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@ Countinuous-time MC introduction
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Barbershop example

The following example is from [1, Section 4.3]

Example 1.1

In a barbershop, a single barber cuts hair. There is also a
waiting room with two chairs for two people (not
counting the one whose hair is being cut). We know the
following:
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Barbershop example (cont.)

© Customers arrive at times of a rate 2 Poisson
process, where the units are people per hour, but
will leave if both chairs in the waiting room are
occupied.

© The barber can cut hair at rate 3, i.e. each
haircut requires an exponentially distributed
amount of time with mean 20 minutes,
independently of previous haircuts, and also of the
arrivals.
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Barbershop example (cont.)

Questions:

@ Find the equilibrium distribution.
What fraction of potential customers enter service?

(5]

@ What is the average amount of time in the system
for a customer who enters service?

o

Which fraction of the time there are no customers
in the barbershop?
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Some words about the barbershop
Example

All of the times are measured in hours. The time of the
hair cut is Exp(3). Let At > 0 be very small.
In a time interval of length At:

@ with probability 3 - At + o(At) exactly one hair cut
will be finished (if there are any costumers in the
barbershop),

e with probability 2 - At 4 o(At) a new costumer
arrives.
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Some words about the barbershop
Example (cont.)

In conclusion:

o At time t + At there will be one costumer less
than at time t with probability 3 - At 4 o(At), if at
time t there were any costumers in the barbershop.

@ At time t + At there will be one costumer more
than at time t with probability 2 - At + o(At).

7,126

Some words about the barbershop
Example (cont.)

o Let S :={0,1,2,3} be the state space (the
possible number of costumers in the barbershop).
@ Let X; be the number of costumers at time t
where t € RT := {t : t > 0} non-negative real
number it indicates the time measured in hours.
Then forall 0 < sy < s <--- <5, <s and for all
foy- -, in,J €S we have

(1) P(Xews = j1Xe = i, Xs, = ..., Xe, = i0)

=P (X, = j|X =1i).
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Countinuous-time MC, introduction

Definition 1.2
In general, if X;, t > 0 takes values from a countable

state space S andforall 0< g<s<---<s5,<5s
and for all iy, ..., in,j € S, (1) holds that is

(2) ]P(Xt+5 :j|X5 = iaXsn - in*"'aXSo - IO)

then we say that X; is a time homogeneous

continuous-time Markov chain (MC).

Countinuous-time MC, introduction
(cont.)

Since all of the Markov chains consider in this course are
time homogeneous, we simply call them
continuous-time Markov chains .
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Continuity condition : This is very

important!!!

Continuity condition: We always assume that the
transition matrix Py = (p¢(i,j))ijes, t > 0'is
continuous at zero. That is:

" PN 1, i=j;
(3) ll—%pt(”‘l) - 51,} — { 0’ I7éj
In this way
(4) Py = Diag(1,1,...,1).
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Continuity condition (cont.)

Observe that (3) holds for example in the barbershop
example:
Namely, for a small h > 0,

pu(ii+1)=2-h+o(h), pu(i,i—1) =3 h+o(h)

and pp(i,j) =o(h) if |i —j| > 1.
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Chapman-Kolmogorov

Lemma 1.3 (Chapman-Kolmogorov equality:)

(5) %ps(lv k)pt(kv./) = p5+t(l7./)

In other words

(6) Pt+5:Pt‘P5.

Proof.
To get the chain from 7 to j in time s + t, it needs to be

somewhere after time s. 13 /126 )

Infinitesimal generator
Proposition 1.4

For a general, continuous-time MC with countable state
space, the following limits exists:

(7) limp o 28 =i g(i,j), i #j and
(8)  limpooy 2 = X(j).
Moreover,

0 < q(i,j) <oo,i #jbut 0 < A(i) < .

So q(i,j) is finite, but A(i) can be infinite. If #S < oo
then of course (i) is also finite.
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In summary

It follows from (7) and (8) that for every j € S

© \i) =X qli.g)
Jj€Ss
For an i = j, i,j € S we have
(10) P (Xerar =j1Xe =1i) = q(i,j) - At + o(At).
Forallie S

(11) P(Xepar = ilXe = i) = 1— A(i) - At + o(At).
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Infinitesimal generator (cont.)

The proof of the previous Proposition is available in [4,
Theorems 1.1 and 1.2]. We define

Then we form the matrix called Infinitesimal generator :
Q= (q(i,j))ijes -
That is
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Infinitesimal generator (cont.)

-1 q(1,2) q(1,3) ---
Q- q(2,1) =X q(2,3) ---
1 49(3,2) 9(3,2) X3 -

Clearly, pp(i, i) — 1+ ;ph(i,j) =0forall h>0, so
i#

Vies.

(12) >.q(i,j)=0

jes
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Infinitesimal generator for the barbershop
example

In the barber shop example:by formula (1) on slide 6 and
formula (6) on slide 15 of File MC lI:

q(i,i—1)=3ifi=1,23
q(i,i+1)=2ifi=0,1,2.

