Brownian motion

Károly Simon This course is based on the book: Essentials of Stochastic processes by R. Durrett

Department of Stochastics Budapest University of Technology and Economics www.math.bme.hu/~simonk

Autumn 2025, BME

1/35

Definition 1.1 (Normal distribution (on \mathbb{R}))

Let $\mu \in \mathbb{R}$ and $\sigma > 0$. Random variable X with parameters (n, σ^2) has normal (or Gaussian) distribution $X \sim \mathcal{N}(\mu, \sigma^2)$, if its density function:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

If $\mu = 0$ and $\sigma = 1$, then we get the standard normal distribution $\mathcal{N}(0,1)$. We use the following notation this section:

(1)
$$\frac{\varphi(x)}{\varphi(x)} := \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}, \quad \Phi(x) := \int_{-\infty}^{x} \varphi(y) dy.$$

Multivariate normal distribution

This is a review of matterial taught in the course Probability 1. Let A be a matrix of $d \times d$, which is symmetric, positive definit and $\mathbf{m} \in \mathbb{R}^d$ be a fixed vector. A random variable X which takes values in \mathbb{R}^d has multivariate normal or Gaussian distribution, if its density function is of the form:

$$f(\mathbf{x}) = \frac{\sqrt{\det(A)}}{(2\pi)^{d/2}} \cdot e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \cdot A \cdot (\mathbf{x} - \mathbf{m})}, \quad \mathbf{x} \in \mathbb{R}^d.$$

5 / 35

Multivariate normal distribution (cont.)

Definition 1.2

Let **X** be as above. Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of A, and $\mathbf{v}_1, \dots, \mathbf{v}_d$ be the ortonormal basis of \mathbb{R}^d with the appropriate eigenvectors. Let us define diagonal matrix

$$D := \operatorname{diag}(\lambda_1, \ldots, \lambda_d).$$

We form the $d \times d$ orthogonal matrix:

 $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_d \end{bmatrix}$ by eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$ as column vectors.

- Normal distribution, Gaussian process

2/35

Some properties

 $X \sim \mathcal{N}(\mu, \sigma^2)$ and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, i = 1, 2. Then

(a) $\mathbb{E}[X] = \mu, Var(X) = \sigma^2$.

(b) $F_X(x) = \mathbb{P}(X \le x) = \Phi(\frac{x-\mu}{\sigma}).$ (c) $X_1 + X_2 = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$ (d) $X \sim \mathcal{N}(0, 1)$, then

(2) $\frac{1}{\sqrt{2\pi}} \cdot (x^{-1} - x^{-3}) \cdot e^{-x^2/2} \le \mathbb{P}(X \ge x) \le \frac{1}{\sqrt{2\pi}} \cdot x^{-1} \cdot e^{-x^2/2}$

(d) $Y \sim \text{Bin}(n, p)$, a < b, then

 $\lim_{n\to\infty}\mathbb{P}\left(a<\frac{Y-np}{\sqrt{np(1-p)}}< b\right)=\Phi(b)-\Phi(a).$

4 / 35

Multivariate normal distribution (cont.)

The meaning of the matrix A: Let $\mathbf{X} = (X_1, \dots, X_d)$.

$$\left(A^{-1}
ight)_{ij} = \mathbf{Cov}(X_i, X_j) = \mathbb{E}\left[\left(X_i - \mathbb{E}\left[X_i
ight]
ight) \cdot \left(X_j - \mathbb{E}\left[X_j
ight]
ight].$$

6/35

Multivariate normal distribution (cont.)

Lemma 1.3

Let X be as above. Then

(4)
$$\mathbf{X} = P \cdot D^{-1/2} \cdot (Y_1, \dots, Y_d) + \mathbf{m}$$

where $Y_i = \mathcal{N}(0,1), i = 1, ..., d$ and they are all independent.

See [1, chapters 6 and 7].

- Normal distribution, Gaussian process
- Brownian motion

9/35

wnian motic

Definition of the one-dimensional Brownian motion (cont.)

