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@ Countinuous-time MC introduction
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Barbershop example

The following example is from [1, Section 4.3]

Example 1.1

In a barbershop, a single barber cuts hair. There is also a
waiting room with two chairs for two people (not
counting the one whose hair is being cut). We know the
following:
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Barbershop example (cont.)

@ Customers arrive at times of a rate 2 Poisson
process, where the units are people per hour, but
will leave if both chairs in the waiting room are
occupied.

Q The barber can cut hair at rate 3, i.e. each
haircut requires an exponentially distributed
amount of time with mean 20 minutes,
independently of previous haircuts, and also of the
arrivals.
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Barbershop example (cont.)

Questions:

@ Find the equilibrium distribution.
What fraction of potential customers enter service?

for a customer who enters service?

Which fraction of the time there are no customers
in the barbershop?

o
@ What is the average amount of time in the system
o

5 /126



Some words about the barbershop
Example

All of the times are measured in hours. The time of the
hair cut is Exp(3). Let At > 0 be very small.
In a time interval of length At:

e with probability 3 - At + o(At) exactly one hair cut
will be finished (if there are any costumers in the
barbershop),

@ with probability 2 - At 4 o(At) a new costumer
arrives.
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Coun

tinuous-time MC introduction

Some words about the barbershop
Example (cont.)

In conclusion:

o At time t + At there will be one costumer less
than at time t with probability 3 - At + o(At), if at
time t there were any costumers in the barbershop.

@ At time t + At there will be one costumer more
than at time t with probability 2 - At + o(At).
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Some words about the barbershop
Example (cont.)

o Let S :={0,1,2,3} be the state space (the
possible number of costumers in the barbershop).
@ Let X; be the number of costumers at time t
where t € R* := {t : t > 0} non-negative real
number it indicates the time measured in hours.
Thenforall 0 < sy <s1 <---<s,<s and for all
foy -y 0n,Jj €S we have
(1) P(Xeys =jIXs =i, Xs, = ipy- .., X, = o)
=P(X; =j|Xo=1).
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Countinuous-time MC introduction

Countinuous-time MC, introduction

Definition 1.2
In general, if X;, t > 0 takes values from a countable

state space S andforall 0 <sp<s<---<5s,<s
and for all iy, ..., i, j € S, (1) holds that is

(2) ]P)(Xt+5 :_/‘XS = I.,Xsn = in, e 7X50 = IO)
=P (Xe =j|1Xo = 1) = peliJ)

then we say that X; is a time homogeneous
continuous-time Markov chain (MC).
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Countinuous-time MC, introduction
(cont.)

Since all of the Markov chains consider in this course are
time homogeneous, we simply call them
continuous-time Markov chains .
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Continuity condition : This is very
important!!!

Continuity condition: We always assume that the
transition matrix Py = (p¢(7,J))jes, t > 0is
continuous at zero. That is:

: N )L 0=
(3) !_L%pt(lhl) - 5/,_/ - { 0’ I#J
In this way
(4) PO - Dlag(la 17 71)
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Countinuous-time MC introduction

Continuity condition (cont.)

Observe that (3) holds for example in the barbershop
example:
Namely, for a small h > 0,

ph(i,i+1):2-h+o(h), ph(i,f—l):3-h—|—0(h)

and pa(i,j) = o(h) if |i — j| > 1.
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Cou

ntinuous-time MC introduction

Chapman-Kolmogorov

Lemma 1.3 (Chapman-Kolmogorov equality:)

(5) > ps(i, k)pe(k, j) = psie(i. ).

In other words

(6) Pt—l—s:'Dt'Ps-

Proof.

To get the chain from j to j in time s + t, it needs to be

somewhere after time s.
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Infinitesimal generator
Proposition 1.4

For a general, continuous-time MC with countable state
space, the following limits exists:

(7)  limpsoy 259 =0 q(i)), i #j and
(8) limp_s0+ 1_p/g(i’i) ol
Moreover,

0 < q(i,j)<oo,i#jbut0<\i)<o0.

g

So q(i,j) is finite, but A(i) can be infinite. If #S <
then of course A(/) is also finite.

14./.1
T4/t

N

/1926
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In summary

It follows from (7) and (8) that for every i € S

(9) A() =>_q(i,j)-
i
Forani#j,i,j €S we have
(10) P (Xerar =j|Xe = i) = q(i,j) - At + o(At).
Forallie S

(11) P(Xesne = ilXe=1i) =1 — M) - At + o(At).
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Infinitesimal generator (cont.)

The proof of the previous Proposition is available in [4,
Theorems 1.1 and 1.2]. We define

q(i, i) == —\(i) .

Then we form the matrix called Infinitesimal generator :

Q = (q(i,J))ijes -
That is
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Infinitesimal generator (cont.)

-1 q(1,2) ¢(1,3) ---
o | 21— q(23) -
~149(3.2) q(3,2) —A;3 .-

Clearly, pp(i, i) — 1+ ,;ph(i,j) =0 forall h>0, so
i#]

(12) S qgli,j)=0 Vies.

