Recall: $\Gamma(\alpha):=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \alpha>0$.
$\Gamma(n)=(n-1)!$ in particular $\Gamma(1)=1$.
Gamma (α, λ) distribution density fens. tron: $f(x)= \begin{cases}\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} & \text { if } x>0 \\ 0 \text { otherwise }\end{cases}$
Beta (a, b) distribution
Let $a, b>0$. The $\operatorname{Beta}(a, b)$ distribulion is a continudees distribution on the interval $[0,1]$. First we define $B(a, b):=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}$ For example:

$$
B(1, n)=\frac{\Gamma(1+n)}{\Gamma(1) \Gamma(n)}=\frac{n!}{1 \cdot(n-1)!}=n
$$

The density function of the Beta (a, b) distribution: $\quad f_{a, b}(x)=\frac{1}{B(a, b)} \cdot x^{a-1} \cdot(1-x)^{b-1} \quad x \in[0, \pi]$

If $x \notin[0,1]$ then $f a, b(x):=0$.
$\ln [1]:=\operatorname{Plot}[$ Table[PDF[BetaDistribution [a, 5-a], $x],\{a,\{1,2,3,4\}\}]$
$/ /$ Evaluate, $\{x, 0,1\}$, Filling \rightarrow Axis]

$$
X \sim \operatorname{Beta}(a, b) ; E[X]=\frac{\alpha}{\alpha+\beta} ; \operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(1+a+b)} .
$$

The mode of Beta (a, b) Let $a>1, b>1$ The mode is the most likely value (corresponding to the peak of the distrisuction function). This is $\frac{\alpha-1}{\alpha+\beta-2}$.

The median of $\operatorname{Beta}(a, b)$

$$
F_{a, b}(y)=\int_{0}^{y} x^{a-1}(1-x)^{b-1} d x .
$$

Median $=F_{a_{16}}^{-1}\left(\frac{1}{2}\right)_{\text {no }}$ closed formula
For $a=1, b>0$, Median $=1-2^{-\frac{1}{\beta}}$.
Xt $_{1, \ldots,}^{\text {Let }} X_{n}$ i.i.d. $X_{i} \simeq$ Uniform $(0,1)$.
Let $X_{(j)}$ be the j th smallest of
$X_{(1, \ldots}, X_{n}$. Then $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$.
Then

$$
X_{(j)} \sim \operatorname{Beta}(j, n+1-j)
$$

5. Let X_{1}, X_{2}, \ldots i.i.d. random variables taking values in the integers such that $\mathbb{E}\left[X_{i}\right]=0$ for all i. Let $S_{0}:=0$ and $S_{n}:=X_{1}+\cdots+X_{n}$. $\mathbb{E}\left[\sum_{j=0}^{n} \mathbb{N}_{\left\{S_{j}=x\right\}}\right]$
(a) Let $G_{n}(x):=\sum_{j=0}^{\mathbb{1}}\left\{\begin{array}{l}\{j=x\}\end{array}\right.$. That is $G_{n}(x)$ is the expected number of visits to x in the first n steps. Show that for all n and $x, G_{n}(0) \geq G_{n}(x)$. (Hint: consider the first j with $S_{j}=x$.)
(b) Note that the Law of Large Numbers implies that for each $\varepsilon>0$ we have: $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|S_{n}\right| \leq n \varepsilon\right)=1$. Using this prove that for each $\varepsilon>0$ we have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \varepsilon: n, x \in \mathbb{Z}} G_{n}(x)=1$
(c) Using (a) and (b), show that for each $M<\infty$ there is an n such that $G_{n}(0) \geq M$ (d) Now prove that S_{n} is a recurrent Markov chain.

Solection(a) $G_{n}(x)=\mathbb{E}\left[\sum_{j=0}^{n} \mathbb{1}_{\left\{S_{j}=x\right\}}\right] . \quad G_{n}(0) \geq G_{n}(x)$.
Clearly, for $\forall x \in \mathbb{Z}$
$* G_{k}(x) \leq G_{l}(x)$ if $k \leq l$
Let $S \subseteq \mathbb{Z}$ be the state space. If $x \in \mathbb{Z} \backslash S$ then $G_{n}\left(x_{0}\right)=0 \quad \forall n \in\{0,1,2, .$.$\} . So, we may assume that$ $x \in S$. Let $T_{x}:=\min \left\{k \geqslant 1: S_{k}=x\right\} . G_{n}(x)=$

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{j=0}^{n} \mathbb{1}\left\{s_{j}=x\right\}\right]=\sum_{j=1}^{n} \underbrace{\mathbb{E}\left[\sum_{k=j}^{n} \mathbb{1}_{\left\{S_{k}=x\right\}} \cdot \mid T_{x}=j\right] \cdot \mathbb{P}\left(T_{x=j}\right)} \\
& =\sum^{\infty} \quad \stackrel{G_{n}(0)}{(0) \cdot P(T=j) *)} G_{n-j}(0) \\
& \leq G_{n}(0) \text {. This is so since } \\
& \sum_{j=1}^{\infty} \mathbb{P}\left(T_{x}=j\right) \equiv 1 \text { \& } G_{n-p}(0) \leq G_{n}(0) \text {. This promplet of }(a) \text {. } \\
& \text { Law of Large Neubbes }
\end{aligned}
$$