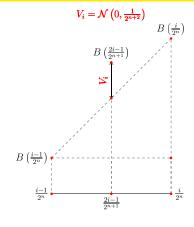
(Stationary increments.)

(c) With probability one: $t \to B_t$ is continuous.

11 / 35

vnian motio

Constructioning Brownian motion (cont.)



13 / 35

wnian motio

Constructioning Brownian motion (cont.)

• for $x \in (0,1)$ let

(6)
$$B(x) := \lim_{t \uparrow x, \ t \in \mathcal{D}} B(t) = \lim_{t \downarrow x, \ t \in \mathcal{D}} B(t).$$

To see that this definition is correct, we must prove that the limits above exist and if $x \in \mathcal{D}$, then these limits are equal to B(x).

wnian moti

Definition of the one-dimensional Brownian motion

(a) If $0 \le t_0 < t_1 < \cdots < t_n$ are positive numbers, then

$$B(t_0), B(t_1) - B(t_0), \ldots, B(t_n) - B(t_{n-1})$$

are independent. (Independent increments.)

(b) If $s, t \geq 0$, then

$$\mathbb{P}\left(B(s+t)-B(s)\in A\right)=\int\limits_A\left(2\pi t\right)^{-1/2}\exp\left(-\frac{x^2}{2t}\right)dx$$

10 / 35

vnian motior

Constructioning Brownian motion

Let $\mathcal{D}_0 := \{0,1\}$ and for some $n \geq 1$:

$$\mathcal{D}_n:=\left\{rac{2k-1}{2^n}:1\leq k\leq 2^{n-1}, k ext{ is odd}
ight\}$$

$$\mathcal{D} := \bigcup_{n=0}^{\infty} \mathcal{D}_{n}$$

is the set of dyadic rational numbers in [0,1].

Construction of random function $B:[0,1] \to \mathbb{R}$:

12/35

ownian motic

Constructioning Brownian motion

- B(0) := 0, $B(\overline{1}) = \mathcal{N}(0,1)$.
- Let us assume that $B\left(\frac{i}{2^n}\right)$, $0 \le i \le 2^n$ have already been defined. Fix a $t \in \mathcal{D}_{n+1}$. Then for some $1 \le i \le 2^n$:

$$t = \frac{2i-1}{2^{n+1}} = \frac{1}{2} \left(\frac{i-1}{2^n} + \frac{i}{2^n} \right),$$

where $B\left(\frac{i-1}{2^n}\right)$ and $B\left(\frac{i}{2^n}\right)$ have already been defined. Let:

(5)

$$\frac{B(t)}{B(t)} := \mathcal{N}\left(\frac{1}{2} \cdot \left(B\left(\frac{i-1}{2^n}\right) + B\left(\frac{i}{2^n}\right)\right), \frac{1}{2^{n+2}}\right).$$

$$14 / 35$$

vnian motior

Theorem 2.1

 $n \ge 1$ is fixed. For $i = 1, \ldots, 2^n$:

(7)
$$Z_i := B\left(\frac{i}{2^n}\right) - B\left(\frac{i-1}{2^n}\right).$$

Then

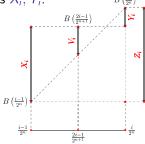
- (a) $\{Z_i\}_{i=1}^{2^n}$ are independent,
- (b) $\forall i: Z_i \in \mathcal{N}\left(0, \frac{1}{2n}\right)$.
- (c) If $s, t \in \mathcal{D}$, s < t, then

(8)
$$B(t) - B(s) \in \mathcal{N}(0, s - t).$$

ownian motion

Proof I

Let us assume that for some n the statement is true. We have defined variables V_i and Z_i for $i=1,\ldots,2^n$. We use induction to prove the theorem. Let us introduce random variables X_i , Y_i :



17/35

wnian motion

Proof III

Let $G: \mathbb{R}^{2^n} \times \mathbb{R}^{2^n} \to \mathbb{R}^{2^n} \times \mathbb{R}^{2^n}$