That is:
0123
0|-2{2]01]0
Q=13 |-5|2 |0 |
2/ 0] 3 |-5]2
31001 3]-3
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Infinitesimal generator, a comment

We get from Chapman-Kolmogorov equality, that if we
know the transition matrix for small t, then we know it
for all t, because P,, = (Pp)". This gives the idea, that
if we know the transition matrices' derivative at 0 then
we know the transition matrix P; for every t.
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Theorem 1.5
Let X; be a continuous-time MC with finite state space
S. As always, we assume that (3) holds. Then

(a) the transition matrix Py = (p¢(i.J)ijes)
satisfies the so-called Kolmogorov’s-forward
differential equation:

(13) 4P =P Q, t>0.

(b) The solution of (13) is P; = a - €Q, where a
is the initial distribution of the MC at time
=0.

20126

Proof

We have already used the following notation many times:
P, (X: = y) =P (X; = y|Xo = x) . Let us fix a small
t >0and x,y € S. Using the Law of Total Probability:
Py (Xerar =y) =P (Xe =)
=P, (Xeiar=y|Xe =y) -Px(Xe = y)
+ 2 Pe(Xevar = y|Xe = u) - P (X = u) =P, (X: = y)
uFy
= [1-Ay)At+o(At) = 1] - P (Xe =)

+ 2; ([a(u, y)At +o(At)]) - Puc (Xe = u).
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Proof (cont.)
If we divide both sides by At, and At — 0, then

(14) SP(X: =)

dt
=Py (Xe = y) (=A\(y)) + U§yPX (X =u)-q(u,y).

In the equation above, the left-hand side is the

(x, y)-element of matrix < P;, and the right-hand side is
the (x, y)-element of the matrix P; - Q. Using that

x,y € S and t > 0 were arbitrary, we get that

4P =P Q.

y
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Kolmogorov's forward and backward
differential equations

Kolmogorov's forward differential equation:
Kolmogorov backward differential equation:
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Kolmogorov's forward and backward
differential equations (cont.)

These equations have a very important role, but studying
them would exceed the limits of this course. Suggested
reading: Péter Major's lecture on Continuous-time
Markov Chains (A folytonos idejii Markov lancokrdl):
click here We make some comments without proofs:
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Kolmogorov's forward and backward
differential equations: Conditions

Conditions
(F1) A(i) < oo, Vi (defined in formula (7)).
(F2) For every fixed j the convergence in formula
(7) is uniform in /.

Interestingly, Kolmogorov's backward differential
equation can have solutions which are not solutions of
Kolmogorov's forward differential equation and which are
relevant from probability theory point of view (Satisfy
Chapman- Kolmogorov equation).
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Kolmogorov's forward and backward
differential equations: Conditions

Proposition 1.6
(a) If both of the conditions F1 and F2 hold then
P; satisfies Kolmogorov's forward differential
equation.
(b) If we only know that condition F1 holds then
P; satisfies Kolmogorov's backward
differential equation.

Recall again that we always assume that (3) holds (we
only consider chains with continuous transition matrix in

0). 26 /126

Exponential waiting times

For all x € S let T, be the time that the chain spends
at state x € S after it has arrived at x.

Lemma 1.7

Let us assume that A\, < oo holds for all x € S . Then
(a) T, =Exp(A\s) holds for all x € S and
(b) {T«}es are independent.

27 /126

Exponential waiting times (cont.)

Proof of part (a)
Let
G (t) =P (T, >1t).

By the Markov property:

Gi(t + At) = G (t)Gi(At) =

Ge(t)[L — A(X)AL + o(At)]

Hence,

G (t) = —A\(x)Gy(t) .

v
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Exponential waiting times (cont.)

Proof of part (a) (cont.)
Clearly,

1—P(T, <t)= Gy(t) = e ™,

So T, = Exp()\). O
Proof of part (b) It is obvious from the Markov
property, that {7}, . are independent. (J
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Routing matrix

Definition 1.8

Assume that )\, < oo holds for all x € S. Now we define
the so-called routing matrix: R = (r(x,y))xyes as
follows: the diagonal elements are all zeros: r(x,x) :=0
for all x € S. Let x,y € S be arbitrary distinct. Imagine
that the chain is in state x and it stays there for a while
then it jumps. Let U(x, y) be the event that the chain
jumps from x to y when it leaves x and we write r(x,y)
for the probability of the event U(x, y). The discrete
time MC corresponding to the transition matrix R is
called embedded chain .

y
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Lemma 1.9

Assume that \, < oo holds for all x € §. Let
R = (r(x,y))x,yes be the routing matrix. Then
(17)

riay) =942 vx £y,

Proof
Let U(x, y) be the event that when the chain jumps
from x to y. Let f be the density function of T,. Then

o0

P(U(x.y)) = [ P(U(xy)|Te =t) - f(t)d.
t=0

(18)

v
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Proof (cont.)
By definition

o P (Xerar = y[Xe = x)
P(U(X7y)|TX_t) _AlltrDO > ]P(XHAt:let:X)
zeS\{x}

- q(x,y)At + o(At)
At=0 \(x)At + o(At)
qa(x,y)

Alx)

Vt-re

We substitute this back to formula (18) and we obtain
the assertion of the Lemma.

y
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Statlonary distribution, irreducibility

Like on the previous slides, here we do NOT assume that
#S < o0.
Definition 1.10

X; is irreducible, if from any state /, any state j can be
reached in finitely many steps. In other words, if
Hko = I kl« Ceey k,,,]_, kn :j, that

(19) q(ke-1, ke) >0,
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Statlonary distribution, irreducibility
(cont.)

