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Martingales, the definitions

Martingales, the definition
Definition 1.1 (Filtered space)
Here we follow the Williams’ book. [16] A filtered space is
pΩ,F , tFnu ,Pq, where pΩ,F ,Pq is a probability space and tFnu

8
n“0 is a

filtration. This means:

F0 ! F1 ! F2 ¨ ¨ ¨ ! F

is an increasing sequence of sub ω-algebras of F . Put

(1) F8 :“ ω

˜
!

n

Fn

¸

! F .
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Martingales, the definitions

The reason that we use filtration so often is
Theorem 1.2

Given the r.v. X1, . . . , Xn and Y on the probability space pΩ,F ,Pq. We

define F :“ ωpX1, . . . , Xnq. Then

(2) Y P F !ñ Dg : Rn
Ñ R, Borel s.t.

Ypεq “ g pX1pεq, . . . , Xnpεqq .

This means that if X1, . . . , Xn are outcomes of an experiment then the

value of Y is predictable based on we know the values of X1, . . . , Xn iff

Y P F , where Y P F means that Y is F -measurable.
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Martingales, the definitions

When we say simply "process" in this talk, we mean "Discrete time
stochastic process".

Definition 1.3 (Adapted process)
We say that the process M “ tMnu

8
n“0 is adapted to the filtration tFnu if

Mn P Fn.

5 / 77



Martingales, the definitions

Definition 1.4

Let M “ tMnu
8
n“0 be an adaptive process to the filtration tFnu. We say

that X is a martingale if
(i) E r|Mn|s " 8, @n
(ii) E rMn|Fns “ Mn´1 a.s. for n # 1

X is supermartingale if we substitute (ii) with

E rMn|Fn´1s $ Mn´1 a.s. n # 1.

Finally, M is a submartingale if we substitute (ii) with

E rMn|Fn´1s # Mn´1 a.s. n # 1.
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Martingales, the definitions

Remark 1.5

(a) If M0 P L1 then the process Mn ´ M0 is a martingale
(respectively submartingale, supermartingale) iff so is
M “ tMnu. (This follows from the definition immediately.)

(b) Assume that M “ tMnu is a supermartingale . Then by the
tower property for m " n we have

(3) E rXn|Fms $ Xm .
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Martingales, the definitions

Remark 1.6

In some cases there is another process X “ tXnu such that
Mn “ f pXn, nq for some function f (like Mn “ X2

n ´ n). Let
Fn :“ ωpX0, . . . , Xn,M0q. Then we say that M is a martingale w.r.t. X if
M is a martingale w.r.t. the filtration Fn.
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Martingales, the definitions

Example 1.7

Let X1, X2, . . . be independent L1 r.v. (this means that @k, E r|Xk|s " 8)
with zero mean (that is @k, E rXks “ 0). Let

S 0 “ 0 and S n :“ X1 ` ¨ ¨ ¨ ` Xn,

F0 “ tH,Ωu , Fn :“ ω tX1, . . . , Xnu .

(4) E rS n|Fn´1s “ E rS n´1|Fn´1s ` E rXn|Fn´1s

“ S n´1 ` E rXns “ S n´1.
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Martingales, the definitions

Example 1.8

(i) Let X1, X2, . . . be independent non-negative r.v. with
E rXks “ 1, @k. Let M1 :“ 1, Fn as in Example 1.7. Let
Mn :“ X1 ¨ ¨ ¨ Xn . Then M “ tMnu is a martingale.

(ii) Given a r.v. tXnu
8
n“1 and Y with E r|Y|s " 8. Then

Mn :“ E rY|X1, . . . , Xns ,

is a martingale, called Doob martingale .
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Martingales, the definitions

Example 1.9 (Exponential Martingale)
Let Y “ tYnu

8
n“1 be iid with moment generating function finite at some

ϑ ! 0: Mpϑq “ E
“
eϑY1

‰
" 8.We write S n :“ S 0 ` Y1 ¨ ¨ ¨ ` Yn. Then

Mn :“ exppϑS nq
Mnpϑq

is a martingale w.r.t. Y. Namely, let Xi :“ exppϑYiq
Mpϑq . Then E rYis “ 1. So,

we apply Example 1.8 (i).

We proved the following convergence theorem (which is also [5,
Theorem 5.2.9]) in the course Stochastic Processes. This will be a
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Martingales, the definitions

consequence of some more general convergence theorems that we
learn letter in this course.
Theorem 1.10 (Convergence Theorem for non-negative
supermartingales)

Let Xn # 0 be a supermartingale . Then there exists a r.v. X s.t.

