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Review of a simple situation Lemma 1.1 (Independence Lemma)
Let X, Y be r.v. on the probability space (Q2, F,P). Let X = (X1,...,X) and Y := (Y1,...,Y;), where
Assume they have joint density fx y(x,y) . Then to compute E [X]|Y] X, oo, X, Ya, ..., Yo arerv. on (Q,F,P). Let G C F be a
as first we determine the marginal and then the conditional densities sub-c-algebra. We assume that

o0 X, XK €G

i fXAY(Xa y) ° ! Tk

fr(y) = / fx.v(x,y)dx and fxy(x|y) := ) e Yi,....Y, are independent of G.

" ‘ Let ¢ be a bounded Borel function. Let f, : Rk — R,

Let g(y) =E[X|Y =yl = | x-fxy(xly)dx. Then we get fo(x1, .. x) == E[d(x, ..., xc, Y)]. Then
2 E[o(X, Y = f,(X).
(1) E[X|Y] =g(Y). (2) [(X.Y)|G] = £,(X)
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The proof of the Lemma We follow the line of the proof in Resnik's

Example. Let X € G, and let Y be independent of G. Define book We present the main steps of the proof here for the case
k=1{¢=1. It is a homework to fill the gaps.
o(X,Y) = XY. Step 1. Let K, L € R (that is K, L are Borel subsets of R). Let
¢ =1, where J = K x L. Then we say that J is a measurable
Then, rectangle.
f(X) = E[p(X, Y)] = E[XY] = XE[Y]. ‘
E[¢(X,Y)| 6] =E[XY | 6] = XE[Y | 6] = XE[Y] ISR = P (X € K.Y < L[G)

=1{X € K}P(Y € L|G)
=X e KIP(Y €l) = A, (X).
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c) If A, € C and A, are disjoint then UA, € C.
Step 2. We write RECTS for the family of measurable rectangles (like (c) ) ! n
J above). Let We do not prove (c) here. By definition, (a), (b) and (c) implies that

o C is a \-system and
C:={JeR?:(2) holds for ¢ = 1,}. e C S RECTS.

Then RECTS C C. Now we verify that C is a A-system. That is Using that RECTS s a 7-system we get

(a) R? € C. This holds because R? € RECTS. (3) C O o(RECTS) = R2.

(b) J € C implies J° € C. This is so because
So, we have indicated that (2) holds when ¢ is an indicator function of
P((X,Y)€ JIG)=1-P((X,Y) € J|G) Borel subsets of the plane.
1-A,(X) = f,.(X). Step 3. We could prove that (2) also holds when ¢ is a
’ ” simple function . We say that a Borel function ¢ is a simple function if
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its range is finite. That is if there exist a k and a partition Ji, .
R2, Jx € R and real numbers cy, ..., ¢ such that

..,Jk of

k
(4) o=> cly.
i=1

Step 4. Then we represent ¢ = ¢ — ¢~ and we can find sequences of
simple functions {¢}} and {¢; } such that

oy and g, 1o .

Then using Conditional Monotone Convergence Theorem we conclude
the proof. B
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Monotone Class Theorem

We could have used in the previous proof the so called Monotone Class
Theorem (for the proof see [6, p. 235])

Definition (7-system). A collection of sets A is called a m-system if:
ABe A = AnBe A

Example:
A={(-00,x] CR|x€R}.
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Monotone Class Theorem cont.

Theorem 1.2 (Monotone Class Theorem)

Let A be a mw-system with Q € A and let H be a family of real valued
function defined on Q with the following three properties:

(a) 14 € H whenever A e A.

(b) f.g €= f+gecHfurther,VceR: c-feH

(c) If f, € H satisfying f, > 0 and f, 1 f, then f € H
Then H contains all bounded functions measurable w.r.t. o(A).
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Application of Monotone Class Theorem

The Monotone Class Theorem plays a crucial role in proving that
conditional expectation satisfies key properties, such as:
(i) ElaX + bY | G] = aE[X | G] + bE[Y | G].
(i) E[E[X |G| Al =E[X | A], ifACG.
(iii) If Y is G-measurable, then:

E[YX | G] = YE[X | G].

Idea of proof:
H:={X:E[YX | G] = YE[X | G] for all G-measurable Y'}.
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(Conditional probability

in w.r.t. a o-algebra (simple situation)

@ Conditional probability in w.r.t. a g-algebra (simple situation)

(Conditional probability

in w.r.t. a o-algebra (simple situation)

Review

Lemma 2.1

Let Q1,€y, ... be a partition of Q and let G C F be a sub-o-algebra
generated by {Q,}. Then

E[X|G] (w) = W for a.s. w € Q.
That is,
6 EXGE) - 1a@R5T foras v
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Review cont By Lemma 2.1,
Jo, X(w)dP
E[X w) = (w)—————.
Example 2.2 XIG] () 2,-:]19’( ) P ()

Let Q=R and X ~ N(0,1). Let Q; = {w : X < 0} and
Q1= {w: X >0}. Let G = 0({Q, Q}). Then

ffoc xe=*°12 dx

2: , ifw e Qy,
EX 1 6](w) = ;;,wxe—\/z_g/z b
T, ifwe Qz.
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If we apply Lemma 2.1 with X = 1,4:

P(ANQ)

6 ELGE) = 5y

=P(AQ), ifwe Q.