Lemma 1.11

If X; is irreducible, then ¥t > 0 and Vi, j, p:(i,j) > 0.
(No problem with the period.)
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Stationary distribution, irreducibility
(cont.)

Proof

Fix an i,j € S and choose ki, ki, ..., k, as in Definition
1.10. We obtain from formulas (7) and (19) that

dho > 0, such that for every 0 < h < hy,

pn(ke_1, ki) > 0. From here

(20) pi(i,j) >0, VH < nh
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Stationary distribution, irreducibility
(cont.)

Proof (cont.)

On the other hand, we know that the waiting time at j
has exponential distribution. Then for every s > 0:

(21)  pe(id) 2 B(T; > s) = exp(—s))) > 0.

Let 0 < h< hyand s > 0s.t. t =s+ nh. Then from
formulas (20) and (21):

pe(inj) = ponlisj) - ps(j.j) > 0. O

v
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Definition 1.12
Probability vector 7 is called stationary distribution , if

(22) Vt>0: @ -Pi=x", Vt>0.

Because it is hard to check such a condition
simultaneously for every t, the following Lemma will be
useful:

Lemma 1.13
The probability vector w is the stationary distribution iff

(23) - Q=0.
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Stationary distribution

Proof

Assume, that 77 - P, = " holds for all t > 0. By
Kolmogorov's forward differential equation:

0 = d_ 7T )
= 27 2 pili; ) q(k,Jj)
= ;;W(')Pr(h k)a(k,J)-
(k)

V.
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Proof (cont.)

So, the j*" component of the vector w" - Q is 0 for every
j. This means that 7" - Q = 0.

The other direction: Assume, that 7" - Q = 0. Using
Kolmogorov backward differential equation in the second

step and the fact that Py = Diag(1,...,1) we get
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Proof (cont.)

%(;w(i)pr(hj)) = 2r()ei(i])

= Z ()Zq( k)pe(k,j)
= ZZ ()q(> k) pt(k,j) = 0.

0

Hence, 7 P, is constant. So, it is equal to
7Py =m" Diag(l,...,1)==x". O
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Limiting behavior

Theorem 1.14

Consider a continuous-time and irreducible MC for which
there exists a stationary distribution w. Then

(24) Nim pe(i,j) =7(j), Vies.

Proof.

Because of Lemma 1.11 for every h > 0 matrix P is
irreducible and aperiodic. Thus using Theorem 6.2 from
file MC I: we get lim_pu(i,j) = 7(j). O

V.
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Detailed balance condition

Extending the notion for discrete-time MC, we say that
detailed balance condition holds if:

Definition 1.15

(25)  w(k)alk.j) = 7()aG. k). i # k.
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Detailed balance condition (cont.)

Theorem 1.16
Let w be a probability vector (ES mi=1andm >0). If
ic

7 satisfies (25) then m is stationary distribution.
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Detailed balance condition (cont.)

Proof.
Fix an arbitrary j € S

> w(k)glk,j)=70) X

kj.keS kA keS

q(k>j) = 7r(j))‘jv
in other words, Vj:

>, w(k)alk,j) — ()N = 0.
k#j,keS

Observe that the left-hand side is the j component of
vector ' - Q. O
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@ Finite-state continuous-time MC
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Finite-state continuous-time MC

The chain from given rates if #S < oo
Informal construction of the chain:

Let us assume, that the chain is at state i at a given
time t > 0. If \; =0, then it remains in i forever, if

A; > 0, then the chain remains in i for time Exp()\;) and
then it jumps to j with probability r(i, ), where r(i, )
was defined on slide 30.

Now we give another description of the continuous time
finite sate MC. To understand it recall part (e) on slide 7
from File MC II1.
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Finite-state continuous-time MC

The chain from given rates if #S < oo
(cont.)

The same in other words:

Assume that the chain now is at state i. Imagine that at
every state j # J there is a clock with parameter
Exp(q(i,j)). The chain jumps:

@ when the first clock rings,

@ to the state where the first clock rings.