(9)
$$(\mathbf{x}, \mathbf{y}) = G(\mathbf{z}, \mathbf{v}) := \left(\frac{1}{2}\mathbf{z} + \mathbf{v}, \frac{1}{2}\mathbf{z} - \mathbf{v}\right).$$

The same coordinate wise: for $1 \le i \le 2^n$:

(10)
$$x_i := \frac{1}{2}z_i + v_i, \quad y_i := \frac{1}{2}z_i - v_i.$$

Using formula (20) from Appendix:

$$f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{Z},\mathbf{V}}(G^{-1}(\mathbf{x},\mathbf{y})) \cdot \left| \det G'(G^{-1}(\mathbf{x},\mathbf{y})) \right|^{-1}$$

where $(\mathbf{z}, \mathbf{v}) = G^{-1}(\mathbf{x}, \mathbf{y})$; with coordinates: $z_i = x_i + y_i$ and $v_i = \frac{1}{2}(y_i - x_i)$.

19 / 35

vnian motic

Equivalent definition

- (i) B(t) is a Gaussian process (all of its finite dimensional distributions are Gaussian (normal)).
- (ii) $\mathbb{E}[B_s] = 0$ and $\mathbb{E}[B_s \cdot B_t] = s \wedge t := \min\{s, t\}.$
- (iii) With probability one: $t \to B_t$ is continuous.

21/35

vnian motio

Basic properties II

(d) Law of the iterated logarithm:

(11)
$$\limsup_{t \to \infty} \frac{B(t)}{\sqrt{2t \log \log t}} = 1 \quad \text{a.s}$$

- (e) B(t) is Hölder for every $\alpha < \frac{1}{2}$ for class α , but not for $\alpha = \frac{1}{2}$.
- (f) The trajectories of Brownian motion are nowhere differentiable almost surely.

wnian motic

Proof II

We know that the following random variables are independent:

$$Z_1, \ldots, Z_{2^n}, V_1, \ldots, V_{2^n}.$$

Their joint density function at

$$(\mathbf{z},\mathbf{v})=(z_1,\ldots,z_{2^n},v_1,\ldots,v_{2^n})$$
 is as follows

$$f_{\mathbf{Z},\mathbf{V}}(\mathbf{z},\mathbf{v}) = \prod_{i=1}^{2^n} \frac{2^{n/2}}{\sqrt{2\pi}} \exp\left(-\frac{z_i^2 2^n}{2}\right) \cdot \frac{2^{(n+2)/2}}{\sqrt{2\pi}} \exp\left(-\frac{v_i^2 2^{n+2}}{2}\right)$$

We have just used the inductive assumption and that $Var(Z_i) = \frac{1}{2^n}$. $Var(V_i) = 2^{-(n+2)}$ by definition (see (5)).

18 / 35

wnian motion

Proof IV

Writing these into the definition of $f_{\mathbf{Z},\mathbf{V}}(\mathbf{z},\mathbf{v})$ we get that the joint density function of random variables

$$(X_1,\ldots,X_{2^n},Y_1,\ldots,Y_{2^n})$$

is

$$\prod_{i=1}^{2^n} \frac{2^{(n+1)/2}}{\sqrt{2\pi}} \exp\left(-\frac{x_i^2 2^{n+1}}{2}\right) \cdot \frac{2^{(n+1)/2}}{\sqrt{2\pi}} \exp\left(-\frac{y_i^2 2^{n+1}}{2}\right)$$

This means that

$$X_1, \ldots, X_{2^n}, Y_1, \ldots, Y_{2^n}$$

are independent random variables of $\mathcal{N}(0,1/2^{n+1})$. From this, proving part (c) is trivial. \blacksquare 20 / 35

ownian mot

Basic properties

(a) Let $T, \lambda > 0$. Then

$$\mathbb{P}\left(\sup_{t\in[0,T]}|B_t|\geq\lambda\right)\leq\frac{T}{\lambda^2}.$$

(b)Scaling independence:

$$t
ightarrow a^{-1/2} B(at)$$

is also a Brownian motion.