Xn Ñ X a.s. and E rXs $ E rX0s.
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Martingales that are functions of Markov Chains

Functions of MC

Remark 2.1

Given a Markov chain X “ pXnq with transition probability matrix
P “ pppx, yqqx,y. We are also give a function f : S ˆ NÑ R satisfying

(5) f px, nq “
!
yPS

ppx, yq f py, n ` 1q .

Then Mn “ f pXnq is a martingale w.r.t. X. (We verified this in the
Stochastic Processes course. See [3, Theorem 5.5].)
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Martingales that are functions of Markov Chains

Functions of MC (cont.)

Given a Markov chain X “ pXnq with transition probability matrix
P “ pppx, yqqx,y.
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Martingales that are functions of Markov Chains

Functions of MC (cont.)
Definition 2.2 (P-harmonic functions)

For an f : S Ñ R:

(6) P f pxq :“
!
yPS

ppx, yq f pyq.

We say that such an f is harmonic if
(i)

!
yPS

ppx, yq| f pyq| " 8, @x P S and

(ii) @x P S , hpxq “ Phpxq

if we replace (ii) with @x, f pxq $ P f pxq then f is subharmonic .
16 / 77
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Martingales that are functions of Markov Chains

f is called superharmonic if ´ f is subharmonic. It follows from
Remark 2.1 that
Theorem 2.3
Let X “ pXnq be a Markov chain with transition probability matrix

P “ pppx, yqqx,y and let h be a P-harmonic function. Then hpXnq is a

Martingale w.r.t. X.
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Martingales that are functions of Markov Chains

Example 2.4

Let X1, X2, . . . be iid with

P pXi “ 1q “ p and P pXi “ ´1q “ 1 ´ p,

p P p0, 1q, p ! 0.5. Let S n :“ X1 ` ¨ ¨ ¨ ` Xn. Then

(7) Mn :“
´

1´p
p

¯S n

is a martingale. Namely, hpxq “ pp1 ´ pq{pq
x is harmonic.
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Martingales that are functions of Markov Chains

Example 2.5 (Simple Symmetric Random Walk)
Let Y1,Y2, . . . be iid with

P pXi “ 1q “ P pXi “ ´1q “ 1{2 ,

We write S n :“ S 0 ` Y1 ` ¨ ¨ ¨ ` Yn. Then Mn :“ S 2
n ´ n is a martingale.

Namely, f px, nq “ x2
´ n satisfies (5).

Theorem 2.6

Let h be a subharmonic function for the Markov chain X “ pXnq. Then

Mk :“ hpXkq is a submartingale.
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Polya Urn

Polya’s Urn,

One can find a nice account with more details at
http://www.math.uah.edu/stat/urn/Polya.html or click here
Given an urn with initially contains: r % 0 red and g % 0 green balls.

(a) draw a ball from the urn randomly,
(b) observe its color,
(c) return the ball to the urn along with

c new balls of the same color .

If c “ 0 this is sampling with replacement.
If c “ ´1 sampling without replacement.
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Polya Urn

Polya’s Urn, (cont.)

From now we assume that c # 1. After the n-th draw and replacement
step is completed:

the number of green balls in the urn is: Gn .
the number of red balls in the urn is: Rn .
the fraction of green balls in the urn is Xn .
Let Yn “ 1 if the n-th ball drawn is green. Otherwise Yn :“ 0.

Let Fn be the filtration generated by Y “ pYnq.
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Polya Urn

Polya’s Urn, (cont.)
Claim 1
Xn is a martingale w.r.t. Fn.

Proof Assume that
Rn “ i and Gn “ j

Then
P

ˆ
Xn`1 “

j ` c
i ` j ` c

˙
“

j
i ` j
,

and
P

ˆ
Xn`1 “

j
i ` j ` c

˙
“

i
i ` j
.
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Polya Urn

Polya’s Urn, (cont.)

Hence

(8) E rXn`1|Fns “
j ` c

i ` j ` c
¨

j
i ` j

`
j

i ` j ` c
¨

i
i ` j

“
j

i ` j
“ Xn .

↭
Corollary 3.1
There exists an X8 s.t. Xn Ñ X8 a.s..
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Polya Urn

Polya’s Urn, (cont.)