JES
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Infinitesimal generator for the barbershop
example

In the barber shop example:by formula (1) on slide 6 and
formula (6) on slide 15 of File MC IlI:

g(i,i—1)=3ifi=1,2,3
g(i,i+1)=2ifi=0,1,2.

That is:
0O 123
0j-2| 2010
Q=1 3 |-5] 2] 0|
2,0 3|52
3/0]0]3/|-3 18/126




Infinitesimal generator, a comment

We get from Chapman-Kolmogorov equality, that if we
know the transition matrix for small t, then we know it
for all t, because P,, = (Py)". This gives the idea, that
if we know the transition matrices’ derivative at 0 then
we know the transition matrix P; for every t.
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Theorem 1.5

Let X; be a continuous-time MC with finite state space
S. As always, we assume that (3) holds. Then
(a) the transition matrix Py = (p:(i,j)ijes)
satisfies the so-called Kolmogorov's-forward
differential equation:

(13) Pt P: - Q, t>0.

(b) The solution of (13) is Py = a - €?, where
is the initial distribution of the MC at time
t =0.
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Proof

We have already used the following notation many times:
P, (X: =y) =P (X; = y|Xo = x) . Let us fix a small
t >0 and x,y € S. Using the Law of Total Probability:
Py (Xerar =y) =P (Xe = y)
=P, (Xevar = y|Xe = y) - Px (Xt = y)

+ ZPx(XHAt :)/‘Xt: U)'PX(Xt: U)_HDX(Xt :)/)
uFy

= [1 - \(y)At +o(At) — 1] - Py (X; = y)

+ ; ([q(u, y)At + o(At)]) - Py (Xi = ).

21/126




inuous-time MC introduction

Proof (cont.)
If we divide both sides by At, and At — 0, then

(14) GP«(X:i=y)

=P, (Xe = y) (=A(y)) + PR (Xe = u) - q(u, y).

In the equation above, the left-hand side is the
(x, y)-element of matrix % P;, and the right-hand side is
the (x, y)-element of the matrix P; - Q. Using that
x .y € S and t > 0 were arbitrary, we get that
Pt P; - Q.
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Kolmogorov's forward and backward
differential equations

Kolmogorov's forward differential equation:
(15) Pt P Q
Kolmogorov backward differential equation:

(16) %Pt:Q‘Pt-
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Kolmogorov's forward and backward
differential equations (cont.)

These equations have a very important role, but studying
them would exceed the limits of this course. Suggested
reading: Péter Major's lecture on Continuous-time
Markov Chains (A folytonos idejii Markov lancokrdl):
click here We make some comments without proofs:
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http://www.renyi.hu/~major/debrecen/debrecen2008a/markov3.html

Kolmogorov's forward and backward
differential equations: Conditions

Conditions
(F1) A(i) < oo, Vi (defined in formula (7)).
(F2) For every fixed j the convergence in formula
(7) is uniform in i.

Interestingly, Kolmogorov's backward differential
equation can have solutions which are not solutions of
Kolmogorov's forward differential equation and which are
relevant from probability theory point of view (Satisfy
Chapman- Kolmogorov equation).

25 /126



Kolmogorov's forward and backward
differential equations: Conditions

Proposition 1.6

(a) If both of the conditions F1 and F2 hold then

P; satisfies Kolmogorov's forward differential
equation.

(b) If we only know that condition F1 holds then
P; satisfies Kolmogorov's backward
differential equation.

Recall again that we always assume that (3) holds (we
only consider chains with continuous transition matrix in
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Countinuous-time MC introduction

Exponential waiting times

For all x € S let T, be the time that the chain spends
at state x € S after it has arrived at x.

Lemma 1.7
Let us assume that \, < oo holds for all x € S . Then

(a) Ty = Exp()\s) holds for all x € S and
(b) {T«},es are independent.
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Coun

tinuous-time MC introduction

Exponential waiting times (cont.)

Proof of part (a)

Let
Gi(t) =P(T,>1t).

By the Markov property:

Gi(t + At) = G (t)G(At) =
= G (t)[1 — M(x)At + o(At)]

Hence,

GL(t) = —\(x)Gx(t) .
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Coun

tinuous-time MC introduction

Exponential waiting times (cont.)

Proof of part (a) (cont.)
Clearly,

1—P (T, < t) = G(t) = e ),

So T, = Exp()\y). O
Proof of part (b) It is obvious from the Markov
property, that { T}, s are independent. [J
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Routing matrix

Definition 1.8

Assume that A\, < oo holds for all x € S. Now we define
the so-called routing matrix: R = (r(x,y))xyes as
follows: the diagonal elements are all zeros: r(x,x) : =0
for all x € S. Let x,y € S be arbitrary distinct. Imagine
that the chain is in state x and it stays there for a while
then it jumps. Let U(x,y) be the event that the chain
jumps from x to y when it leaves x and we write r(x, y)
for the probability of the event U(x, y). The discrete
time MC corresponding to the transition matrix R is
called embedded chain .
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Lemma 1.9

Assume that \, < oo holds for all x € S. Let
R = (r(x,y))xyes be the routing matrix. Then

(17) rix,y) =942 vx#y.

