Many of the exercises are assigned from my favorite first reading book on Stochastic processes. Entitled: Essentials of Stochastic Processes (Almost final version of the 2nd edition, December 2011) by Rick Durrett. This book is freely available on the authors home page: Click here or type in the browser:
https://services.math.duke.edu/~rtd/EOSP/EOSP2E.pdf

Please, never send homework assignments by email.

First homework assignment. Due at 10:15 on 15 September 2023
R. Durrett, Essentials of Stochastic Processes: Chapter 1.12, Exercises:
$1.1,1.2,1.3,1.6,1.7,1.8$ (c),(d), 1.10 (a), 1.11, 1.12 (a), (b), 1.13, 1.14, 1.15, 1.16.
Second homework assignment. Due at 10:15 on 29 September 2023.
R. Durrett, Essentials of Stochastic Processes: Chapter 1.12, Exercises:
$1.21,1.26,1.31,1.36,1.37,1.41,1.46,1.47,156,1.58,1.59,1.62,1.63$
Third homework assignment. Due at 10:15 on 6 October 2023.
R. Durrett, Essentials of Stochastic Processes: Chapter 1.12, Exercises:
$1.67,1.68,1.69,1.72,1.73,1.74,1.76$
Fourth homework assignment. Due at 10:15 on 13 October 2023.

1. Consider the unit interval $I:=[0,1]$. Moreover, for every n and $\left(i_{1}, \ldots, i_{n}\right) \in\{0,1,2\}^{n}$ we consider the interval $I_{i_{1} \ldots i_{n}} \subset I$ which is the set of those numbers whose base 3 expansion starts with $\left(i_{1} \ldots i_{n}\right)$. That is

$$
I_{i_{1} \ldots i_{n}}:=\left[\sum_{k=1}^{n} \frac{i_{k}}{3^{n}}, \frac{1}{3^{n}}+\sum_{k=1}^{n} \frac{i_{k}}{3^{n}}\right] .
$$

Let X_{0}, X_{1}, X_{2} be independent $\operatorname{Bernoulli}\left(p_{0}\right)$, $\operatorname{Bernoulli}\left(p_{1}\right)$ and $\operatorname{Bernoulli}\left(p_{2}\right)$ random variables respectively. That is $\mathbb{P}\left(X_{i}=1\right)=p_{i}$ and $\mathbb{P}\left(X_{i}=0\right)=1-p_{i}$ for $i=0,1,2$. Moreover for every n and $\left(i_{1}, \ldots, i_{n}\right) \in\{0,1,2\}^{n}$ we are given the random variables $X_{i_{1} \ldots i_{n}}$ such that on the one hand $\left\{X_{i_{1} \ldots i_{n}}\right\}_{n \geq 1,\left(i_{1}, \ldots, i_{n}\right) \in\{0,1,2\}^{n}}$ are independent and on the other hand: $X_{i_{1} \ldots i_{n}} \stackrel{d}{=} X_{i_{n}}$. For every $n \geq 1$ we define the set $E_{n} \subset[0,1]$ by

$$
E_{n}:=\bigcup_{X_{i_{1}} \cdot X_{i_{1}, i_{2}} \cdots X_{i_{1}, i_{2}, \ldots, i_{n}}=1} I_{i_{1} \ldots i_{n}}
$$

Finally, we define the set $E:=\bigcap_{n=1}^{\infty} E_{n}$. Assume that $p_{0}=\frac{2}{3}, p_{1}=\frac{3}{4}$ and $p_{2}=\frac{1}{2}$. Question: Is it true that $\mathbb{P}(E \neq \emptyset)>0$
2. Given a branching process with the following offspring distribution, determine the extinction probabilities q :
(a) $p_{0}=0.25, p_{1}=0.4, p_{2}=0.35, p_{n}=0$ if $n \geq 3$,
(b) $p_{0}=0.5, p_{1}=0.1, p_{2}=0, p_{3}=0.4, p_{n}=0$ if $n \geq 4$.
3. Consider the branching process with offspring distribution as in the previous exercise part (b). What is the probability that the population is extinct in the second generation $X_{2}=0$, given that it did not die out in the first generation?
4. Consider the branching process with offspring distribution given by $\left\{p_{n}\right\}_{n=0}^{\infty}$. We change this process into an irreducible Markov chain by the following modification:
whenever the population dies out, then the next generation has exactly one new individual. That is $\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=0\right)=p(0,1)=1$. For which $\left\{p_{n}\right\}_{n=0}^{\infty}$ will this chain be null recurrent, recurrent, transient?
5. Let X_{1}, X_{2}, \ldots i.i.d. random variables taking values in the integers such that $\mathbb{E}\left[X_{i}\right]=0$ for all i. Let $S_{0}:=0$ and $S_{n}:=X_{1}+\cdots+X_{n}$.
(a) Let $G_{n}(x):=\sum_{j=0}^{n} \mathbb{1}_{\left\{S_{j}=x\right\}}$. That is $G_{n}(x)$ is the expected number of visits to x in the first n steps. Show that for all n and $x, G_{n}(0) \geq G_{n}(x)$. (Hint: consider the first j with $S_{j}=x$.)
(b) Note that the Law of Large Numbers implies that for each $\varepsilon>0$ we have: $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|S_{n}\right| \leq n \varepsilon\right)=1$. Using this prove that for each $\varepsilon>0$ we have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \varepsilon \cdot n, x \in \mathbb{Z}} G_{n}(x)=1$
(c) Using (a) and (b), show that for each $M<\infty$ there is an n such that $G_{n}(0) \geq M$.
(d) Now prove that S_{n} is a recurrent Markov chain.