(c)time reversal:

$$t \rightarrow tB(1/t)$$

is also a Brownian motion.

22 / 35

ownian motio

Mirroring Theorem

Let au be the time when the Brownian motion starting from zero first reaches the previously fixed number a. Let

$$\widehat{B} := \left\{ egin{array}{ll} B(t), & ext{ha } t < au; \ a - \left(B(t) - a
ight), & ext{ha } t > au. \end{array}
ight.$$

We get the graph of it by mirroring graph of B(t) to the horisontal line in interval $t > \tau$. $\widehat{B}(t)$ is also a Brownian motion.

ownian motion

Brownian motion in \mathbb{R}^d

Definition 2.2

Brownian motion in \mathbb{R}^d is a random continuous function $\mathbf{B}:[0,\infty)\to\mathbb{R}^d$ with the following properties:

- (a) B(0) = 0.
- (b) for $0 \le t_0 \le t_1 \le \cdots \le t_n$: $\{B(t_i) B(t_{i-1})\}_{i=1}^n$ are independent.
- (c) for $0 \le s < t$: density function of $\mathbf{B}(t) \mathbf{B}(s)$:

(12)
$$(2\pi(t-s))^{-d/2} \cdot \exp\left(-\frac{\|\mathbf{x}\|^2}{2(t-s)}\right).$$

25 / 35

wnian motio

Brownian motion in \mathbb{R}^d (cont.)

of B_i are independent, density function of $\mathbf{B}(t) - \mathbf{B}(s)$ is $\prod_{i=1}^{n} f_i(x_i)$, which has form (12). The remaing part of the proof is even simpler.

27 / 35

vnian motio

Appendix: Integration by substitution

Let X,Y be metric spaces and $G:X\to Y$ be a mapping. Let us assume that μ is a measure on X. Then let us define the "push forward" measure $G_*\mu$ on set Y:

$$G_*\mu(B) := \mu(G^{-1}(B))$$
.

29 / 35

31/35

wnian motion

Appendix: Distribution transformations

Let X, Y be continuous random variables in \mathbb{R}^d , for which

- density function of $X, Y: f_X, f_Y$
- Y = G(X), where $G : \mathbb{R}^n \to \mathbb{R}^n$ C^1 is bijection.

wnian motic

Brownian motion in \mathbb{R}^d (cont.)

Lemma 2.3

Let $B_1(t), \ldots, B_d(t)$ be independent one-dimensional Brownian motions. Then

(13)
$$\mathbf{B}(t) := (B_1(t), \dots, B_d(t))$$

is a d-dimensional Brownian motion.

Proof: Density function of $\mathbf{B}(t) - \mathbf{B}(s)$ has form (12). Namely: density function of $B_i(t)$:

$$f_i(x_i) = (2\pi(t-s))^{-1/2} \exp\left(-\frac{x_i^2}{2(t-s)}\right)$$
. For components

26 / 35

ownian motio

Hölder continuity

Theorem 2.4

The d-dimensional Brownian motion is Hölder-continuous for every $\alpha < \frac{1}{2}$. In other words, there exist constants $\varepsilon > 0$ and $c = c(d,\alpha)$ so that for all $|h| < \varepsilon$, $t \ge 0$ and $t + h \ge 0$:

$$|\mathbf{X}(t+h) - \mathbf{X}(t)| \leq c \cdot h^{lpha}$$
.

28 / 35

ownian motic

Appendix: Integration by substitution (cont.)

Theorem 2.5

Let us assume that

- U, V are separable metric spaces,
- $G: U \rightarrow V$ is Borel-measurable,
- μ is a Borel-measure on U,
- $f: V \to [0, \infty)$,

Then

(14)
$$\int_{V} f(v)d(G_*\mu)(v) = \int_{U} (f \circ G)(u)d\mu(u).$$

We use this theorem in the special case when 30/35

Brownian motio

Appendix: Distribution transformations (cont.)