Proof

Let U(x,y) be the event that when the chain jumps
from x to y. Let f be the density function of T,. Then

(18) P (U(x,y)) =t)- f(t)dt.
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Coun

tinuous-time MC introduction

Proof (cont.)
By definition

) ]P)(Xt-i-At = Y|Xt = X)
PUG )T =1) _Allfrgo > P(Xirar = z|X: = x)
zeS\{x}
— m q(x,y)At + o(At)
At—0 \(x)At + o(At)
q(x,y)
A(x)

Vt-re

We substitute this back to formula (18) and we obtain
the assertion of the Lemma.
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inuous-time MC introduction

Stationary distribution, irreducibility

Like on the previous slides, here we do NOT assume that
#S < o0.

Definition 1.10

X: is irreducible , if from any state /, any state j can be
reached in finitely many steps. In other words, if
E”(O / kl,...,knfl,kn :_j, that

(19) q(kg_l,kg) >0, Vl=1,...,n
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Stationary distribution, irreducibility
(cont.)

Lemma 1.11

If X; is irreducible, then ¥t > 0 and Vi, j, p:(i,j) > 0.
(No problem with the period.)

34 /126



Countinuous-time MC introduction

Stationary distribution, irreducibility
(cont.)

Proof

Fix an /,j € S and choose ki, ki, ..., k, as in Definition
1.10. We obtain from formulas (7) and (19) that

dhg > 0, such that for every 0 < h < hy,

pn(ki—1, ki) > 0. From here

(20) pw(inj) >0, VH < nh,
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Stationary distribution, irreducibility
(cont.)

Proof (cont.)

On the other hand, we know that the waiting time at j
has exponential distribution. Then for every s > 0:

(1) ps(ig) 2 P(T; > 5) = exp(=sA;) > 0.

Let 0 < h < hy and s > 0 s.t. t = s+ nh. Then from
formulas (20) and (21):

36 /126




Coun

tinuous-time MC introduction

Definition 1.12

Probability vector 7 is called stationary distribution , if

(22) Vt>0: «l -Pi=xT, Vt>0.

Because it is hard to check such a condition
simultaneously for every t, the following Lemma will be
useful:

Lemma 1.13

The probability vector m is the stationary distribution iff

(23) . Q=0.
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inuous-time MC introduction

Stationary distribution

Proof

Assume, that " - P, = 7" holds for all t > 0. By
Kolmogorov's forward differential equation:

0 = F( 'Dt)(./
- ZW()ZPt( k) - q(k,j)
>

Z()( k) a(kJ)-

(k)
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Countinuous-time MC introduction

Proof (cont.)

So, the j component of the vector w” - Q is O for every
j. This means that w7 Q=0.

The other direction: Assume, that 77 - Q@ = 0. Using
Kolmogorov backward differential equation in the second
step and the fact that Py = Diag(1,...,1) we get
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inuous-time MC introduction

Proof (cont.)

jt(;ﬂ(,-)pt(,-, j)) — Y n(i)pi(i.))

i

= Z ()Zq(/ k)p:(k,J)
= ZZ ()( k) pe(k,j) = 0.

0

Hence, 7 P, is constant. So, it is equal to
n"Py=n" Diag(l,...,1)=x". O
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Cou

ntinuous-time MC introduction

Limiting behavior

Theorem 1.14

Consider a continuous-time and irreducible MC for which
there exists a stationary distribution w. Then

(24) Nim pe(i.j) ==(j), Vies.

Proof.
Because of Lemma 1.11 for every h > 0 matrix Py is
irreducible and aperiodic. Thus using Theorem 6.2 from

file MC I: we get lim pu(i,j) = 7(j). O
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Detailed balance condition

Extending the notion for discrete-time MC, we say that
detailed balance condition holds if:

Definition 1.15

(25) m(k)q(k,j) = m()al, k). Vi # k.
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Countinuous-time MC introduction

Detailed balance condition (cont.)

Theorem 1.16
Let m be a probability vector ('Zs mi=1and 7w >0). If
e

7 satisfies (25) then m is stationary distribution.
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Countinuous-time MC introduction

Detailed balance condition (cont.)

Proof.
Fix an arbitrary j € S

> w(k)alk,j)==0) > aq(k.j)=7m0)N;

k#j,keS k#j,k€eS

in other words, Vj:

> m(k)q(k,j) —m(j)A = 0.
k#j,keS

Observe that the left-hand side is the j% component of
vector 7 - Q. O
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Finite-state continuous-time MC

© Finite-state continuous-time MC
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The chain from given rates if #5 < 0o
Informal construction of the chain:

Let us assume, that the chain is at state / at a given
time t > 0. If \; =0, then it remains in i/ forever, if

A; > 0, then the chain remains in j for time Exp();) and
then it jumps to j with probability r(i, ), where r(i,j)
was defined on slide 30.

Now we give another description of the continuous time
finite sate MC. To understand it recall part (e) on slide 7
from File MC IlI.
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The chain from given rates if #5 < 0o
(cont.)

The same in other words:

Assume that the chain now is at state /. Imagine that at
every state j # i there is a clock with parameter
Exp(q(i,j)). The chain jumps:

@ when the first clock rings,

@ to the state where the first clock rings.