This is immediate from Theorem 1.10.
In order to find the distribution of X8 observe that:

The probability pn,m of getting green on the first m steps and
getting red in the next n ´ m steps is the same as the probability of
drawing altogether m green and n ´ m red balls in any particular
redescribed order.

pn,m “

m´1"

k“0

g ` kc
g ` r ` kc

¨

n´m´1"

ϖ“0

r ` ϖc
g ` r ` pm ` ϖqc
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Polya Urn

Polya’s Urn, (cont.)
If c “ g “ r “ 1 then

PpGn “ 2m ` 1q “

ˆ
n
m

˙
m!pn ´ mq!

pn ` 1q!
“

1
n ` 1

.

That is X8 is uniform on p0, 1q. In the general case X8 has density

Γppg ` rq{cq

Γpg{cqΓpr{cq
xpg{cq´1

p1 ´ xq
pr{xq´1.

That is the distribution of X8 is Beta
`g

c ,
r
c

˘
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Games, fair and unfair

Games

Imagine that somebody plays games at times k “ 1, 2, . . . . Let
Xk ´ Xk´1 be the net winnings per unit stake in game n.
In the martingale case

E rXn ´ Xn´1|Fn´1s “ 0, the game is fair.

In the supermartingale case

E rXn ´ Xn´1|Fn´1s $ 0, the game is unfavorable.
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Games, fair and unfair

Games (cont.)
Definition 4.1

Given a process C “ pCnq. We say that:
(i) C is previsible or predictable if

@n # 1, Cn P Fn´1 .

(ii) C is bounded if DK such that @n, @ε, |Cnpεq| " K.
(iii) C has bounded increments if DK s.t.

@n # 1, @ε P Ω, |Cn`1pεq ´ Cnpεq| " K
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Games, fair and unfair

Games (cont.)
Cn is the player’s stake at time n which is decided based upon the
history of the game up to time n ´ 1. The winning on game n is
CnpXn ´ Xn´1q. The total winning after n game is

(9) Yn :“
ÿ

1!k!n

CkpXk ´ Xk´1q “: pC ‚ Xqn.

By definition:
pC ‚ Xq0 “ 0.

Clearly,
Yn ´ Yn´1 “ CnpXn ´ Xn´1q.
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Games, fair and unfair

Games (cont.)

We say that

C ‚ X is the martingale transform of X by C .
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Games, fair and unfair

Games (cont.)

Theorem 4.2 (You cannot beat the system)

Given C “ pCnq
8
n“1 satisfying:

(a) Cn # 0 for all n (otherwise the player would be the Casino),

(b) C is previsible (that is Cn P Fn´1),

(c) C is bounded.

Then C ‚ X is a supermartingale (martingale) if X is a

supermartingale (martingale) respectively.
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Games, fair and unfair

Games (cont.)

Proof.

(10) E rYn ´ Yn´1|Fn´1s “ CnE rXn ´ Xn´1|Fn´1s " 0.

↭

Theorem 4.3

Assume that C is a bounded and previsible process and X is a

martingale then C ‚ X is a martingale which is null at 0.
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Let (n) bea supermartingale .
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Games, fair and unfair

Games (cont.)

Theorem 4.4
In the previous two theorems the boundedness can be replaced by

Cn P L2
, @n if Xn P L2

, @n.

The proofs of the one but last theorem is obvious. The proof of the last
theorem immediately follows from (f) on slide ?? of file "Some basic
facts from probability theory".
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Stopping Times

Stopping Times, definitions
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Stopping Times

Stopping Times, definitions (cont.)
Definition 5.1
A map T : ΩÑ t0, 1, . . . ,8u is called stopping time if

(11) tT ! nu “ tω : T pωq ! nu P Fn, n ! 8.

equivalent definition:

(12) tT “ nu “ tω : T pωq “ nu P Fn, n ! 8.

We say that the stopping time T is bounded if DK s.t. T pωq " K holds
for all ω P Ω.

37 / 77



Stopping Times

Stopping Times, definitions (cont.)

E.g. T is the time when we stop plying the game. We can decided at
time n if we stop at that moment based on the history up to time n.
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Stopping Times

Stopping Times, definitions (cont.)

Example 5.2
Given a process pXnq which is adapted to the filtration tFnu, further
given a Borel set B. Let

T :“ inf tn # 0 : Xn P Bu .

By convention: inf H :“ 8. Then

tT ! nu “

!

k!n

tT “ ku P Fn.
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Stopping Times

Stopping Times, definitions (cont.)

Lemma 5.3

Assume that T is a stopping time w.r.t. the filtration tFnu. Let

CT
n :“ n!T .