The equivalence of this characterization follows from
Lemmas 1.7 and 1.9 (see slides 27 and 31).
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Lemma 2.1

Let X; be an irreducible, continuous MC with finite
state space. We denote the infinitesimal generator by
Q, as usual. Then
(a) There exists a unique probability vector T
which is the left eigenvector of Q with
eigenvalue 0.
(b) The real part of any non-zero eigenvalues of
Q is negative.
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Proof of part (a):
Let a > |max;; q(i,/)|. Then

P:=(1/a)Q+1

is an irreducible stochastic matrix. Let © be the left
eigenvector of P for eigenvalue 1. Obviously, 7" - Q = 0
if and only if 77 - P =o' . This yields existence and
uniqueness of .

For the proof of Part (b) see [5, Exercise 3.4].
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Example: a special chain with two states

Let S = {1,2} and we know, that ¢(1,2) =1 and
q(2,1) =2. Then A(1) =1 and A(2) = 2. In other
words,

Q«—{_;l lg}

We know, that

(26) P, = &'
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Example: a special chain with two states
(cont.)

To compute this, we must diagonalizate Q:

R N ]

So

Q=R-D-R!
From here
0 _ R “ _Q}Rl

51/126

Example: a special chain with two states
(cont.)

In other words:

=[5 5h] - ]

Obviously for 77 = (2/3,1/3),

e[ [332]
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Chains with two states in general

In general: let us assume that for some A\, u > 0

A chain with four states

Example 2.2

A A
Q= { 0 o—p } Let us consider the continuous MC, whose infinitesimal
generator is
The one can prove, like above, that
/DN A A -3 1 1 1
(27) Pt — )\—&Zu )\—)&\-,u :| +e t(j14A) |: /\J;;z )\J;/l B 0 =3 2 1
T X M Q=11 2 -4 1
In other words, for 7 := (x5 ﬁ) 0 0 1-1
a7 Compute the stationary distribution for this chain.
||m Pt = |: T :| .
t—0 ™
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| 1 ] Birth and death processes
o
@ Exit times
Figure: Simulation for Example 2.2
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Birth and death Chains

The state space S may be finite or countably infinite:
5=14{0,1,2,... N}, where N < co and we are allowed to

make only one step ahead (birth) with rate A, or one
step back one step (death) with rate p,. That is
(28) g(n,n+1) =X\, forn< N
(29) q(n,n—1) = p, for n> 0.
This means that

P(Xeoae =n|Xe =n) =1— (pn+ Ay ) Atto(At)
P(Xerar =n+1Xe =n) = X\, At + o(At)
P(Xear=n—1X, =n) = p, At + o(At).
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Barbershop again

Recall from slide 18 that in the barbershop example

S5 =40,1,2,3} and the infinitesimal generator:
0o[12]3
0-2{2]01]0
(30) Q=[1]3 | 5[20|
21 01| 3|-5]2
31001 3]-3

This is a birth and death chain with

(31) )\0 = )\1 = )\2 =2 and M1 = M2 = U3 = 3.
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Birth and death processes

Stationary distribution

Theorem 3.1

Let X, be a birth and death chain with:
S$={0,1,...,N}, where N < oo.

qg(n,n+1) =X, ifn< N and q(n,n — 1) = p, if n > 0.
o =0 and \y =0, if N < oo. Then

(32) m(n) = Zeatezie (0)

Mnftn—1-""H1

satisfies deta/i/ed balance condition, so it gives stationary

distribution, if Z Aoade2 X0 oo (which is always
=1

Hnfn—1-H1

satisfied, if N < c0).
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Birth and death processes

Stationary distribution for the barbershop
S$:=1{0,1,2,3} using (31):
=3, i=1,23and \; =2, i=0,1,2.
If 7(0) = c, then repeated applications of (32) gives:
2¢ 22 2
n(1) =7, m(2) = 3ze, 7(3) = 3¢

S (i) = 1yields ¢ (143 + (%) +(2)") = 1. From

this we get ¢ and substitute it back to (33). We get
(34) w(0) = 7(1) =g, (2 =3 7(3) =
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Birth and death processes

Conclusion

This gives answer to the question (a) asked on slide 3
The answer of question (b) (from the same place) is as
follows: there are three customers at 7(3) = & part of
the time.This means that 57/65 = 87.7% of potential
customers who enter the barbershop have eventually get
their haircut. We will answer question (c) later.
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Birth and death processes

M/M/s queuing
Example 3.2 (M/M/s queuing)

Let us imagine a bank, where customers are being served
by s < oo servers, and they are waiting in one queue if
there are more customers than servers. It is reasonable
to assume, that customers arrive by a Poisson(\)

process and the serving times are independent Exp(pu) .

y

Jump rates:

np, ifl1<n<s,;
su, ifn>s.
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g(n,n+1) =X\ and q(n,nl){

Birth and death processes

Stationary distribution for M/M /oo
queuing

Example 3.3 (M/M /oo queuing)
g(n,n+1)=Xand g(n,n—1) = nu.