Fifth homework assignment. Due at 12:00 on 20 October 2023.
R. Durrett, Essentials of Stochastic Processes: Chapter 2.6, Exercises:
2.1 (a), (b), 2.6, 2.9 (a), 2.16 (a),(b), 2.17 (a) (b) (c), 2.21, 2.22, 2.25, 2.27, 2.28

Sixth homework assignment. Due at 10:15 on 27 October 2023.
R. Durrett, Essentials of Stochastic Processes: Chapter 2.6, Exercises:
2.29, 2.31, 2.32, 2.33, 2.44, 2.452 .50

Seventh homework assignment. Due at 10:15 on 10 November 2023.
R. Durrett, Essentials of Stochastic Processes: Chapter 4.8, Exercises: 4.2, 4.3, 4.4, 4.8, 4.10, 4.11, 4.14, 4.16, 4.17, 4.19, 4.20

Eight homework assignment. Due at 10:15 on 17 November 2023.
R. Durrett, Essentials of Stochastic Processes:

1. If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that $X+Y=m$.
2. A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7 hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?
3. Consider n independent trials, each of which results in one of the outcomes $\{1, \ldots, k\}$, with respective probabilities $\left\{p_{1}, \ldots, p_{k}\right\}, \sum_{i=1}^{k} p_{i}=1$. Let N_{i} denote the number of trials that result in outcome i, $i=1, \ldots, k$. For $i \neq j$ find $\mathbb{E}\left[N_{i} \mid N_{j}>0\right]$.
4. Let U be a uniform random variable on $(0,1)$, and suppose that the conditional distribution of X, given that $U=p$, is binomial with parameters n and p. Find the probability mass function of X. That is find for all $0 \leq i \leq n, \mathbb{P}(X=i)=$?

Hint: In the solution of this problem you may want to use the following general formula: Let E be an event and Y be a continuous r.v. with density function: $f_{Y}(y)$. Then:

$$
\mathbb{P}(E)=\int_{-\infty}^{\infty} P(E \mid Y=y) f_{Y}(y) d y
$$

Moreover you may also want to use the following formula:

$$
\int_{0}^{1} p^{i}(1-p)^{n-i} d p=\frac{i!(n-i)!}{(n+1)!}
$$

5. The joint density of X and Y is given by $f(x, y)=\frac{e^{-x / y} e^{-y}}{y}, \quad 0<x<\infty, \quad 0<y<\infty$. Compute $\mathbb{E}\left[X^{2} \mid Y\right]=$?

Ninth homework assignment. Due at 10:15 on December 12023
R. Durrett, Essentials of Stochastic Processes: Chapter 5.6 Exercises: 5.2, 5.3, 5.6, 5.7, 5.8, 5.9, 5.10

Tenth homework assignment. Due at 10:15 on 8 December 2023.
In some of the exercises you may want to use the following fact: If random variables X and Y are jointly normal and $\operatorname{Cov}(X, Y)=0$ then X and Y are independent.

1. Let $Z \sim \mathcal{N}(0,1)$. We define X_{t} for all $t \geq 0$ by $X_{t}=\sqrt{t} \cdot Z$. Then the stochastic process $X=$ $\left\{X_{t}: t \geq 0\right\}$ has continuous path and for all $t \geq 0$ we have $X_{i} \sim \mathcal{N}(0, t)$. Is X_{t} a Brownian motion? (Check if all the conditions (a)-(c) on slide 9 from File F hold for X_{t}. In particular, the variance of the increments.)
2. Let $B(t)$ be the one-dimensional Brownian motion. Show that $\operatorname{Cov}(B(t), B(s))=\min \{s, t\}$.
3. Let $B(t)$ be the one-dimensional Brownian motion. Fix an arbitrary positive number s. Show that the process $B(t+s)-B(s)$ is also Brownian motion.
4. Let $B(t)$ be the one-dimensional Brownian motion. Show that the process $-B(t)$ is also Brownian motion.
5. Let $B(t)$ be the one-dimensional Brownian motion. Fix a positive number a. Prove that $a^{-1 / 2} B(a t)$ is is also Brownian motion.
6. Let $B(t)$ be the one-dimensional Brownian motion. Consider the following stochastic process: $V(0):=$ and $V(t)=t B(1 / t)$. Prove that $V(t)$ is also a Brownian motion.
7. Let $B(t)$ and $\widetilde{B}(t)$ be two independent Brownian motions and let $\rho \in(0,1)$ We define $X(t):=$ $\rho B(t)+\sqrt{1-\rho^{2}} \widetilde{B}(t)$. Prove that $X(t)$ is also a Brownian motion.