Then CT
n is previsible. That is

(13) CT
n P Fn´1.
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Stopping Times

Stopping Times, definitions (cont.)

Proof.!
CT

n “ 0
(

“ tT ! n ´ 1u P Fn´1. ↭
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Stopped martingales

Stopped martingales
Let T be a stopping time for an tFnu filtration. For a process X “ pXnq

we write XT for the process stopped at T :

XT
n pωq :“ XT pωq^npωq,

where a ^ b :“ min ta, bu.

Assume that Kazér always bets 1$ and stops playing at time T . Then
Kazmér’s stake process is:

(14) CpT q
n “ n!T
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Stopped martingales

Stopped martingales (cont.)

In Lemma 5.3 we proved that CpT q is previsible (the notion "previsible"
was defined on slide # 29).
By (9), Kazmér’s winning’s process:

pCpT q
‚ Xqn “ XT^n ´ X0.

That is
CpT q

‚ X “ XT
´ X0.

So, by Theorems 4.2 and 4.3 we obtain

44 / 77
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Stopped martingales

Stopped martingales (cont.)
Theorem 6.1

Let T be a stopping time

(i)

X supermartingale ùñ XT
supermartingale.

So, in this case @n, E rXT^ns ! E rX0s

(ii)

X martingale ùñ XT
martingale.

So, in this case @n, E rXT^ns “ E rX0s
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Stopped martingales

Stopped martingales (cont.)

Proof
We define CpT q

n as in (14). Clearly, CpT q
" 0 and bounded. As we saw

in Lemma 5.3, CpT q is previsible. So, we can apply Theorem 4.2 for
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Stopped martingales

Stopped martingales (cont.)

(15) pC ‚ Xqn “

nÿ

K“1

Ck ¨ pXk ´ Xk´1q

“

$
&

%

Xn ´ X0, on tT " nu;
T"

k“1
pXk ´ Xk´1q “ XT ´ X0, on tT # nu.

,
.

-

“ XT^n ´ X0 .
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Stopped martingales

Stopped martingales (cont.)

That is by Theorem 4.2 we get that XT^n ´ X0 is a supermartingale
(martingale ) if pXnq is a supermartingale (martingale) respectively.
Which yields the assertion of the theorem. ↫

Remark 6.2

It can happen for a martingale X that

(16) E rXns ! E rX0s .
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Stopped martingales

Stopped martingales (cont.)

The most popular counter example uses the Simple Symmetric
Random Walk (SSRW). First we recall its definition and a few of its
most important properties.

49 / 77



Stopped martingales

Stopped martingales (cont.)

Example 6.3 (Simple Symmetric Random Walk (SSRW))

The Simple Symmetric Random Walk (SSRW) on Z is S “ pS nq
8
n“0,

where

(17) S n “ X0 ` X1 ` ¨ ¨ ¨ ` Xn,

where X0 “ 0 and X1, X2, . . . are iid with P pX1 “ 1q “ P pX1 “ ´1q “
1
2 .

We have seen that
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Stopped martingales

Stopped martingales (cont.)
Lemma 6.4 (SSRW)

The Simple Symmetric Random Walk on Z is

(i) Null recurrent,

(ii) martingale.

The second part follows from Example 1.7. We proved that SSRW is
null recurrent in the course Stochastic processes. To give an example
where (16) happens:
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Stopped martingales

Stopped martingales (cont.)

Example 6.5

S “ pS nq be the SSRW and let T :“ inf tn : S n “ 1u . Then by
Theorem 6.1, E rXT^ns “ E rX0s. However,

E rXT s “ 1 ! 0 “ X0 “ E rX0s .
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Stopped martingales

Stopped martingales (cont.)

Question 1
Let X be a martingale and let T be a stopping time. Under which
conditions can we say that

(18) E rXT s “ E rX0s?
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Stopped martingales

Theorem 6.6 (Doob’s Optional Stopping Theorem)

Let X be a supermartingale and T be a stopping time. If any of the

following conditions holds

(i) T is bounded.

(ii) X is bounded and T # 8 a.s..

(iii) E rT s # 8 and X has bounded increments.

then

(a) XT P L1
and EpXT q ! E rX0s.