Then 7(n) = KLIT’,’LW(O) So, we choose 7(0) = e "
and then we see that the stationary distribution is

Poi(A/p).
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M/M/s queuing with balking |
Recall example 3.2 about M/M/s queuing (on slide 62):

np, if0<n<s;

g(n,n+1) =\ and q(n.,n—l):{su. 0> s

We modify it slightly: Customers arrive at times of a
Poisson process with rate A but only join the queue with
probability a, if there are n customers in line. and with
probability 1 — a, the customers leave. So it is a birth
and death process with the following rates:

np, if0<n<s;

An = Aap and y1, = { su, ifn>s.
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Birth and death processes Birth and death processes

M/M /s queuing with balking II Branching processes

Theorem 3.4 Example 3.5 (Branching processes)

If a, — 0, then there exists stationary distribution.
. Y In this example each individual dies with rate 1z and gives

Proof. birth to a new individual with rate A and we start with
By (32), 7(n+1) = ( ) holds for n>s. There one individual. So, the state space is S = {0,1,2,3,...}
exists an N, st. if n > N, the iu)\ 2. Thus for all that is, the set of the non-negative integers and the rates

are
n > max {N,s} we have 7(n+1) < (%)n NW(N). Thus
le(n) < 00. By Theorem 3.1 there exists stationary g(n,n+1)=Xnand g(n,n—1)=pun ifn>1.
n>
distribution. = We start with one individual. )
If s=1and a, =1/(n+1), then T = Poi(\/p).
65 /126 66 /126

Birth and death processes

Birth and death processes

Branching process with imigration Example: fast growing population model

Example 3.6 (Branching process with immigration) Example 3.7
Let us assume, that every individual dies with rate p, Let
and new children are born with rate A\ as above. pn=0and A\, = \- n”, A>0
Furthermore, there are incoming members with rate v .
Then In this case the population growths very fast and it
becomes infinite in finite time. We study this
q(n,n+1) =n\+v and g(n,n—1) = np. phenomenon in the next few slides:
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Pure birth processes Pure birth processes (cont.)
Definition 3.8 Explanation: Let X, be the waiting time for jump from

. : nto n+ 1. We have learned that X, ~ Exp(\,). The
Pure birth processes are such birth and death processes, rv. {X,})°, are independent and E[X,] = 1/A,. The

that Vn: p, = 0.

/ time of the n-th jumpis T, := L X,. Then
Theorem 3.9

o - E[T, = L 1/X,. When L 1/\, = oo, then from
(a) If ZOAL =00, then 3 pi(i,j)=1, Vt > 0.
n=0 A =i

Kolmogorov s Three—Serles Theorem (next slide)

(b) If ij: L < o0, then g,pt(i,j) <1, Vt>0. T, — oo almost surely, but if Z 1/, < o0, then
o - / {T,} ~, is bounded, so 3T < oo, that the population
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Birth and death processes

Birth and death processes

Pure birth processes (cont.) Pure birth processes (cont.)
Theorem 3.10 (Kolmogorov's Three-Series Theorem)
Let X1, X5,... be independent r.v.. The Random series

% X; converges a.s. iff all of the following three series
growths to infinity before time T. Now we explain this =1

: . are convergent. If at least one of these series is not
with details:

convergent, then %1 X; is divergent a.s..
[.9] -
o glp(\xn| >1) < oo
(2] §1E Xn - Lyx, <1ﬂ is convergent.

@ > Var(X,- Iyx, < 00.
71/126 ) 72126




Explosion in the pure birth process

Proof of part (a) of Theorem 3.9

Let us assume, that %jjl 1/A, = oc0. Let
Xn ~ EXD()\n), Yn = Xn : ILX,,<1a Zn = Xn : ILX,,>1~
Using that E [X,] = 1/,

(35) E[Y,] = 1/\, — E[Z)].

Now we compute E[Z,]:

v
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Explosion in the pure birth process (cont.)

(36) E[zZ,] = [P(Z,>t)dt

O — . O —g

P(Z,>t)dt+ [P(Z,> t)dt
1

A

An

From here and formula (35):

(S
= e>\“+

(37) E[Y,] = 1_; e
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Birth and death processes

Explosion in the pure birth process (cont.)

First observe that the first sum in Kolmogorov's
Three-Series Theorem is

(38) SP(X|>1) =Y e,
n=1 n=1

Assume that

(39) Z e M =00

Then Z X, is divergent almost surely by Kolmogorov's

Three- Serles Theorem. Observe that (39) can happen

= 75 /126

Birth and death processes

Explosion in the pure birth process (cont.)
Now assume that

(40) Z/\—:oobut Ze "< 00,
n=1

Then it follows from (37) that the second series in
Kolmogorov's Three—Series Theorem is divergent so in
this case also ZlX is divergent almost surely. This and

the argument on the previous slide together implies that
part (a) of Theorem 3.9 holds. Now to prove part (b),
we assume that

(41)

J 8

1<
2. 0.

76 /126

Birth and death processes

Explosion in the pure birth process (cont.)

Then clearly L e M < 00, so the first and the second

series are convergent in the Kolmogorov's Three-Series
Theorem. Now we prove that the third series is also
convergent. For this, we observe that

(42)

Var(Y,) < Var(X,) + E[Y,|E[Z,]= %—HE (Yo E[Z,)].