The equivalence of this characterization follows from
Lemmas 1.7 and 1.9 (see slides 27 and 31).
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Finite-state continuous-time MC

Lemma 2.1

Let X; be an irreducible, continuous MC with finite
state space. We denote the infinitesimal generator by
Q , as usual. Then

(a) There exists a unique probability vector T
which is the left eigenvector of Q with

eigenvalue Q.
(b) The real part of any non-zero eigenvalues of
Q is negative.
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Proof of part (a):

Let a > |max;;q(i,j)|. Then
P:=(1/a)Q+ 1

is an irreducible stochastic matrix. Let ™ be the left
eigenvector of P for eigenvalue 1. Obviously, 77 - Q = 0
if and only if 77 - P =aT . This yields existence and
uniqueness of .

For the proof of Part (b) see [5, Exercise 3.4].
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Example: a special chain with two states

Let S = {1,2} and we know, that g(1,2) =1 and
q(2,1) = 2. Then A\(1) =1 and A(2) = 2. In other

words,
-1 1
o= %)
We know, that
(26) P, = e
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Example: a special chain with two states
(cont.)

To compute this, we must diagonalizate Q:

o-[s ) [ 2

0 -3 1 -2 1/3 —1/3
So
Q@Q=R-D-R!
From here
1 0 _
ef@ = R [o e_3t] R1
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Example: a special chain with two states
(cont.)

In other words:

o [BR3E]-[R

Obviously for 7" = (2/3,1/3),
: ' 2/3 1/3
lim, P = wT] - {2?3 1?3]'

t—00
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Chains with two states in general

In general: let us assume that for some A\, i > 0
—A A
o=

The one can prove, like above, that

|

u A ) A A
— | At Atn —t(p+A A+ M-pi
(27) Pt - [ 7 A ] +e . ,u/l /J,l
Ap A AF A
T .__ I A
In other words, for m' := (—/\ﬂ“ Tw)
imP= | T
t—0 E 7TT '
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A chain with four states

Example 2.2

Let us consider the continuous MC, whose infinitesimal
generator is

-3 1 1 1

0 -3 2 1

@= 1 2 -4 1
0 0 1 -1

Compute the stationary distribution for this chain.
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Figure: Simulation for Example 2.2
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Birth and death processes

© Birth and death processes
@ Exit times
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Birth and death processes

Birth and death Chains

The state space S may be finite or countably infinite:
S =140,1,2,... N}, where N < oo and we are allowed to
make only one step ahead (birth) with rate A, or one

step back one step (death) with rate w,. That is
(28) g(n,n+1)=X,forn< N
(29) q(n,n—1) = u, for n > 0.
This means that

P (Xesnr = n|Xe =n) =1— (p,+ Ay ) Atto(At)
P(Xiinr =n+ 11Xy =n) = X\, At + o(At)
P (Xiinar = n—1|X; = n) pn At + o(At).
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Birth and death processes

Barbershop again

Recall from slide 18 that in the barbershop example
S ={0,1,2,3} and the infinitesimal generator:

0[1]2]3
0—2(2]0]0
(30) Q=[1]3 -5/ 20|
210 [3[-5]2
3[0[0]3[-3

This is a birth and death chain with

(31) /\0:)\1:>\2:23nd/L1:M2:/L3:3.
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Birth and death processes

Stationary distribution

Theorem 3.1

Let X, be a birth and death chain with:
S={0,1,...,N}, where N < oo.

g(n,n+1)= X, ifn< N and g(n,n—1) = p, if n > 0.
wo=0and A\y =0, if N < oo. Then

— An—1Ap—2A
(32) m(n) = S 7(0)

satisfies detaliled balance condition, so it gives stationary

N . )
distribution, if > % < 0o (which is always
n=1 W=

satisfied, if N < c0).
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Birth and death processes

Stationary distribution for the barbershop
S :=10,1,2,3} using (31):
wi=3,i=123and \;, =2, i=0,12.
If 7(0) = c, then repeated applications of (32) gives:
2c 22 23
(33) (1) = 3 7(2) = Frd c, (3) = Fead
C (i) =1yields c (1+ 2+ (27 + (2)°) =1 F
EOW(/)— yields C( +§+(§) +(3) ) = 1. From
this we get ¢ and substitute it back to (33). We get
(34) w(0)=g (1)=&, (2 =g, (3) =45
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Birth and death processes

Conclusion

This gives answer to the question (a) asked on slide 3
The answer of question (b) (from the same place) is as
follows: there are three customers at m(3) = & part of
the time.This means that 57/65 = 87.7% of potential
customers who enter the barbershop have eventually get
their haircut. We will answer question (c) later.
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Birth and death pi

M/M/s queuing

Example 3.2 (M/M/s queuing)

Let us imagine a bank, where customers are being served
by s < oo servers, and they are waiting in one queue if
there are more customers than servers. It is reasonable
to assume, that customers arrive by a Poisson(\)

process and the serving times are independent Exp(u) .

