = 0, if
i ∈ A. So columns i ∈ A add zero to all equations.

Q̃ =


−5 2 0

3 −5 2
0 3 −3


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Expected time of exit: At the barber’s
(cont.)
and

−(Q̃)−1 =


1/3 2/9 4/27
1/3 5/9 10/27
1/3 5/9 19/27


From formula (45):

g = −(Q̃)−1 · 1 =


19/27
34/27
43/27

 ,
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Expected time of exit: At the barber’s
(cont.)

so i th element of g is given by i th row sum of matrix
−(Q̃)−1.
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Expected time of exit: When can the
kindergarten teacher go home?

Example: In a nursury school at closing time parents
haven’t come for three children Anne (A), Bella (B) and
Charlie (C). Kindergarten teacher stays as long as all the
children go home. Parents phoned that they would arrive
by time Exp(1), Exp(2) and Exp(3) after close time.
(So expectedly they will fetch their child 1, 1/2 and 1/3
hours after close time, independently of each other.)
Question is when can the kindergarten teacher go home?
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Expected time of exit: When can the
kindergarten teacher go home? (cont.)
Solution: States of MC are the names of remaining
children and ∅ when no child is left:

Q ABC AB AC BC A B C ∅
ABC −6 3 2 1 0 0 0 0
AB 0 −3 0 0 2 1 0 0
AC 0 0 −4 0 3 0 1 0
BC 0 0 0 −5 0 3 2 0
A 0 0 0 0 −1 0 0 1
B 0 0 0 0 0 −2 0 2
C 0 0 0 0 0 0 −3 3
∅ 0 0 0 0 0 0 0 093 / 126
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Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Let us use the notation and method of the previous
example:

Now A := ∅. So Q̃ is the above matrix restricted to the
first 7 rows and columns. Then the first row vector of
matrix −

(
Q̃
)−1:

(1/6, 1/6, 1/2, 1/30, 7/12, 2/15, 1/20).
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Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Sum of them is: 63/60. So kindergarten teacher can go
home 63 minutes after close time.
Note: This can be seen from the fact, that for every
number a, b, c :

max {a, b, c} =a + b + c − min {a, b} − min {a, c}
− min {b, c} + min {a, b, c} .
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Expected time of exit: When can the
kindergarten teacher go home? (cont.)

We can use this and part (d2) of MC III slide 7 , if
Ti = Exp(λi), i = 1, 2, 3 are independent for
determining max {T1, T2, T3} .

96 / 126



Markovian queuing systems

1 Countinuous-time MC introduction

2 Finite-state continuous-time MC

3 Birth and death processes
Exit times

4 Markovian queuing systems
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M/M/1 queuing again

q(n, n + 1) = λ, if n ≥ 0,
q(n, n − 1) = µ if n ≥ 1.

We assume, that

(48) λ < µ .

As we have seen, this is a birth and death process in
which

λn = λ and µn = µ.
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M/M/1 queuing again (cont.)
Because of condition (48) we can use Theorem 3.1.
From here:

(49) π(n) =
(

λ

µ

)n
· π(0).

For this to give a measure, we need: π(0) := 1 − λ/µ. So

(50) π(n) =
(
1 − λ

µ

) (
λ
µ

)n
, n ≥ 0 .

Let us assume, that the system is in a stationary state.
Then let

99 / 126



Markovian queuing systems

M/M/1 queuing again (cont.)

Xs the number of customers at time s in the
system.
Q be the length of the queue,
TQ be the time spent in the queue, WQ = E [TQ]
and W = WQ + E [serving time]
L the long time average a customer sepends in the
system. L = lim

t→∞
1
t

∞∫
0

Xs .
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M/M/1 queuing again (cont.)

λa the long time average rate at which arriving
customers join the system. λa = lim

t→∞
Na(t)

t , Na(t)the
number of customers who joined the system befor
time t.