The fact that the right hand side is summable follows
from (41), (37) and (36). O

Birth and death processes

Embedded MC

Recall that on slide (30) we introduced the routing

matrix r(i,j) := q(i,j)/Ni, if i # j and r(i,i) =0,

where \; = § q(i,j) . This is a stochastic matrix which
J#i

determines a discrete-time MC, called embedded MC .
Let
Vi:=min{t >0: X, = k}

and

Te:=min{t >0: X, =k and Is < t, X; # k}.

It is a random walk with partly reflective bounds. So, as
seen

@ is positive recurrent, if A < p.
@ is null recurrent, if A = p.
@ is transient, if A > p.
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Embedded MC (cont.) Example 3.12 (Branching processes)
: q(i,i+1) = Ai and q(i,i — 1) = pi. State zero is an

Example 3.11 (M/M/1 queuing) absorbing one, but for i > 1:
q(i,i+1)=X ifi>0and q(i,i—1)=pifi>1.
The embedded MC: r(0,1) =1 and i)+ 1) = and r(i,i —1) = B

\ A A

. . p
r(i,i+1) = A+ i1, r(i,i—1)= A+ izl If A < p, then absorbing happens at zero almost surely,

but

(43) if A>p then p:=P(To<o0)=4%§ <1

Sofor x >1: ]P’X(T0<oo):(§)x.

v
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Birth and death processes

Proving this:

H A 2
= 1 .2
A+ u +)\+/1, P

P

So when the chain leaves state 1, then either it goes to 0
and then dies out with probability 1 or goes to 2 and
then branches of both children should die out, which has
probability p?>. From here p = &. The last statement
comes from that if we want to go from x to 0, then first
we must reach x — 1, x — 2.
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Birth and death processes

Exit distributions with embedded MC

Question: if there are some absorbing states (we denote
it by A), then what is the probability that the chain gets
toae A?

Let AC Sand a € A

Va:=min{t >0: X, € A}, h(i) :=P; (Xy, = a).
Then if b € A\ {a}:

h(a) =1, h(b) = 0.
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Birth and death processes

Exit distributions with embedded MC
(cont.)

So we only need to specify h(i) for Vi ¢ A. To do this,
we must see, that: Vi & A:

(44) MO:XF%DmeMmM:XdM)
J#i i J#

Hence Vi g A:

(45) > q(i,j)h(j) =0, where q(i,i) = —\;.

J
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Birth and death processes

Exit distributions with embedded MC
(cont.)

So for all i & A we have an equation, from what we can
determine h(i), i € A.

84 /126

Birth and death processes Exit times

Expected time of exit: theory
We write the analogue of (45) for the expected exit time.
Va:=min{t >0: X, € A}, g(i) :==E; [Va].

So g(i) =0, if i € A. As usual

<~ - iJ
Ai=>q(i,j) and r(i,j) == q()\_J).
i j

We know, that the chain in the it" state remains for time
Exp(\;) and then jumps into state j # i with probability
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Birth and death processes Exit times

Expected time of exit: theory (cont.)

r(i,j). Using the fact that E [Exp();)] = 1/\; we get,
that: o
(i, J)

N1 ~q(i,j) .
g(')—Aj%&,’_ y g(j).

iZA:
By rearranging it and using that q(i, /) = —\;:
o) igA: valiiel)=-1

If S is finite, these are #S — #A equations for #5 — #A
unknowns g(i), i & A.
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Birth and death processes Exit times

Expected time of exit: At the barber's

Recall Barbershop Example: Customers are served by
rate 3 and they arrive by rate 2, but they leave, if both
chairs are occupied on: In other words

q(i,ifl):3ifi:1,2,3

q(i,i+1)=2ifi=0,1,2.
Transition matrix for the embedded MC:
01|23
0O|1]07]0
3/51 0 [2/5] 0
0 [3/5] 0 |2/5
0Oo|l0]| 1710

WN=O
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Birth and death processes Exit times

Expected time of exit: At the barber's
(cont.)

So now A = {0}, g(0) =0, g(/) = E;[Vo]. Let

1
and 1 =11 |.
1

Then equation system (46) is equivalent with:
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Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

where Q is the restriction of matrix Q for columns
belonging to S\ A (now those who are not 0). This
equivalence comes from that know thatg(i) = 0, if
i € A So columns i € A add zero to all equations.

-5 2 0
3 -6 2
0 3

Q=

-3
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Birth and death processes Exit times

Expected time of exit: At the barber’s
(cont.)

and . 1/3 2/9 4/27
—(Q) = {1/3 5/9 10/27
1/3 5/9 19/27

From formula (45):

19/27
g=—(Q ' 1= {34/27}7
43/27
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Birth and death processes Exit times

Expected time of exit: At the barber's
(cont.)

so i element of g is given by i row sum of matrix

—(Q)"
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home?