Jump rates:

qg(n,n+1) = X and q(n,n—l):{

np, ifl1<n<s;

S/,

if n > s.
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Birth and death processes

Stationary distribution for M /M /oo
queuing

Example 3.3 (M/M /oo queuing)
g(n,n+1)=Xand qg(n,n—1) = np.
Then 7(n) = 49" 7(0). So, we choose 7(0) = e /*

n!

and then we see that the stationary distribution is
Poi(A\/p).
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Birth and death processes

M/M /s queuing with balking |
Recall example 3.2 about M/M/s queuing (on slide 62):

nu, if0<n<s;
g(n,n+1) =X and q(n,”—l):{sfi ifn;S-_

We modify it slightly: Customers arrive at times of a
Poisson process with rate A but only join the queue with
probability a, if there are n customers in line. and with
probability 1 — a, the customers leave. So it is a birth
and death process with the following rates:

_ _ J oo, if0<n<s;
)\,,—)\a,,andun—{slu’ if n>s.
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Birth and death processes

M/M /s queuing with balking Il
Theorem 3.4

If a, — 0, then there exists stationary distribution.

Proof.
By (32), m(n+ 1) = %W(n) holds for n > s. There
exists an N, s.t. if n > N, then 2 < % Thus for all

Si
n > max{N,s} we have 7(n+ 1) < (%)n_NW(N). Thus
le(n) < 00. By Theorem 3.1 there exists stationary
n>

distribution. []

If s=1and a, =1/(n+ 1), then m = Poi(\/p).
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Birth and death processes

Branching processes

Example 3.5 (Branching processes)

In this example each individual dies with rate ;2 and gives
birth to a new individual with rate A\ and we start with

one individual. So, the state space is S = {0,1,2,3,...}
that is, the set of the non-negative integers and the rates

are
g(n,n+1) = Anand g(n,n—1) = pun

We start with one individual.

if n>1.

66 / 126




Birth and death processes

Branching process with imigration

Example 3.6 (Branching process with immigration)

Let us assume, that every individual dies with rate pu,

and new children are born with rate A as above.
Furthermore, there are incoming members with rate v .
Then

g(n,n+1) =nA+v and g(n,n—1) = npu.
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Birth and death processes

Example: fast growing population model

Example 3.7

Let
pn=0and \y,=X-n’>, A>0

In this case the population growths very fast and it
becomes infinite in finite time. We study this
phenomenon in the next few slides:
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Birth and death processes

Pure birth processes

Definition 3.8

Pure birth processes are such birth and death processes,

that Vn: p, = 0.

Theorem 3.9

(a) If §0A1 — o0, then - pi(i,j)=1, ¥Vt > 0.
n n j=i

(b) If Z_jo%n < 00, then

.%C:.Pt(’.aj) <1, Vvt>0.

J=!
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Birth and death processes

Pure birth processes (cont.)

Explanation: Let X, be the waiting time for jump from
nto n+ 1. We have learned that X, ~ Exp(\,). The
rv. {X,},—, are independent and E [X,,] = 1/\,. The

time of the n-th jumpis T, := i X,. Then
E[T,] = Z 1/X\,. When Z 1/\, = oo, then from

Kolmogorov s Three-Series Theorem (next slide)
T, — oo almost surely, but if ;1 1/\, < o0, then

{T,} ", is bounded, so 3T < oo, that the population
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Birth and death processes

Pure birth processes (cont.)

growths to infinity before time T. Now we explain this
with details:
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Birth and death processes

Pure birth processes (cont.)

Theorem 3.10 (Kolmogorov's Three-Series Theorem)
Let X1, X5, ... be independent r.v.. The Random series
% X; converges a.s. iff all of the following three series

i=1

are convergent. If at least one of these series is not
oo

convergent, then > X; is divergent a.s..
i=1

o §1P(\xn\ > 1) < oo,
(2 ] §1E [X,, : 1{\)@@1}} is convergent.

0§Vaan-Ian < 00.
2 Vor (o L) 72/126




Birth and death processes

Explosion in the pure birth process

Proof of part (a) of Theorem 3.9

Let us assume, that gl 1/A, = 00. Let

Xn ~ Exp(An), Yo=X,-1x <1, Zp= Xy Lx,>1.
Using that E [X,] = 1/,
(35) E[Ya] =1/A —E[Z)].

Now we compute E [Z,]:
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Birth and death processes

Explosion in the pure birth process (cont.)

(36) E[Z] =

—A
= —An €
e + X,
From here and formula (35):
1—e
(37) E[Y) = — e
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Birth and death processes

Explosion in the pure birth process (cont.)

First observe that the first sum in Kolmogorov's
Three-Series Theorem is

(38) SP(X)|>1)=> e
n=1 n=1
Assume that
(39) S e M =00
n=1

Then ZlX is divergent almost surely by Kolmogorov's

Three- Serles Theorem. Observe that (39) can happen

only if Z /\7 = 0.
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Birth and death processes

Explosion in the pure birth process (cont.)
Now assume that

(40) — =oobut Y eV < 0.

Then it follows from (37) that the second series in
Kolmogorov's Three Series Theorem is divergent so in

this case also ZIX is divergent almost surely. This and

the argument on the previous slide together implies that
part (a) of Theorem 3.9 holds. Now to prove part (b),
we assume that

oo

(41) s
nl)‘
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Birth and death processes

Explosion in the pure birth process (cont.)