(b) By L.L.N. for every $\Sigma>0$ we have
** $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|S_{n}\right| \leq n \Sigma\right)=1$. Namely, IE $\left[X_{n}\right]^{n}=0$.
Hence by the L.L.I. We have
$\lim _{n \rightarrow \infty} \frac{\overbrace{X_{1}+\cdots+X_{n}}^{S_{n}}}{n}=\mathbb{E}\left[X_{1}\right]=0$ a.s. Hence, for $\varepsilon>0$:
$\lim _{n \rightarrow \infty} \left\lvert\, P\left(\left.\frac{S_{n}}{n} \right\rvert\,, q\right)=0\right.$. This verifies that holds.
Now we prove:

$$
G_{n}(x) \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \Sigma n} G_{n}(x)=1 .{ }^{*}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \sum n} \mathbb{E}\left[\sum_{j=0}^{n} \mathbb{1}_{\left.\mid S_{j}=x\right\}}\right]= \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} \underbrace{\sum_{(x \mid \leq 2 n} \mathbb{E}\left(S_{j}=x\right)}_{\mathbb{P}\left(\left|S_{j}\right| \leq \Sigma n\right)} \mathbb{E}\left[S_{j}=x\right\}]
\end{aligned}
$$

$=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} \mathbb{P}\left(\left|S_{j}\right| \leq \Sigma n\right)$. Now we prove that

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} \right\rvert\, P\left(\left|S_{j}\right| \leq \Sigma n\right)=1 \text {. Let } a_{j, n}:=\mathbb{P}\left(\left|S_{j}\right| \leq \varepsilon n\right) \text {. } \\
& \text { We know } \text { that } \lim _{n \rightarrow \infty} a_{n, n}=1 \& a_{i, n} \leq 1 \text {. } \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} a_{j, j}=1 \quad a_{j_{j, j}=1}=\mathbb{P}\left(\left|S_{j}\right| \leq \varepsilon j\right) \leqslant \mathbb{P}\left(F_{j} \mid \leq \varepsilon n\right)=a_{j, n} \\
& 1=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} a_{j, j} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} a_{j, n} \leq 1 .
\end{aligned}
$$

Hence $\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} a_{j, n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} \right\rvert\, P\left(\left|S_{j}\right| \leq \Sigma n\right)=1$.
This proves that **** holds. Hence **** also holds. This completes the proof of part (b).
(c) We 位ant to prove that $\forall M>0, \exists n$ sit $G_{n}(0) \geq M$. Recall that we have $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \Sigma n} G_{n}(x)=1$.*** proved that $\forall \Sigma>0$

$$
1=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{|x| \leq \Sigma_{n}} G_{n}(x) \leq \lim _{n \rightarrow \infty} \frac{1}{n} \cdot 2 \Sigma_{n} G_{n}(0)=2 \sum \lim _{n \rightarrow \infty} G_{n}(0)
$$

That is $\forall \varepsilon, \exists n_{0}$ st. for all $n \geqslant n_{0} \quad G_{n_{0}}(0) \geqslant \frac{1}{2 \varepsilon}$ We choose sros.t. $\frac{1}{2 \varepsilon}>M$. Then we have proved the assertion of part (c).
(d) It is obvious that S_{n} is imeducible. Hence it is enough to prove that 0 is recurrent. We home seen in port (c) that the expected number of visits to 0 in the first n steps tends to infinity as $n \rightarrow \infty$.

Reflecting Random Walk
This is a Discrete time MC.
$\left\{X_{n}\right\}_{n=0}^{\infty}$ tokesvolues from $I_{V}=\{0,1,2, \ldots\}$.

$$
\left\{\begin{array}{l}
p(i, i+1)=p \text { for } i \geq 0 \\
p(i, i-1)=1-p \text { for } i \geq 1 \\
p(0,0)=1-p
\end{array}\right\}
$$

This is e birth\& death chain. So, the station am distribution (if exists) con be found by the detailed balance equation: $p \pi(i)=(1-p) \pi(i+1)$ for $i \geqslant 0$.
This yields $\pi(i)=c \cdot\left(\frac{p}{1+p}\right)$ for $c=\pi(0)$
(a) $p<\frac{1}{2}$ Then $\frac{p}{1+p^{1}} 1, \sum_{k=0}^{\infty}\left(\frac{p}{1+p}\right)^{k}=\frac{1}{1-\frac{p}{1+p}}$

$$
\pi(i)=\frac{1-2 p}{1-p}\left(\frac{p}{1-p}\right)^{i}
$$

the first return time to 0
Then $\mathbb{P}\left(X_{n}=j\right) \rightarrow \pi(j) ; E_{0}\left[T_{0}\right]=\frac{1}{\pi(0)}=\frac{1-p}{1-2 p}$
This is so since the chain is aperiodic.
(b) $p>\frac{1}{2}$ The series above is divergent no stationnary distribution
(c) $p=\frac{1}{2}$ The chain is mull recurrent. See Duet's look p. 55 .
$p<\frac{1}{2}$ positive recurrent
$p=0$ nell recurrent
$p>\frac{1}{2}$ transient.
Theorem (see Domett's book p. 55 Theorem 1.19
For an irreducible chain the following axe equivalent:
(i) There is a positive recurrent state
(ii) The stationary distribution exists (iii) All states are positive recur rent.