Example: In a nursury school at closing time parents
haven't come for three children Anne (A), Bella (B) and
Charlie (C). Kindergarten teacher stays as long as all the
children go home. Parents phoned that they would arrive
by time Exp(1), Exp(2) and Exp(3) after close time.
(So expectedly they will fetch their child 1, 1/2 and 1/3
hours after close time, independently of each other.)
Question is when can the kindergarten teacher go home?
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Solution: States of MC are the names of remaining
children and () when no child is left:

@ |ABC|/AB| AC|BC|A|B|C |0
ABC| -6 | 3 2 170]0]0]0
AB 0 [-3] 0 0O(210]0
AC 0 0O|—-4|0]3]0]1]0

BC 0 0 0 |-5/013|2]0

A 0 0 0 0 (-1{0| 0|1

B 0 0 0 0|0 |-210)|2

C 0 0 0 0)0]0/|-3|3

O ] 0 J0]0]0]0][0] 0939126

Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Let us use the notation and method of the previous
example:

Now A := (. So Q is the above matrix restricted to the
first 7 rows and columns. Then the first row vector of

matrix — (Q)

(1/6,1/6,1/2,1/30,7/12,2/15,1/20).
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Birth and death processes

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

Sum of them is: 63/60. So kindergarten teacher can go
home 63 minutes after close time.

Note: This can be seen from the fact, that for every
number a, b, c:

max {a, b,c} =a+ b+ c —min{a, b} — min{a, c}
—min{b,c} +min{a, b, c}.
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Birth and death processes Exit times

Expected time of exit: When can the
kindergarten teacher go home? (cont.)

We can use this and part (d2) of MC Ill slide 7 , if
T; = Exp(\;), i =1,2,3 are independent for
determining max { Ty, To, T3} .
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@ Markovian queuing systems
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Mark ystem:

M/M /1 queuing again

@ g(n,n+1)=X\ifn>0,
e g(n,n—1)=ypif n>1.
We assume, that

(48) A< .

As we have seen, this is a birth and death process in
which
Ap=Aand p, = p.
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Mark el ystem:

M/M /1 queuing again (cont.)

Because of condition (48) we can use Theorem 3.1.
From here:

(49) ﬂ(n)<:>n.ﬂ(0y

For this to give a measure, we need: 7(0) :=1—\/u. So

(50) m(n) = (1-2)(2)", nxo0.

Let us assume, that the system is in a stationary state.
Then let
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Mark el system:

M/M /1 queuing again (cont.)

@ X, the number of customers at time s in the
system.

@ @ be the length of the queue,

To be the time spent in the queue, Wgo =E[Tq]
and W = Wy + E [serving time]
L the long time average a customer sepends in the

L=lim1]X
system. —tl)rgo;g s-
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Mark el ystem:

M/M /1 queuing again (cont.)

@ )\, the long time average rate at which arriving

customers join the system. A, = lim N"t(t), N,(t)the
[o¢]

number of customers who joined the system befor
time t.
Obviously

(51) P(Tq=0)=nr(0)=1-".

101 /126

M/M /1 queuing again (cont.)

Let f(x) be the conditional density function of Tg on
(0, 00) assuming that To > 0. Note that because of
(51): P(To=0) > 0.

Assuming, that at the arrival of a customer there are
already n customers in the system, (whose probability if
given in (50)). Conditioned on this, the conditional
density function of Tq is Gamma(n, i1). Using this we
get:

@ =t 5 (D))

102 /126

M/M /1 queuing again (cont.)

After trivial rearrangement we get, that
(53) f(x) = (n—A)e tVx.

We have proven by this, that
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M/M /1 queuing again (cont.)

Lemma 4.1

@ The conditional distribution of Tg for Tg > 0 is

Exp(p — A).

o Wa BT -

o B - Wor i =ikt
* B :%A//t_lzuix
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Mark quet ysterr

M/M /1 queue finite waiting room

@ There is one server and serving a customer takes
time Exp(p).

o Customers arrive by Poisson(\).

@ In the waiting room during 1 serving there is place
for N — 1 waiting customers. Customers, who arrive
when there is no empty seat, leave at once and will
never return.
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Lemma 4.2

o Let X; be a MC, for which there exists stationary
distribution ™ and it satisfies detailed balance
condition. Infinitesimal generator of chain X; is Q.

o Let AC S and Y; be the restriction of X; to A. In
other words, Y;'s infinitesimal generator is @, where
for distinct x, y:

N _Jalx,y), ifx,y € A, x#y;
q(x,y) = { 0, otherwise.
o Let C:= ¥ m(x).
xEA
Then v :=m/C is the stationary state of Y;.

106 / 126

Mark quet ysterr

M/M /1 queue with finite waiting room |lI

Proof.

Using, that 7 satisfies detailed balance condition, it
clearly comes, that v also satisfies it, so v is stationary
distribution for chain Y. O
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Mark quet system

M/M /1 queue with finite waiting room IV

From here and from (50) comes, that for the M/M/1
queue with waiting room of space N introduced above,
the stationary state:

n
(54) 7(n) = #)Z)!’L"“ (%) if0<n<N.

