Queueing
Recall the sum of n independent Exp (λ) is a Gamma (n, μ) distribution which has PDF $f_{T}(t)=\mu \cdot e^{-\mu t} \frac{(n t)^{n-1}}{(n-1)!}$ bor $t \geqslant 0$. M/M/1 queue $\left\{\begin{array}{ll}q(n, n+1)=\lambda & n \geq 0 \\ q(n, n-1)=\mu & n \geq 1\end{array}\right\}$
Birth \& death process $\pi(n)=\frac{\lambda_{n-1} \cdots \lambda_{0}}{\mu_{n} \cdots \mu_{1}} \pi(0)$
$\lambda<\mu \Rightarrow$ $\stackrel{\lambda<\mu \Rightarrow \pi_{\pi}\left(T(n)=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}\right) \text { In particular }}{\left.\pi(0)=1-\frac{D}{\mu}\right)_{\pi+1}}$
Let V be the event that there is at least one customer in the system.

$$
\mathbb{P}(V)=1-\pi(0)=1-\left(1-\frac{\lambda}{\mu}\right)=\frac{\lambda}{\mu} .
$$

Let T_{Q} be the time spent in the queue.
Let $f(x)$ be the conditional density function of T_{Q} condition on V.
$G=\{n$ customer in the system $\}$

$$
\begin{align*}
& \mathbb{P}\left(T_{Q} \in(x-\varepsilon, x+\varepsilon) \mid V\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(T_{Q} \in(x-\varepsilon, x+\varepsilon) n G_{n} \mid V\right) \\
& =\frac{\sum_{n=1}^{\infty} \mid P\left(T_{Q} \in(x-\varepsilon, x+\varepsilon) n G_{n}\right)}{\mathbb{P}(\eta)}= \tag{2}\\
& \left.=\frac{\mu}{\lambda} \cdot \sum_{n=1}^{\infty} \cdot \mathbb{P}\left(T_{Q} \in(x-\varepsilon, x+\varepsilon) \mid G_{n}\right) \cdot \right\rvert\, P\left(G_{n}\right)
\end{align*}
$$

the sem n Exp (u) indep rio.
$=\Gamma(n, \mu)$ whose POF is: $e^{-\mu x x} \frac{\mu^{n} x^{n-1}}{(n-1)!}$

$$
=\frac{\mu}{\lambda} \sum_{n=1}^{\infty}\left(e^{-\mu e x} \frac{\mu^{n} x^{n-1}}{(n-1)!} \cdot 2 \varepsilon\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}\right)
$$

So, the conditional of T_{Q} conditioned V is:

$$
\begin{aligned}
& f(x)=\frac{\mu}{\lambda} \sum_{n=1}^{\infty}\left(e^{-\mu x} \frac{\mu^{n} x^{n-1}}{(n-1)!} \cdot\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{n}\right) \\
= & x \cdot \frac{\mu}{\lambda} e^{-\mu x} \cdot \frac{\mu-\lambda}{\mu} \underbrace{\sum_{n=1}^{\infty} \frac{\mu^{n} \lambda^{n-1} x^{n-1}}{\mu^{n}} \frac{(n-1)!}{\lambda x}}_{e^{\lambda=1}}=(\mu-\lambda) e^{(\lambda-\mu) t} .
\end{aligned}
$$

Lemur 4.1 (1) is trivial, $\int_{1}^{S T_{2} d(P)}$

$$
\begin{aligned}
& \text { (2.) } \mathbb{E}\left[T_{Q}\right]=\mathbb{E}\left[T_{Q} ; V\right]+\mathbb{E}\left[T_{Q} ; V^{c}\right) \mathbb{Q} \\
& =\mathbb{E}\left[T_{Q} \mid V\right] \cdot \underbrace{\mathbb{P}(V)}_{\frac{\lambda}{\mu}}+\underbrace{\mathbb{E}\left[T_{Q} \mid V^{c}\right]}_{0}=*) \\
& \mathbb{E}\left[T_{Q} \mid V\right]=\int(\mu-\lambda) \cdot x \cdot e^{-(\mu-\lambda) x} d x=\frac{1}{\mu-\lambda} \\
& \circledast=\frac{1}{\mu-\lambda} \cdot \frac{\lambda}{\mu}+0=\frac{\lambda}{\mu} \cdot \frac{1}{\mu-\lambda} \\
& \text { 3) } \mathbb{E}[W]=\mathbb{E}\left[W_{Q}\right]+\frac{1}{\mu} .
\end{aligned}
$$

4.) Let $p=1-\frac{\lambda}{\mu}$ then "success" happens with probability P and "failure" hoppens.with $1-p=\frac{\lambda}{\mu}$ The shifted geometric olistribation gives the number r of failures before the fins success. $\mathbb{P}(Y=n)=(1-p)^{n} \cdot p$. $n=0$, . incur case $\pi(n)=(\frac{\lambda}{\mu}{ }_{1-p}^{n} \cdot(\underbrace{1-\frac{\lambda}{\mu}}_{p})$

We know that the expectation of the shifted geometric distribution is $\frac{1-\rho}{p}=\frac{\lambda / \mu}{1-\lambda}=\frac{\frac{\lambda}{\mu}}{\frac{\mu-\lambda}{\mu}}=\frac{\lambda}{\mu-\lambda}$.