Obviously

(51) P (TQ = 0) = π(0) = 1 − λ

µ
.
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M/M/1 queuing again (cont.)
Let f (x) be the conditional density function of TQ on
(0, ∞) assuming that TQ > 0. Note that because of
(51): P (TQ = 0) > 0.
Assuming, that at the arrival of a customer there are
already n customers in the system, (whose probability if
given in (50)). Conditioned on this, the conditional
density function of TQ is Gamma(n, µ). Using this we
get:

(52) f (x) = µ

λ
·

∞∑
n=1

(
1 − λ

µ

) (
λ

µ

)n
e−µx µnxn−1

(n − 1)! .

102 / 126



Markovian queuing systems

M/M/1 queuing again (cont.)

After trivial rearrangement we get, that

(53) f (x) = (µ − λ)e−(µ−λ)x .

We have proven by this, that
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M/M/1 queuing again (cont.)

Lemma 4.1

The conditional distribution of TQ for TQ > 0 is
Exp(µ − λ).
WQ = E [TQ] = λ

µ
1

µ−λ .

E [W ] = WQ + 1
µ = λ

µ
1

µ−λ + 1
µ = 1

µ−λ .
L = 1

1−λ/µ − 1 = λ
µ−λ .
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M/M/1 queue finite waiting room

There is one server and serving a customer takes
time Exp(µ).
Customers arrive by Poisson(λ).
In the waiting room during 1 serving there is place
for N − 1 waiting customers. Customers, who arrive
when there is no empty seat, leave at once and will
never return.
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Lemma 4.2

Let Xt be a MC, for which there exists stationary
distribution πππ and it satisfies detailed balance
condition. Infinitesimal generator of chain Xt is Q .
Let A ⊂ S and Yt be the restriction of Xt to A. In
other words, Yt ’s infinitesimal generator is Q̃, where
for distinct x , y:

q̃(x , y) =
 q(x , y), if x , y ∈ A, x ̸= y;

0, otherwise.
Let C := ∑

x∈A
π(x).

Then ν := πππ/C is the stationary state of Yt .
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M/M/1 queue with finite waiting room III

Proof.
Using, that πππ satisfies detailed balance condition, it
clearly comes, that ν also satisfies it, so ν is stationary
distribution for chain Yt .
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M/M/1 queue with finite waiting room IV
From here and from (50) comes, that for the M/M/1
queue with waiting room of space N introduced above,
the stationary state:

(54) π(n) := 1−λ/µ

1−(λ/µ)N+1

(
λ
µ

)n
if 0 ≤ n ≤ N .

With finite state space it is also true, if λ > µ. It is only
false, if λ = µ. In this case:

π(n) = 1
N+1 if 0 ≤ n ≤ N .
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At the barber’s for the last time
Review: We have introduced barber shopb example on
slide 3 and on slide 60 we have computed its stationary
distribution:

πππT =
(27

65 , 18
65 , 12

65 , 8
65
)

,

which is the same as what comes from formula (54).

On slide 87 we have computed, that if there are
i = 1, 2, 3 customers at the barber’s, then how much
time should we wait till no costumer are in the barber
shop.
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At the barber’s for the last time (cont.)
Clearly,

(55) L = 1 · 18
65 + 2 · 12

65 + 3 · 8
65 = 66

65 .

Let λa be the long run rate of customers at the barber’s
who have their haircut (who don’t leave) because of the
occupied waiting room. That is let Na(t) be the number
of customers who have arrived before time t and did not
leave immediately because of the busy waiting room but
who stayed at the barber shop and eventually got served
by the barber. More precisely: λa := limn→∞

Na(t)
t .
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Finding λa: We know, that customers arrive by
Poisson(2) process. This means that during a time
interval of length ∆t, the probability that a customer
enters into the barbershop is 2 · ∆t (plus o(∆t) what we
will suppress below for the sake of simpler presentation).
But if there are already 3 customers, the newly arrived
customer leaves. This results, that with probability
2 · ∆t · π(3) a potential customers is lost. We have to
subtract this. So, during a time interval of length ∆t
there will be a new costumer who enters the service and
who remains inside the system with probability
2(1 − π(3))∆t . Hence

(56) λa = 2(1 − π(3)) = 114
65 .
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Little’s Formula
The following formula holds in general for GI/G/1
(general input /general service/ one server) queues.
Theorem 4.3 (Little’s Formula)

L = W · λa.