With finite state space it is also true, if A > p. It is only
false, if A = p. In this case:
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Markovian queuing s;

At

ems

the barber’s for the last time

Review: We have introduced barber shopb example on
slide 3 and on slide 60 we have computed its stationary

distribution:
T _ (21 1812 8
= (65’ 657 65° 65) ,

which is the same as what comes from formula (54).
On slide 87 we have computed, that if there are
i =1,2,3 customers at the barber’s, then how much

time should we wait till no costumer are in the barber
shop.
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Markovian queuing s; m:

At the barber’s for the last time (cont.)

Clearly,
18 12 8 66
L=1-—+2.—= — =
(55) 65 + 65 +3 65 65

Let A, be the long run rate of customers at the barber's
who have their haircut (who don't leave) because of the
occupied waiting room. That is let N,(t) be the number
of customers who have arrived before time t and did not
leave immediately because of the busy waiting room but
who stayed at the barber shop and eventuaII?/ got served
by the barber. More precisely: A, := lim NaTt)
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Finding A\,: We know, that customers arrive by
Poisson(2) process. This means that during a time
interval of length At, the probability that a customer
enters into the barbershop is 2 - At (plus o(At) what we
will suppress below for the sake of simpler presentation).
But if there are already 3 customers, the newly arrived
customer leaves. This results, that with probability
2. At -m(3) a potential customers is lost. We have to
subtract this. So, during a time interval of length At
there will be a new costumer who enters the service and
who remains inside the system with probability
2(1 —w(3))At . Hence
(56) A,:xyfﬂ@):%?.
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Little’'s Formula

The following formula holds in general for GI/G/1
(general input /general service/ one server) queues.

Theorem 4.3 (Little's Formula)
L=W-\,. J

The sketch of the proof is available in Durrett’s book p.
107.
Using Little's formula, (55) and (56) we get

_ 66/65 33

= 114/65 = 57 = 0.579 hours = 34.74 mins
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We can also compute this, as when | get inside, there
can be i =0, 1,2, 3 customers inside. In the case of

i =31go home. In the case of i =0,1,2 | spend time
(i+1)- 1 inside (because people before me and | also
have a haircut in time Exp(3), which requires 1/3
hours.) Regarding these, expected value of my time W
spent inside:

W= Tfﬁﬁ-ﬂm-%+wuy§+ﬁ@y1

So, the expectation of my waiting time in the queue:

Wo =W — E = E = 0.2456 hours = 14.736 mins.
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M/M /s queue

We have introduced M/M/s queue in slide 62

@ In a bank, customers are being served by s servers,
and they are waiting in one queue if there are more
customers than servers.

o Customers arrive by a Poisson(\) process.

@ Serving times are independent times of Exp(u).
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Markovian quei

M/M /s queue

(cont.)

Now, S =0,1,2,... is the number of customers in the
bank. As we have seen, this is a birth and death process
with the following rates:

Mar

kovian quei

M/M /s queue (cont.)

Lemma 4.4

If X\ < su, then there exists a m stationary state, which
satisfies detailed balance condition.

F(%)k if k> s,

where we would like to choose ¢ s.t. 7 be stationary
measure. It is possible, if A < su. O
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g(n,n+1)=Xn>0. Proof If we write down detailed balance condition, we
get the following conditions:
and
(nn—1) = np, ifl1<n<s Ar(j— 1) = pym()) ifj<s
an Sp, ifn>s. Ar(j — 1) = psw(j) ifj>s
115 / 126 116 / 126
M/M /s queue (cont.) M/M /s queue (cont.)
From here
< (2K k< s Lemma 4.5
(57) . k! L 9 = U . . - .
n(k) = If X\ > su, chain M/M|/s is transient., If \ < sy, chain

M/M/s is recurrent.
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Markovian que

M/M /s queue

(cont.)

Proof.

If X\ > su, then the M/M/1 queue with serving time ny
is obviously transient. This is from that for the M/M/1
queue there is stationary state m (so it is recurrent) if

A < p. The M/M/s queue with serving time p is less
efficient, so it is also transient. The other direction is
from the existence of stationary state. O

v
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(E

kovian que

M/M /s queue

Example 4.6

(cont.)

Compute the stationary measure for the
(a) M/M/s queue, if
np=1A=2s=3,
(b) M/M/1 queue, if
p=3 A=2s=1
And compare the chains by this in view of efficiency.
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Mark

M/M /s queue (cont.)

Solution (a):

k§27r(k) —£.22. _3030(2/3y = 6c, 7(0) = c,

= j=

(1) = %c = 2c. In other words 9c = 1, from which

c=1/9. So
(58)

7(0) =1, m(1)=2and m(k) =2 (2)“ ifk>3.

Solution (b): from formula (50):

1 2\ "
w(n):f-(g)y n>0,
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Mark

M/M /s queue (cont.)

So m(0) = 5 and 7(1) = 2,
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Examples

Branching process with imigration, 67

Branching processes, 66

M/M/s queuing, 62

When can the kindergarten teacher go home?, 92-96
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