(b) If X is a martingale then EpXT q “ E rX0s .
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Stopped martingales

Proof.
By Thm: 6.1 @n, XT^n P L1 and E rXT^n ´ X0s ! 0.
If (i) holds then DN s.t. T ! N. Then for n “ N, we have XT^n “ XT .
Hence (a) follows.
If (ii) holds then lim

nÑ8
XT^n “ XT . So, by Dominated Convergence

Theorem: lim
nÑ8
E rXn^T s “ E rXT s. On the other hand, by Theorem 6.1,

E rXT^ns ! E rX0s.
If (iii) holds The answer comes from Dom. Conv. Thm.

|XT^n ´ X0| “

ˇ̌
ˇ̌
T^n"
k“1

pXk ´ Xk´1q

ˇ̌
ˇ̌ ! KT # 8. If X is a martingale, apply

everything above also for ´X. ↭
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Stopped martingales

Corollary 6.7

Assume that

(a) M “ pMnq is a martingale.

(b) DK1 s.t. @n, |Mn ´ Mn´1| # K1,

(c) C “ tCnu is a previsible process with |Cnpωq| # K2, @ω, @n.

(d) T is a stopping time with E rT s # 8.

Then

(19) E rpC ‚ MqT s “ 0 .

Proof.
Put together Theorem 4.3 and Theorem 6.6. ↭
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Stopped martingales

A corollary of the Optional Stopping Theorem is:
Theorem 6.8

Assume that

(i) M “ pMnq is a non-negative supermartingale,

(ii) T is a stopping time s.t. T # 8 a.s..

Then E rXT s ! E rX0s .

Proof
We know that lim

nÑ8
XT^n “ XT a.s. and XT^n " 0. So we can apply

Fatou Lemma :
lim inf

nÑ8
E rXT^ns " E rXT s .
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Stopped martingales

Proof cont.
On the other hand, by Theorem 6.1 the left hand side is smaller than or
equal to E rX0s

.
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Stopped martingales

Awaiting for the (almost) inevitable

In order to apply the previous theorems we need a machinery to check
if E rT # 8s a.s. holds.

Theorem 6.9

Assume that DN P N, ε $ 0 s.t. @n P N,

(20) P pT ! n ` N|Fnq $ ε , a.s.

then

E rT s # 8.
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Stopped martingales

Awaiting for the (almost) inevitable (cont.)

Proof.
We apply (20) for n “ pk ´ 1qN. Then the assertion follows by
mathematical induction from Homework ??. ↭
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Stopped martingales

ABRACADABRA
The following exercise is named as "Tricky exercise" in Williams’ book
[16, p.45].

Problem 6.10 (Monkey at the typewriter)

Assume that a monkey types on a typewriter. He types only capital

letters and he chooses equally likely any of the 26 letters of the English

alphabet independently of everything. What is the expected number of

letters he needs to type until the word "ABRACADABRA" appears in

his typing for the first time?

The same problem formulated in a more formal way:
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ABRACADABRA (cont.)

Problem 6.11 (Monkey at the typewriter)

Let X1, X2, . . . be i.i.d. r.v. taking values from the set

Alphabet :“ tA, B, . . . ,Zu of cardinality 26. We assume that the

distribution of Xk is uniform. Let T be

(21) T :“ min tn ` 10 : pXn, Xn`1, . . . , Xn`10q

“ pA, B,R, A,C, A,D, A, B,R, Aqu

Find E rT s “?
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ABRACADABRA (cont.)

We associate a players in a Casino to the monkey:
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Example 6.12 (Players associated to the monkey)

Imagine that for every ϑ “ 1, 2, . . . , on the ϑ-th day a new gambler
arrives in a Casino. He bets:
1$ on the event: " Xϑ “ A" .

If he loses he leaves. If he wins he receives 26$. Then he bets his
26$ on the event: " Xϑ`1 “ B" .
If he loses he leaves. If he wins then he receives 262$ and then he
bets all of his
262$ on the event: "ϑ ` 2-th letter will be R"

and so on until he loses or gets ABRACADABRA.

Now for every j we define a previsible process
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Cp jq
“

!
Cp jq

n

)
. Namely, let Cp jq

n be the bet of gambler j on day n:

Cp jq
j`k :“

$
’’&

’’%

0, if k # 0;
1, if k “ 0;
26k, if Xj, . . . , Xj`k´1 were correct; 1 ! k ! 11
0, otherwise,

where Xj, . . . , Xj`k´1 correct means that they are the first k letters of
ABRACADABRA. For every j, the value of Cp jq

n depends only on
X1, . . . , Xn´1. So, for every j the process Cp jq

“

!
Cp jq

n

)
is previsible.

The definition of Mp jq
k Fix a j " 1. The net winning of player j after

the HIS first day (day j of the game) is either
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´1$ if monkey did not type A on day j of the game,
p26 ´ 1q$ if monkey typed letter A on the j-th of the game.

Similarly, k days after that player j entered the game (this is the
j ` k ´ 1-th day of the game) the net winning of player j is either
p26k

´ 1q$ or ´1$. This net winning comes from the amount
the Casino paid to the player by the end of his k-th day in the game
(which is the k ` j ´ 1-th day of the game) minus 1$ (which is the
player’s initial investment).
We denote this net winning of player j after HIS k-th day in the game
by Mp jq

k .
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Remember that we have fixed a j. For this j we define
F p jq

k :“ ϖpXj, . . . , Xj`k´1q.

Claim 2

For every j, Mp jq
k is a martingale w.r.t. F p jq

k with

(22) E
”

Mp jq
k

ı
“ 0.
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Proof of the Claim. Then Mp jq
k P F p jq

k and ´1 ! Mp jq
k ! 26k. That is

Mp jq
k is bounded, in particular Mp jq

k P L1. If Mp jq
k ! ´1 then

Mp jq
k “ 26k

´ 1. Conditioned on this:

Mp jq
k`1 “

"
26k`1

´ 1, with probability 1{26;
´1, with probability 25{26.

Then

(23) E
”

Mp jq
k`1|Mp jq

k “ ´1
ı

“ 26k`1
¨ 1{26 ´ 1 “ Mp jq

k .
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On the other hand, if Mp jq
k “ ´1 then also Mp jq

k`1 “ ´1. So

(24) E
”

Mp jq
k`1|Mp jq

k ! 26k
ı

“ ´1 “ Mp jq
k

Putting these together we obtain that

(25) E
”

Mp jq
k`1|Fk

ı
“ Mp jq

k .

Hence, E
”

Mp jq
k

ı
“ E

”
Mp jq

1

ı
“ 0. The last equality follows from an

immediate computation. ↫
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Now we apply Doob’s optional stopping theorem for the stopping time
T defined in (21) and for a martingale S “ pS nq to be defined below.

The definition of S “ pS nq Let S n be the cumulative net winning (may
be negative) of all gamblers together up to (and including) time n:

(26) S n :“
nÿ

j“1

Mp jq
n .

By (22) we have

(27) @n, E rS ns “ 0.
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Then S n is the finite sum of martingales, so S n is a martingale itself
w.r.t. the filtration: tϖpX1, . . . , Xnqun. Actually we verify in the following
two Claims that both parts of condition (iii) of Theorem 6.6 hold.

Claim 3

E rT s # 8.

Proof of the Claim The Claim follows from Theorem 6.9 with the
following substitutions:

N “ 11, ε “ p1{26q
11,
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Namely, whatever happens now, the probability is at least p1{26q
11 that

in the next 11 steps the monkey gets ABRACADABRA. ↫

Claim 4

There exists a finite J such that |S n ´ S n´1| # J.

Proof of the Claim
By definition, |S n ´ S n´1| is less than the maximum amount J that the
Casino can possibly pay to all of the players together on any particular
single day. We prove below that J is finite. This implies that S “ pS nq

has bounded (by J) increments.
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By Claims 3 and 4 both parts of condition (iii) of Theorem 6.6 hold.
Hence by this Theorem and (22) we get

(28) E rS T s “ E rS 1s “ 0.

The computation of J The worst day for the Casiono, that is the day
when the total amount that the Casino pays to all the players together
is at its maximum is clearly the last day of the game, that is day T .

So, J is the amount the Casino pays on the day when the monkey first
completed the typing of the word "ABRACADABRA". This is by
definition day T . To compute J note that there are exactly three players
who get payment on day T . Namely,
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The one who arrived on day T . (He had to bet for A). He gets 26$
from the Casino.
The one who arrived on day T ´ 3 has made 4 successful bets.
So, he gets 264$ from the Casino on day T .
The player who arrived on day T ´ 10 gets 2611$ from the Casino.

So, the total amount that the Casino pays on day T is

J :“ 26 ` 264
` 2611 .

Observe that whatever the Casino paid to the players on any day
n # T they immediately bet it on day n ` 1 ! T . So, the Casino got it
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back. In this way, the total amount that the Casino ever paid to the
players is just J. By definitions, this means that

S T “ J ´ T .

From this and from (28) we obtain that

E rT s “ J “ 26 ` 264
` 2611.

This solves the Monkey at typewriter problem. ↫
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