OO .
Then clearly X e M < o0, so the first and the second
=

series are conv;rgent in the Kolmogorov's Three-Series
Theorem. Now we prove that the third series is also
convergent. For this, we observe that

(42)

Var(Yy) < Var(X,) + E [Y,] E[Z,] = — +]E[Y]]E[Z]

The fact that the right hand side is summable follows
from (41), (37) and (36). O
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Birth and death processes

Embedded MC

Recall that on slide (30) we introduced the routing

matrix r(i,j) = q(i,j)/\;, if i #jand r(i,i) =0,

where \; = ;q(i,j) . This is a stochastic matrix which
JEi

determines a discrete-time MC, called embedded MC .
Let
Vi :=min{t >0: X, = k}

and
Ty :=min{t >0: X, =k and Is < t, X; # k}.
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Birth and death processes

Embedded MC (cont.)

Example 3.11 (M/M/1 queuing)
q(i,i+1)=Xifi>0and q(i,i—1)=pifi > 1.
The embedded MC: r(0,1) =1 and

A _ 7

>, r(ii—1) = ;
A ( ) A

r(iyi+1) = i>1.

It is a random walk with partly reflective bounds. So, as
seen

@ is positive recurrent, if A < pu.
@ is null recurrent, if A = p.
@ is transient, if A > pu.

~
O
\\
—_
NO
(@)



Birth and death processes

Example 3.12 (Branching processes)

q(i,i+1) = Xiand q(i,i — 1) = pi. State zero is an
absorbing one, but for i > 1:

0

drii—1) —
)\+Man r(i,i—1)

If A\ < u, then absorbing happens at zero almost surely,
but

(43) if A>p then p:=P;(Tp<o0)=4 <1.

So for x > 1: ]P)X(To<oo):("§>x.
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Birth and death processes

Proving this:

H A 2

= — 14— p-
P A A+ P

So when the chain leaves state 1, then either it goes to 0
and then dies out with probability 1 or goes to 2 and
then branches of both children should die out, which has
probability p?. From here p = &. The last statement
comes from that if we want to go from x to 0, then first
we must reach x — 1, x — 2.
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Birth and death processes

Exit distributions with embedded MC

Question: if there are some absorbing states (we denote
it by A), then what is the probability that the chain gets
toac A?

Let AC S and a € A

Va:=min{t >0:X; € A}, h(i) :=P; (Xy, = a).

Then if b € A\ {a}:
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Birth and death processes

Exit distributions with embedded MC
(cont.)

So we only need to specify h(i) for Vi ¢ A. To do this,
we must see, that: Vi & A:

(44)  h(i)=> aliJj). h(j) where \i = > q(i. j).
iz A J#i

Hence Vi & A:
(45) > q(i.j)h(j) =0, where q(i,i) = —\;.
J
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Birth and death processes

Exit distributions with embedded MC
(cont.)

So for all i ¢ A we have an equation, from what we can
determine h(i), i & A.
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Birth and death processes Exit times

Expected time of exit: theory
We write the analogue of (45) for the expected exit time.
Va:=min{t >0: X, € A},g(i) :=E;[Va].

So g(i) =0, if i € A. As usual

- - IJ
Ni=>_q(i,j) and r(i,j) := q()\ J).
7 j

We know, that the chain in the it" state remains for time
Exp(A;) and then jumps into state j # i with probability
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Birth and death processes Exit times

Expected time of exit: theory (cont.)

r(i,j). Using the fact that E [Exp();)] = 1/\; we get,
that:

1 q(i,Jj) .
_A,-+j§,- \ g(j)-

igA: gl(i)
By rearranging it and using that q(i, i) = —\;:
(46) i#A: Tqligel) =1

If S is finite, these are #S — #A equations for #5 — #A
unknowns g(i), i € A.
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Birth and death processes Exit times

Expected time of exit: At the barber's

Recall Barbershop Example: Customers are served by
rate 3 and they arrive by rate 2, but they leave, if both
chairs are occupied on: In other words

q(i,i—1)=3ifi=1,2,3
q(i,i+1)=2if i=0,1,2.
Transition matrix for the embedded MC:

01273
0[1]0]0
3/5] 0 |2/5] 0
0 [3/5] 0 |2/5
0010

WN-=O
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Expected time of exit: At the barber's
(cont.)

So now A ={0}, g(0) =0, g(i) = E;[V]. Let

g(1) { 1
g:=1|g(2)| and1 =1 [.
g(3) 1

Then equation system (46) is equivalent with:
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Birth and death processes Exit times

Expected time of exit: At the barber's
(cont.)

where @ is the restriction of matrix @ for columns
belonging to S\ A (now those who are not 0). This
equivalence comes from that know thatg(i) = 0, if
i € A. So columns i € A add zero to all equations.

-5 2 0
3 -5 2
0 3

-3

Q =
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Expected time of exit: At the barber's
(cont.)
and

1/3 2/9 4/27]

—(@) 1= { 1/3 5/9 10/27
1/3 5/9 19/27

From formula (45):

19/27
g=—(Q) !t 1= {34/27] ,
43/27
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Birth and death processes Exit times

Expected time of exit: At the barber's
(cont.)

so i’ element of g is given by i*" row sum of matrix

—(Q).
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home?

Example: In a nursury school at closing time parents
haven't come for three children Anne (A), Bella (B) and
Charlie (C). Kindergarten teacher stays as long as all the
children go home. Parents phoned that they would arrive
by time Exp(1), Exp(2) and Exp(3) after close time.
(So expectedly they will fetch their child 1, 1/2 and 1/3
hours after close time, independently of each other.)
Question is when can the kindergarten teacher go home?
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Solution: States of MC are the names of remaining
children and () when no child is left:

Q |ABC|AB| AC|BC|A | B |C |0
ABC| —6 | 3 2 110]0]0/|O0
AB 0 [-3] O 0,2]1]0/|0
AC 0 O|-4,0]3,0]1]0
BC 0 0 0O |-5/ 0|3 |20
A 0 0 0 0 |-1/ 0|01
B 0 0 0 00 |—-2]0 |2
C 0 0 0 0|00 |-3|3
0 0 0] 0 ]0]0]0] 0930126




Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Let us use the notation and method of the previous
example:

Now A := ). So Q is the above matrix restricted to the
first 7 rows and columns. Then the first row vector of

matrix — <Q)
(1/6,1/6,1/2,1/30,7/12,2/15,1/20).
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Birth and death processes

Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Sum of them is: 63/60. So kindergarten teacher can go
home 63 minutes after close time.

Note: This can be seen from the fact, that for every
number a, b, c:

max {a, b,c} =a+ b+ c —min{a, b} — min{a, c}
—min{b,c} +min{a, b, c}.
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

We can use this and part (d2) of MC Il slide 7 , if
T; = Exp()\;), i = 1,2, 3 are independent for
determining max { Ty, T, T3} .
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Markovian queuing systems

@ Markovian queuing systems
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kovian que

M/M /1 queuing again

@ g(n,n+1)= X\ if n>0,
@ g(n,n—1)=pif n>1.
We assume, that

(48) A< .

As we have seen, this is a birth and death process in
which

Ap=Aand u, = p.
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Markovian que!

M/M /1 queuing again (cont.)

Because of condition (48) we can use Theorem 3.1.
From here:

(49) (n) = <A> 7(0).

For this to give a measure, we need: 7(0) :=1—\/u. So

(50) m(n) = (1-2) (3) n>0.

Let us assume, that the system is in a stationary state.
Then let
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arkovi euing system

M/M /1 queuing again (cont.)

@ X. the number of customers at time s in the
system.

@ @ be the length of the queue,

@ Tg be the time spent in the queue, Wgo = E[T(]
and W = Wg + E [serving time]

@ L the long time average a customer sepends in the

L= lim 1T X
system. _t'—[Qo?g s
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Markovian que!

M/M /1 queuing again (cont.)

@ ), the long time average rate at which arriving
Na(®) g, (t)the

customers join the system. A\, = tI|_>rQO ,
number of customers who joined the system befor
time t.
Obviously
A
(51) P(TQZO):W(O):].—M.
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M/M /1 queuing again (cont.)

Let f(x) be the conditional density function of T on
(0, 00) assuming that T > 0. Note that because of
(51): P(Tqg=0) > 0.

Assuming, that at the arrival of a customer there are
already n customers in the system, (whose probability if
given in (50)). Conditioned on this, the conditional
density function of Tq is Gamma(n, ;1). Using this we
get:

@ -t S0

n=1
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kovian que

M/M /1 queuing again (cont.)

After trivial rearrangement we get, that
(53) f(x) = (n—A)e b,

We have proven by this, that
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M/M /1 queuing again (cont.)

Lemma 4.1

@ The conditional distribution of Tg for Tg > 0 is
Exp(u — A).

o Wo =E[To] =
A
o L :1_§/M—1:f
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arkovia euing system

M/M /1 queue finite waiting room

@ There is one server and serving a customer takes
time Exp(u).

@ Customers arrive by Poisson(\).

@ In the waiting room during 1 serving there is place
for N — 1 waiting customers. Customers, who arrive
when there is no empty seat, leave at once and will
never return.
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Lemma 4.2

o Let X; be a MC, for which there exists stationary
distribution 7 and it satisfies detailed balance
condition. Infinitesimal generator of chain X; is Q .

@ Let AC S and Y; be the restriction of X; to A. In
other words, Y;'s infinitesimal generator is Q, where
for distinct x, y:

- _Jalxy), ifx,y €A x#y;
q(x,y) = { 0, otherwise.

o Let C:= ¥ m(x).

x€A
Then v :=w/C is the stationary state of Y;.

106 / 126



arkovia

euing system

M/M /1 queue with finite waiting room |l

Proof.

Using, that 7 satisfies detailed balance condition, it
clearly comes, that v also satisfies it, so v is stationary
distribution for chain Y;. N
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Markovian que!