Then for every Borel set $H \subset \mathbb{R}$:

$$\int_{x \in H} f_X(x) dx = \mathbb{P}(X \in H) = \mathbb{P}(Y \in G(H))$$

$$= \int_{y \in G(H)} f_Y(y) dy$$

$$= \int_{x \in H} f_Y(G(x)) \cdot |\det(G'(x))| dx,$$

32 / 35

Appendix: Distribution transformations (cont.)

where in the last step we have used formula (18) of Integration by substitution. Using that this holds for all Borel sets, we get:

(19)
$$f_X(x) = f_Y(G(x)) \cdot |\det(G'(x))|$$
.

Applying substitution y = G(x) on this, we get that

(20)
$$f_Y(y) = f_X(G^{-1}(y)) \cdot \left| \det G'(G^{-1}(y)) \right|^{-1} .$$

33 / 35

Definition of Stochastic process (cont.)

These don't completely determine the stochastic process if the parameter is continuous.

Example: Let B(t) the standard Brownian motion on the line and U be an independent uniform r.v. on [0,1]. Furthermore:

$$\widehat{B}(t) := \left\{ egin{array}{ll} B(t), & t
eq U; \ 0, & t = U. \end{array}
ight.$$

Then the finite dimensional distributions of $\widehat{B}(t)$ and B(t) are the same but trajectories of $\widehat{B}(t)$ are not continuous.

35 / 35

ownian moti

- [4] I.I. GIHMAN, A.V. SZKOROHOD Bevezetés a sztochasztikus folyamatok elméletébe Műszaki Könyvkiadó1975, Budapest, 1985
- [5] S. KARLIN, H.M. TAYLOR Sztochasztikus Folyamatok Gondolat, Budapest, 1985
- [6] S. Karlin, H.M. Taylor

 A second course in stochastic processes
 , Academic Press, 1981
- [7] G. LAWLER Introduction to Stochastic Processes Chapmann & Hall 1995.

35 / 35

ian motior

The Poisson process

http://www.nas.its.tudelft.nl/people/Piet/CUPbookChapters/PACUP_Poisson.pdf

[12] RÉNYI ALFRÉD

Valószínűségszámítás, (negyedik kiadás) Tankönyvkiadó Budapest, 1981.

[13] TÓTH BÁLINT Sztochasztikus folyamatok jegyzet Tóth Bálint Jegyzetért kattintson ide vnian motior

Definition of Stochastic process

A probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and an index set T are fixed. Let $X_t, t \in T$ be random variables in probability space $(\Omega, \mathcal{A}, \mathbb{P})$. $X_t, t \in T$ is called stochastic process. We can think of $\{X_t\}$ as the path of a particle moving randomly in the state space S. The position of the particle at time t is given by $X_t \in S$. In the terms of this course, a stochastic process is defined, if given its:

- state space
- index set
- finite dimensional distributions.

34 / 35

wnian moti

- [1] BALÁZS MÁRTON, TÓTH BÁLINT Valószínűségszámítás 1. jegyzet matematikusoknak és fizikusoknak Bálázs Márton Honlapja, 2012. Az internettes változatért kattintson ide.
- [2] R. DURRETT

 Essentials of Stochastic Processes, Second edition

 Springer, 2012. A majdnem kész változatért kattintson ide.
- [3] R. DURRETT

 Probability Theory with examples, Second edition

 Duxbury Press, 1996 . második kiadás.

35 / 35

ownian motic

- [8] D.A. LEVIN, Y. PERES, E.L. WILMER Markov chains and mixing times American Mathematical Society, 2009.
- [9] MAJOR PÉTER Folytonos idejű Markov láncok http://www.renyi.hu/~major/debrecen/ debrecen2008a/markov3.html
- [10] P. MATTILA Geometry of sets and measure in Euclidean spaces. Cambridge, 1995.
- [11] PIET VAN MIEGHEM

35 / 35