The sketch of the proof is available in Durrett’s book p.
107.
Using Little’s formula, (55) and (56) we get

W = 66/65
114/65 = 33

57 = 0.579 hours = 34.74 mins
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We can also compute this, as when I get inside, there
can be i = 0, 1, 2, 3 customers inside. In the case of
i = 3 I go home. In the case of i = 0, 1, 2 I spend time
(i + 1) · 1

3 inside (because people before me and I also
have a haircut in time Exp(3), which requires 1/3
hours.) Regarding these, expected value of my time W
spent inside:

W = 1
1 − π(3)

[
π(0) · 1

3 + π(1) · 2
3 + π(2) · 1

]

= 33
57 .

So, the expectation of my waiting time in the queue:

WQ = W − 1
3 = 14

57 = 0.2456 hours = 14.736 mins.
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M/M/s queue

We have introduced M/M/s queue in slide 62
In a bank, customers are being served by s servers,
and they are waiting in one queue if there are more
customers than servers.
Customers arrive by a Poisson(λ) process.
Serving times are independent times of Exp(µ).
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M/M/s queue (cont.)

Now, S = 0, 1, 2, . . . is the number of customers in the
bank. As we have seen, this is a birth and death process
with the following rates:

q(n, n + 1) = λ, n ≥ 0.

and
q(n, n − 1) =

 nµ, if 1 ≤ n ≤ s;
sµ, if n ≥ s.
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M/M/s queue (cont.)

Lemma 4.4

If λ < sµ , then there exists a πππ stationary state, which
satisfies detailed balance condition.
Proof If we write down detailed balance condition, we
get the following conditions:

λπ(j − 1) = µjπ(j) if j ≤ s
λπ(j − 1) = µsπ(j) if j ≥ s
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M/M/s queue (cont.)

From here

(57) π(k) =


c
k!

(
λ
µ

)k
, if k ≤ s;

c
s!sk−s

(
λ
µ

)k
, if k ≥ s.

where we would like to choose c s.t. πππ be stationary
measure. It is possible, if λ < sµ. □
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M/M/s queue (cont.)

Lemma 4.5
If λ > sµ, chain M/M/s is transient., If λ < sµ, chain
M/M/s is recurrent.
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M/M/s queue (cont.)

Proof.
If λ > sµ, then the M/M/1 queue with serving time nµ
is obviously transient. This is from that for the M/M/1
queue there is stationary state πππ (so it is recurrent) if
λ < µ. The M/M/s queue with serving time µ is less
efficient, so it is also transient. The other direction is
from the existence of stationary state.
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M/M/s queue (cont.)
Example 4.6
Compute the stationary measure for the

(a) M/M/s queue, if
µ = 1, λ = 2, s = 3,

(b) M/M/1 queue, if
µ = 3, λ = 2, s = 1.

And compare the chains by this in view of efficiency.
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M/M/s queue (cont.)
Solution (a):
∞∑

k=2
π(k) = c

2 · 22 ·
∞∑

j=0
(2/3)j = 6c , π(0) = c ,

π(1) = λ
µc = 2c . In other words 9c = 1, from which

c = 1/9. So
(58)

π(0) = 1
9 , π(1) = 2

9 and π(k) = 2
9
(2

3
)k if k ≥ 3.

Solution (b): from formula (50):

π(n) = 1
3 ·

(2
3

)n
, n ≥ 0,
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M/M/s queue (cont.)

So π(0) = 1
3 and π(1) = 2

9 .
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Examples

Branching process with imigration, 67
Branching processes, 66
M/M/s queuing, 62
When can the kindergarten teacher go home?, 92–96
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