M/M /1 queue with finite waiting room IV

From here and from (50) comes, that for the M/M /1
queue with waiting room of space N introduced above,
the stationary state:

(54)  m(n) == (2)" fo<n<n,

With finite state space it is also true, if A > pu. It is only
false, if A = p. In this case:

m(n) =75 if0<n<N.
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At the barber's for the last time

Review: We have introduced barber shopb example on
slide 3 and on slide 60 we have computed its stationary

distribution:
T _ (21 18 12 8
= <65’ 657 65° 65) ,

which is the same as what comes from formula (54).
On slide 87 we have computed, that if there are
i =1,2,3 customers at the barber’s, then how much

time should we wait till no costumer are in the barber
shop.
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At the barber's for the last time (cont.)

Clearly,

18 12 8 66
(55) L=1- 65+2 65+3 65 = o5
Let A\, be the long run rate of customers at the barber's
who have their haircut (who don't leave) because of the
occupied waiting room. That is let N,(t) be the number
of customers who have arrived before time t and did not
leave immediately because of the busy waiting room but
who stayed at the barber shop and eventuall(\/ got served
by the barber. More precisely: A, := lim =~
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Finding A\;: We know, that customers arrive by
Poisson(2) process. This means that during a time
interval of length At, the probability that a customer
enters into the barbershop is 2 - At (plus o(At) what we
will suppress below for the sake of simpler presentation).
But if there are already 3 customers, the newly arrived
customer leaves. This results, that with probability

2- At -m(3) a potential customers is lost. We have to
subtract this. So, during a time interval of length At
there will be a new costumer who enters the service and

who remains inside the system with probability
2(1 —m(3))At . Hence

114

(56) Ao =2(1-7(3) = o
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Little's Formula

The following formula holds in general for GI/G/1
(general input /general service/ one server) queues.

Theorem 4.3 (Little’s Formula)

L=W-A,.

The sketch of the proof is available in Durrett’s book p.
107.
Using Little's formula, (55) and (56) we get

66/65 33

W = 11465 = 57 = 0.579 hours = 34.74 mins
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We can also compute this, as when | get inside, there
can be i = 0,1, 2,3 customers inside. In the case of

i =3 1 go home. In the case of i = 0,1,2 | spend time
(i +1) - 5 inside (because people before me and | also
have a haircut in time Exp(3), which requires 1/3
hours.) Regarding these, expected value of my time W
spent inside:

1 1 2
W = 1_77(3) 7r(0)-§-|—7r(1)-§—|—7r(2)-1
5

So, the expectation of my waiting time in the queue:

1 14
W =W — - = —- = 0.2456 hours = 14.736 mins.
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arkovian que

M/M /s queue

We have introduced M/M/s queue in slide 62

@ In a bank, customers are being served by s servers,
and they are waiting in one queue if there are more
customers than servers.

o Customers arrive by a Poisson(\) process.

@ Serving times are independent times of Exp(pu).
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kovian que

M/M /s queue (cont.)

Now, S =0,1,2,... is the number of customers in the
bank. As we have seen, this is a birth and death process
with the following rates:

qg(n,n+1)=X, n>0.
and

np, ifl<n<s;
su, if n>s.

Q(n,n—l):{
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Markovian que!

M/M /s queue (cont.)

Lemma 4.4

If A < su, then there exists a m stationary state, which
satisfies detailed balance condition.

Proof If we write down detailed balance condition, we
get the following conditions:

Arn(j — 1) = wir(j) if j <s
psm(j) ifj >s
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arkovian que

M/M /s queue (cont.)

From here
(57) rky =] () , eES
s (3) k>

where we would like to choose ¢ s.t. 7 be stationary
measure. It is possible, if A < su. [J
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Markovian que!

M/M /s queue (cont.)

Lemma 4.5

If X\ > s, chain M/M /s is transient., If \ < su, chain
M/M/s is recurrent.
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arkovian que

M/M /s queue (cont.)

Proof.

If A > su, then the M/M/1 queue with serving time nu
is obviously transient. This is from that for the M/M/1
queue there is stationary state w (so it is recurrent) if

A < p. The M/M/s queue with serving time p is less
efficient, so it is also transient. The other direction is
from the existence of stationary state. []
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Markovian que!

M/M /s queue (cont.)

Example 4.6

Compute the stationary measure for the
(a) M/M/s queue, if
p=1XA=2 s=3,
(b) M/M/1 queue, if
uw=3 A=2 s=1.

And compare the chains by this in view of efficiency.
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arkovian queuing systems

M/M /s queue (cont.)

Solution (a):
kfzw(k) —£.02. _%0(2/3)1 = 6¢, 7(0) = c,
= ]j=

7(1) = 2¢ = 2c¢. In other words 9¢ = 1, from which
c=1/9. So
(58)

7(0) =1 w(1)=2and w(k) =2(2)“ if k>3
Solution (b): from formula (50):

1 /2\"
7T(I7)I3(3> ) nzov
121 /126



Markovian queuing systems

M/M /s queue (cont.)

So 7(0) = L and 7(1)

I
OIN
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Examples

Branching process with imigration, 67

Branching processes, 66
M/M/s queuing, 62
When can the kindergarten teacher go home?, 92-96
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