We define the conditional probability w.r.t. sub-o-algebra :

() P(AG) (w) == E[1a]G] (w)-
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Conditional probability in w.r.t. a o

algebra (simple situation)

This implies that the following assertions hold:
(i) P(AIG) € G.
(i) P(AIG) € LY(Q,G,P) and
(iii) f]P’(A\g) dP=P(ANG) forall Geg.
Proof of (m)

P(ANG)= ) P(ANQ)
- zim Q) P (A2))
Qf P(Q)P(AIG) by (6) and (7)
= [P(AIG)d
.
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Conditional probability in w.r.t. a o

algebra (simple situation)

Review cont

Remark 2.3

For A€ F, E[14|G] = P (A|G) is defined on 24 C Q, P(Qa) = 1. So,
374 € G s.t. P(Za) = 0 and P (A|G) is not defined on Za.
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Conditional probability in w.r.t. a o-

algebra (simple situation)

Review cont

Theorem 2.4 (Basic properties)
Given (Q, F,P) and let G be a sub-o-algebra of F.
(a) P(0]G) (w) =0 and P(Q|G) (w
(b) For Ac F,
0<P(AIG) <1, forweQ\ Za.

y=1forweQ\ (4L UZL).

(c) Let A= G A, (recall: || means disjoint union) and A, € F then
n=1

Conditional probability in w.r.t. a o-

algebra (simple situation)

Review cont

We have a problem: For each o € [0, 1], let {B, ,}, € F. Then there
exists Up Z, 0 with P(Uy, Z,.n) = 0. Do we have

PO U UZun) =07

acfo1] "

We wish that there exists Z € G with P(Z) = 0 such that for any fixed
weN\Z,

v ('o‘le"w) )= ZP(AH‘Q) (), V{A}eF.

F(Al9) = ;P(A"Ig)’ forw € 2\ L,,JZA”' which implies that P (-|G) is a conditional probability measure.
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Review cont
Goal: Find a sufficient condition on (2, F,P) and G C F such that for
as. w e Q, P(-|G) is a conditional probability measure. © Regular conditional Distribution
Before we state the sufficient condition, let’s start with a description of
an abstract object that corresponds to conditional probability.
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R.C.D. Definition 3.1 (Regular conditional Distribution)
We say that pixg: QxS —[0,1] is a
Regular conditional Distribution for X given G if
o Probability space (Q, F,P). (a) Fix A€ S, _
@ Sub-o-algebra G C F. w.»—> ,lx‘g(w;A) .IS g mfasurable.
© Measurable space (S,S). (b) ';'X we Q(\ ZBV)V'_th P(leb?; (5.5)
. — Jix|g(w, B) is a probability measure on (S, S).
® Measurable map X : (Q, 7) = (S, 5). Moreover, jixig(w, B) =P (X € B|G) ,VB € S.
If S =Q and X is the identity map X(w) = w then we say that ix|g is
a regular conditional probability .
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Regular conditional Distribution Regular conditional Distribution

Existence of R.C.D. Existence of R.C.P.

Theorem 3.2 (Existence of R.C.D.)

Given a probability space (Q, F,P) and let G be a sub-c-algebra of F.
Further, let (S,S) be a Borel space. Then any S-valued r.v. X admits a
regular conditional distribution given G.

Corollary of Theorem 3.2:
If (Q, F,P) is a Borel space, then jix|g is a regular conditional
probability.

The proof follows [13, Proposition 7.14].

Remark: We say that a space is a Borel space (or a nice space ) if there
is an injective map ¢ : S — R such that both ¢ and ¢! are measurable.
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Example 3.3 (Example of R.C.D.) A
1
Assume that (X, Y) has density f(x,y) > 0. Let L (oo L (ey) e A
| 2 X,y) €
. % A f(x.y) = {§ (x.y) € B
py, A) = [ f(x,y)ax/ [ F(x,y)dx. . 2
A —0 A
Then p(Y(w), A) is an r.c.d. for X given o(Y). ® fis a density function.
’ The conditional measure p(y, A) is given by:
Concrete example:
Let . Ay, A) = Jafley)de FLAN0.¥]) + 3L(Iy. 1] N A)
Alz{(x~y)€[07l] :y>X}7 Y B fy(y) - %y_‘_%(lfy) :
AZ = {(X7y) € [071]2 Ly < X}'
27 /69 28 /69

Regular conditional Distribution Regular conditional Distribution

Proof of Theorem. 3.2 for S =R

By throwing away countably many null sets we may suppose that
First we assume that (5,S) = (R, R).

We first consider the collection of sets A = {(—o0, x) : x € R}. We (8) Pi(w) < P"(w), Yg<r, g,reQ andVw
claim that for a.s. w € €, there exists a probability measure f1x|g(w, -)
on R such that and
(*1) pxg(w, (—00,x]) is G- measurable function, Vx € R. 0= lim_ Pi(w), Jim Pi(w) =1, Vw.
(*ii) pxjg(w, (=00, x]) = P (X < x|G) (w). For an x € R let
For a rational number g € Q we define the r.v.
9) Flw,x):= lim PI(w).
Pi(w) :=P (X < q|F) (w) . q€Q,q>x
P9(.) is G-measurable, For each x € R, F(+, x) is G-measurable.
29 /69 30 /69

Regular conditional Distribution

Regular conditional Distribution

. . . Moreover, since for a.s. w,
Fix an arbitrary w. Then Vw the function x — F(w, x):

@ is right continuous, F(w,x) = inf PIw)= lim PI(w)
@ non-decreasing, q>x,q69 qlx,qEQ
o lim F(x)=0and Jim F(x)=1. =lmP(X < q|0) (w) = B(X<x|G) (@), VxeR.

Hence there exists a probability measure 1xg(w, ®) satisfying By this and (10) we have for ass. w

(10) fixig(w, (=00, x]) = Flw,x), ¥, