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Martingales, the definitions

Martingales, the definition

Definition 1.1 (Filtered space)
Here we follow the Williams’ book. [16] A filtered space is

(Q,F,{F.},P), where (Q,F,P) is a probability space and {F,},—, is a
filtration. This means:
FfocFicFr-F

is an increasing sequence of sub o-algebras of ¥. Put
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Martingales, the definitions

The reason that we use filtration so often is
Theorem 1.2

Given the r.v. X,,...,X, and Y on the probability space (Q, ¥ ,P). We
define ¥ := o(Xy,...,X,). Then
(2) YeF < dg:R" > R, Borel s.t.

Y(w) =g (Xi(w),...,X,(w)).

This means that if X4, ..., X,, are outcomes of an experiment then the
value of Y is predictable based on we know the values of Xy, ..., X, iff

Y e F ,whereY € F means that Y is ¥ -measurable.

v
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Martingales, the definitions

When we say simply "process" in this talk, we mean "Discrete time
stochastic process".
Definition 1.3 (Adapted process)

We say that the process M = {M,} -, is adapted to the filtration {F,} if
M, € F,.
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Definition 1.4

Let M = {M,}—_, be an adaptive process to the filtration {F,}. We say
that X is a martmgale if

@ ) ElIM] < 0, ¥n
( [Mle,,lasforn > 1
X is supermartingale if we substitute (ii) with

E|M,|Fpn1] <M, yas. n=1.
Finally, M is a submartingale if we substitute (ii) with
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Martingales, the definitions

Remark 1.5

(a) If My € L' then the process M, — M, is a martingale
(respectively submartingale, supermartingale) iff so is
M = {M,}. (This follows from the definition immediately.)
(b) Assume that M = {M,} is a supermartingale . Then by the
tower property for m < n we have

(3) E [ X, Fn] < X -
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Martingales, the definitions

Remark 1.6

In some cases there is another process X = {X,} such that

M, = f(X,,n) for some function f (like M, = X> — n). Let

Fn =0 (Xo,...,Xn, My). Then we say that M is a martingale w.r.t. X if
M is a martingale w.r.t. the filtration 7.

v
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Martingales, the definitions

Example 1.7

Let X1, X, ... be independent L! r.v. (this means that Vk, E[|X;|] < o0)
with zero mean (that is Vk, E[X;]| = 0). Let

Sy €L
So=0and S, =X+ ---+X,, %-)
%:{@’Q}, Tn:zo-{Xl,...,Xn},

VAR
(4) E[Su|Fu1] = E[Sp—1|Fna1] + B [X,|F-1]

Shi /E[ﬁ@«J Y

Sy +E[X] =S, 1.

Y e d y
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Martingales, the definitions

(LM 13,3 60 KXoy Xe 1§ 3= Kooy " ELKu IR =14
Example 1.8 X(“/(,qéé}—; ﬁ/x—)

7

(i) Le X>, ... be independent non-negative r.v. with
@, Vk. Let M, := 1, ¥, as in Example 1.7. Let
M, =X, ---X,. Then M = {M,} is a martingale.
(i) Givenarv. {X,} _, and Y with E[|Y|] < co. Then

Mn = E[lels- . "X}’Z] b

is a martingale, called Doob martingale .
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Martingales, the definitions

Example 1.9 (Exponential Martingale)

Let Y = {Y,} _, be iid with moment generating function finite at some
0+0: M(0) =E|[e™] <. Wewrite S, :=So+ Y1 --- + Y,. Then

85,
__6_’_ =M, = exp(6S )
—/’1'”(6) n = M)
Y
artingafe w.r.t. Y. Namely, let X; : (( )> Then E[Y;] = 1. So,

we apply Example 1.8 (i).

We proved the following convergence theorem (which is also [5,
Theorem 5.2.9]) in the course Stochastic Processes. This will be a
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Martingales, the definitions

consequence of some more general convergence theorems that we
learn letter in this course.

Theorem 1.10 (Convergence Theorem for non-negative
supermartingales)

Let X, > 0 be a supermartingale . Then there exists ar.v. X s.t.
X, — X as. andE [X] < E[Xy].
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Q Martingales that are functions of Markov Chains
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)
Functions of MC

Remark 2.1

Given a Markov chain X = (X,) with transition probability matrix
P = (p(x,y)).,. We are also give a function f : § x N — R satisfying

% f(x,n) %p(x,y)f(y,nﬂ).
[

Then M, ») IS @ martingale w.r.t. X. (We verified this in the

Stochashc rocesses course. See [3, Theorem 5.5
X isa M€ oF 1,
Elm, /%1 EH(X,,,,«*')/J“-] 2 ) %,W)-g i n)=; M, % 14/77



Martingales that are functions of Markov Chains

Functions of MC (cont.)

Given a Markov chain X = (X,,) with transition probability matrix
P= (p(x,y))x,y-
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Martingales that are functions of Markov Chains

Functions of MC (cont.)
Definition 2.2 (P-harmonic functions)

Foran f:S — R:

(6) Pf(x):= 2 p(x,9)f().

yesS

We say that such an f is harmonic if

() 2 p(xy)|f(v)| <o, VxeS and
yes ;g

(i) Vxe S, x) = Phfx)

if we replace (ii) with Vx, f(x) < Pf(x) then f is subharmonic .
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Martingales that are functions of Markov Chains

f is called superharmonic if —f is subharmonic. It follows from
Remark 2.1 that

Theorem 2.3

Let X = (X,) be a Markov chain with transition probability matrix

P = (p(x,y))., and let h be a P-harmonic function. Then h(X,) is a
Martingale w.r.t. X.
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Martingales that are functions of Markov Chains

Example 2.4
Let X1, Xo, ... be iid with

P(Xiz l)zpandP(X,-:—l) Zl—p,
pe(0,1),p#0.5. LetS, ;==X +--- + X,. Then

(7) M, — (I‘TP)S

is a martingale. Namely, i(x) = ((1 — p)/p)* is harmonic.
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Martingales that are functions of Markov Chains

Example 2.5 (Simple Symmetric Random Walk)
Let Yi,Y,... be iid with

P(X;=1)=P(X; = —1)=1/2,

We write S, := So+ Y, + -+ + Y,. Then M,, := S? — n is a martingale.
Namely, f(x,n) = x> — n satisfies (5).

y

Theorem 2.6

Let h be a subharmonic function for the Markov chain X = (X,). Then
M, := h(Xy) is a submartingale.
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Polya Urn

Q Polya Urn
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Polya’s Urn,

One can find a nice account with more details at
http://www.math.uah.edu/stat/urn/Polya.html or click here
Given an urn with initially contains: » > 0 red and g > 0 green balls.

(a) draw a ball from the urn randomly,
(b) observe its color,
(c) return the ball to the urn along with
¢ new balls of the same color.
@ If ¢ = 0 this is sampling with replacement.
@ If c = —1 sampling without replacement.
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Polya’s Urn, (cont.)

From now we assume that ¢ > 1. After the n-th draw and replacement
step is completed:

@ the number of green balls in the urnis: G, .

@ the number of red balls in the urn is: R, .

@ the fraction of green balls in the urnis X,, .

@ Let Y, = 1 if the n-th ball drawn is green. Otherwise Y, := 0.
@ Let ¥, be the filtration generated by Y = (V).
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Polya’s Urn, (cont.)

Claim 1
X, is a martingale w.r.t. 7,,.

Proof Assume that
R,=iand G, =

i1 .
P (Xn_|_1 = = J : ) = / )
I+ J]+c 1+ ]

j ]
PlX = = .
(”“ i+j+c> i+ j

Then

and
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Polya’s Urn, (cont.)

Hence

Jj+c J N J o
i+j+c i+j i+j+c i+]

(8) E[Xu1|Fu] =

O

Corollary 3.1
There exists an X, s.t. X, — X, a.s..
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Polya’s Urn, (cont.)

This is immediate from Theorem 1.10.
In order to find the distribution of Xoo observe that:

@ The probability p,,, of getting green on the first m steps and
getting red in the next n — m steps is the same as the probability of
drawing altogether m green and n — m red balls in any particular
redescribed order.

4

m—1 n—m—1

g+kc r+ €c

0g+r+kc £1g+r+rn+@

DPnm =
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Polya’s Urn, (cont.)

lfc=g=r=1then

P(G, = 23-4—-1) = <:,> m(!,in;l};)! " n i 1

That is X, is uniform on (0, 1). In the general case X,, has density

['((g+ )/C) £&/0)=1(1 _ y\(r/x)-1
Mg/t (¥

That is the distribution of X, is Beta (£, £)
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Games, fair and unfair

Games
Let {X,.‘; be an ofaptive process tr tha Folbmtion { Ena .

M"AW '['hprvobojc(’{-g spoce GE/?/P), % c$< eFe. ¥ sub-G-alobmas, xex,
Imagine that somebody plays games at times k =1,2,.... Let

X — Xx—1 be the net winnings per unit stake in game n.
In the martingale case

E[X, — X,—1|F.-1] =0, the game is fair.
In the supermartingale case

E[X, — X,_1|F.-1] <0, the game is unfavorable.

Ttiatively, we can think of X, ar owr weallh after game n



Games (cont.)

Definition 4.1

Given a process C = (C,). We say that:
(i) Cis previsible or predictable if

Vn?l, CnEﬂ_l.

(i) Cis bounded if 3K such that Vn, Vo,

(iii) C has bounded increments if 3K s.t.
Vn = 1,Vw e Q, |Chii(w) — Ch(w)] < K

Co(w)| < K.
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Games (cont.)
C, is the player’s stake at time n which is decided based upon the

history of the game up to time n — 1. The winning on game n is
C.(X,, — X,_1)- The total winning after n game is

(9) Yn o= Z Ck(Xk_kal) =, (COX)n
1<k<n
By definition:
(C L X)() = 0.
Clearly,

Yn - Ynfl - Cn<Xn - anl)-
30/77



Games (cont.)

We say that

C o X is the martingale transform of X by C .
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Games (cont.)

Theorem 4.2 (You cannot beat the system)

Given C = (C,)”_, satisfying:
(a) C, = 0 for all n (otherwise the player would be the Casino),
(b) C is previsible (thatis C, € 7,,_1),
(c) C is bounded.

Then C e X is a supermartingale (martingale) if X is a
supermartingale (martingale) respectively.
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Games (cont.)

Proof.

(10) E [Yn - Yn—l|y:n—1] = CnE [Xn - Xn—l‘an—l] S 0.

Theorem 4.3

Assume that C is a bounded and previsible process and X is a
martingale then C e X is a martingale which is null at 0.
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Games (cont.)

Theorem 4.4
In the previous two theorems the boundedness can be replaced by
C,eL? VnifX, e L Vn.

The proofs of the one but last theorem is obvious. The proof of the last
theorem immediately follows from (f) on slide ?? of file "Some basic
facts from probability theory".
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Q Stopping Times
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Stopping Times, definitions
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Stopping Times, definitions (cont.)

Definition 5.1
AmapT:Q — {0,1,...,00} is called stopping time if

(11) {T <n}={w:T(w)<n}eF, n<own.
equivalent definition:
(12) {T =n} ={w:T(w) =n}eF,, n<own.

We say that the stopping time T is bounded if 3K s.t. T(w) < K holds
forall w € Q. |
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Stopping Times, definitions (cont.)

E.g. T is the time when we stop plying the game. We can decided at
time n if we stop at that moment based on the history up to time n.
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SoppigTmes |
Stopping Times, definitions (cont.)

Example 5.2

Given a process (X,) which is adapted to the filtration {#,}, further
given a Borel set B. Let

T:=inf{n>0:X, € B}.

By convention: inf ¢4 := co. Then

= | J{r =K} e T

k<n

39/77
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Stopping Times, definitions (cont.)

Lemma 5.3

Assume that T is a stopping time w.r.t. the filtration {F,}. Let

CI' = 1,<r. WC Pgwﬁ%e

Then CT is previsible. That is sm m‘ﬂ; »
(13) CreFur Yt T liuclading |
Stop,
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Stopping Times, definitions (cont.)

Proof.
{CT =0} ={T <n—1}eF .
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Stopped martingales

0 Stopped martingales
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Stopped martingales

Let T be a stopping time for an {¥,} filtration. For a process X = (X))
we write X for the process stopped at 7T

X} () := Xr(w)an(),

where a A b := min {a, b}. ><T/l %44{7__ "f- 4/{7} - } X,)

eT. Then

&Yk
Assume that Kazér always bets 1$ and stops playin
Kazmér’s stake process is: fo ;E(,,M AN S

{7; }%{7%‘%
/{,({T'w 5, Xy }6 »
SM/ 77

L/?

(14) ) = 1,er



Stopped martingales (cont.)

In Lemma 5.3 we proved that C7) is previsible (the notion "previsible"
was defined on slide # 29).
By (9), Kazmér’s winning’s process:

XT/\n - A0-
2y ~x g 5
That is B ook 1 _ o
R= ) /(C /7%7%{ g
So, by Theorems 4.2 and 4.3 we obtain
Ay

’_7F4/77



Stopped martingales (cont.)
Theorem 6.1

Let T be a stopping time
(i)
X supermartingale — X' supermartingale.
So, in this case Vn, E [X7 .| < E [Xo]
(i)
X martingale — X" martingale.
So, in this case Vn, E [X7,,] = E [Xo]
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Stopped martingales (cont.)

Proof = /{’H € T}
We define C\") as |n (14). Clearly, C™) > 0 and bounded. As we saw
in Lemma 5.3, C'7) is previsible. So, we can apply Theorem 4.2 for
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Stopped martingales (cont.)

+
Co=A
4 -
(15) (C'e X), = Zn]cT (X — X 1) HheT)
n _—&—1 k(X k—1 f@é; Copde Stea,
X, — Xo, & on {T > n}
5 (Xk _Xk—l) = Xy — Xp, on {T < n} }
k=1

- XT/\n _XO .

g X ‘X = —~ —
ﬁ:/ﬁ g-,) (X’ I 17/*@%/" N*)?/?? ‘



Stopped martingales (cont.)

That is by Theorem 4.2 we get that X7, — Xp is a supermartingale
(martingale ) if (X,,) is a supermartingale (martingale) respectively.
Which yields the assertion of the theorem. m

Remark 6.2
. FRI=Ex0 f
It can happen for a martingale X that ©
{X,,& (C =
(16) E[X,) # E[Xo]. Martivondy

[
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Stopped martingales (cont.)

The most popular counter example uses the Simple Symmetric
Random Walk (SSRW). First we recall its definition and a few of its
most important properties.
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Stopped martingales

Stopped martingales (cont.)

Example 6.3 (Simple Symmetric Random Walk (SSRW))

The Simple Symmetric Random Walk (SSRW)on Zis S = (S,)",,
where

(17) S, =Xo+ X1+ +X,,

where Xy = 0 and X1, X, ... areiidwith P (X; = 1) =P (X; = —1) = 1.

v

We have seen that
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Stopped martingales (cont.)
Lemma 6.4 (SSRW)

The Simple Symmetric Random Walk on Z is
(i) Null recurrent,
(ii) martingale.

The second part follows from Example 1.7. We proved that SSRW is
null recurrent in the course Stochastic processes. To give an example
where (16) happens:
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Stopped martingales

Stopped martingales (cont.)

Example 6.5

S =(S,) bethe SSRWandlet T :=inf{n: S, = 1}. Then by
Theorem 6.1, E [§7,.,] = E [§o]. However,

E[$]=1#0=F% =E[F].
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Stopped martingales (cont.)

Question 1

Let X be a martingale and let T be a stopping time. Under which
conditions can we say that

(18) E[X7] = E[Xo]?
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Stopped martingales

Theorem 6.6 (Doob’s Optional Stopping Theorem)

Let X be a supermartingale and T be a stopping time. If any of the
following conditions holds

(i) T is bounded.
(i) X is bounded and T < w0 a.s..
(i) E[T] < oo and X has bounded increments.
then
(a) X7 € L' and E(XT) <E [X()]
(b) If X is a martingale then E(Xr) = E [Xo] .
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Stopped martingales

Proof.

By Thm: 6.1 Vn, X7,.,eL'andE[X7,., — Xo] <O0.

If (i) holds then N s.t. T < N. Then for n = N, we have X7,, = Xr.
Hence (a) follows.

If (ii) holds then nlgglo X7 n = Xr. S0, by Dominated Convergence
Theorem: r}l_)HolcE | X,.~7] = E[X7]. On the other hand, by Theorem 6.1,

E [XT/\n] <E [XO]
If (iii) holds The answer comes from Dom. Conv. Thm.

T An

X7 an — Xo| = | D) (Xk — Xkl)' < KT < . If X is a martingale, apply
k=1

everything above also for —X. O

v
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Corollary 6.7

Assume that
(a) M = (M,) is a martingale.
(b) 1K, s.t. Vn, ’Mn — Mn—l‘ < Kj,

(c) C = {C,} is a previsible process with |C,(w)| < K, Vw, Vn.

(d) T is a stopping time with E [T| < oo.
Then

(19) E[(C e M);] = 0.

Proof.
Put together Theorem 4.3 and Theorem 6.6.




Sopped marivgaes |
A corollary of the Optional Stopping Theorem is:

Theorem 6.8

Assume that
(i) )( IX is a non-negative supermartingale,
(ii) T is a stopping time s.t. T < w0 a.s..

Then E [Xr] < E[Xo] .

Proof
We know that lim X7 ,, = X7 a.s. and X7,., = 0. So we can apply

n—aoo

Fatou Lemma :
liminf E [X7.,] = E [X7] .

n—0o0
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Stopped martingales

Proof cont.
On the other hand, by Theorem 6.1 the left hand side is smaller than or
equal to E [Xy]
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Stopped martingales

Awaiting for the (almost) inevitable

In order to apply the previous theorems we need a machinery to check
if E[T < o] a.s. holds.
Theorem 6.9

Assume that 4N e N, e > 0 s.t. Vn e N,
(20) P(T <n+ N|F,) >¢, as.

then
E[T] < oo.
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Stopped martingales

Awaiting for the (almost) inevitable (cont.)

Proof.
We apply (20) for n = (k — 1)N. TWassertion follows by

mathematical induction from Homework ??2. O

e
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ABRACADABRA

The following exercise is named as "Tricky exercise" in Williams’ book
[16, p.45].

Problem 6.10 (Monkey at the typewriter)

Assume that a monkey types on a typewriter. He types only capital
letters and he chooses equally likely any of the 26 letters of the English
alphabet independently of everything. What is the expected number of
letters he needs to type until the word "ABRACADABRA" appears in
his typing for the first time?

The same problem formulated in a more formal way:
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ABRACADABRA (cont.)

Problem 6.11 (Monkey at the typewriter)

Let Xi,X>,... be ii.d. r.v. taking values from the set
Alphabet := {A, B, ...,Z} of cardinality 26. We assume that the
distribution of X, is uniform. Let T be
(21) T:=min{n+ 10: (X, X,11,...,Xu110)
= (A,B,R,A,C,A,D,A,B,R,A)}

Find E[T] =2
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ABRACADABRA (cont.)

We associate a players in a Casino to the monkey:
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Example 6.12 (Players associated to the monkey)

Imagine that for every £ = 1,2, ..., on the {-th day a new gambler
arrives in a Casino. He bets:

1$ onthe event: " X, = A".
If he loses he leaves. If he wins he receives 26$. Then he bets his
26$ on the event: " X,., = B".
If he loses he leaves. If he wins then he receives 26°$ and then he
bets all of his

26°$ on the event: "¢ + 2-th letter will be R"
and so on until he loses or gets ABRACADABRA.

Now for every j we define a previsible process
64/77



Cc\) = {C,Sj)}. Namely, let C,Sj) be the bet of gambler j on day n:

0, Iifk<O;
C(j) L 1, if k = 0;
k) 265, if X, ..., X a1 were correct; 1 < k < 11

0, otherwise,

where X, ..., X, correct means that they are the first k letters of
ABRACADABRA. For every j, the value of C( ) depends only on
Xi,....X,_1. So, for every j the process CV) = {C,(l )} is previsible.

The definition of M,E) Fixa j > 1. The net winning of player j after
the HIS first day (day j of the game) is either
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Stopped martingales

@ —1$ if monkey did not type A on day j of the game,
@ (26 — 1)$ if monkey typed letter A on the j-th of the game.

Similarly, k days after that player j entered the game (this is the

J + k — 1-th day of the game) the net winning of player j is either
(26X — 1)$ or —1$. This net winning comes from the amount

the Casino paid to the player by the end of his k-th day in the game

(which is the k + j — 1-th day of the game) minus 1$ (which is the
player’s initial investment).
We denote this net winning of player j after HIS k-th day in the game

by M,Ej).
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Stopped martingales

Remember that we have fixed a j. For this j we define
7:]((]) = O'(Xj 500 ,Xj+k_1).

Claim 2

For every j, M,Ej) is a martingale w.r.t. ﬂ(j) with

(22) 5[m| -o.
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Stopped martingales

Proof of the Claim. Then M\ € 7 and —1 < M\ < 26*. That is
Mk is bounded, in particular M( Vel |f M,Ej) # —1 then

M,EJ) = 26% — 1. Conditioned on this:

) _
Mk+1 _

2651 — 1, with probability 1/26;
—1, with probability 25/26.

Then M@/
(23) AR 7Z 1] =261 1/26—1—M(') /vu-,

&M
L6 9t K0y L. (27 75)=H (62 1)
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Stopped martingales

On the other hand, if M,Ej) = —1 then also M,Ei)l = —1. So

(24) 8| MY), MY 26| = —1 = M)

Putting these together we obtain that
25 E|M) 7| = MY
(25) k+1| k ko

Hence, E [M]Ej)] =E [ij)] = 0. The last equality follows from an
immediate computation. m
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Now we apply Doob’s optional stopping theorem for the stopping time
T defined in (21) and for a martingale S = (S,) to be defined below.

The definition of S = (S,) Let S, be the cumulative net winning (may
be negative) of all gamblers together up to (and including) time n:

(26) Sui=Y MY
j=1

By (22) we have
(27) Vn, E[S,]=0.
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Then S, is the finite sum of martingales, so §, is a martingale itself
w.r.t. the filtration: {o(X),...,X,)},. Actually we verify in the following
two Claims that both parts of condition (iii) of Theorem 6.6 hold.

Claim 3
E|[T] < oo.

Proof of the Claim The Claim follows from Theorem 6.9 with the
following substitutions:

N =11, &= (1/26)",
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Namely, whatever happens now, the probability is at least (1/26)!! that
in the next 11 steps the monkey gets ABRACADABRA. m
Claim 4

There exists a finite J such that [S,, — S| < J.

Proof of the Claim

By definition, |S, — S,_1| is less than the maximum amount J that the
Casino can possibly pay to all of the players together on any particular
single day. We prove below that J is finite. This implies that S = (S,)
has bounded (by J) increments.
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By Claims 3 and 4 both parts of condition (iii) of Theorem 6.6 hold.

Hence by this Theorem and (22) we get

(19)
(28) E[S7]=E[S:] =0.

The computation of / The worst day for the Casiono, that is the day
when the total amount that the Casino pays to all the players together
is at its maximum is clearly the last day of the game, thatis day T'.

So, J is the amount the Casino pays on the day when the monkey first
completed the typing of the word "ABRACADABRA". This is by
definition day 7. To compute J note that there are exactly three players
who get payment on day 7. Namely,
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@ The one who arrived on day 7. (He had to bet for A). He gets 26$
from the Casino.

@ The one who arrived on day T — 3 has made 4 successful bets.
So, he gets 26*$ from the Casino on day 7.

@ The player who arrived on day T — 10 gets 26''$ from the Casino.
So, the total amount that the Casino pays on day T is

J =26+ 26%+ 26!,

Observe that whatever the Casino paid to the players on any day
n < T they immediately betitonday n + 1 < T. So, the Casino got it

74177



Stopped martingales

back. In this way, the total amount that the Casino ever paid to the
players is just J. By definitions, this means that

Sr=J-T.
From this and from (28) we obtain that
E[T] = J =26 + 26" + 26"

This solves the Monkey at typewriter problem. m
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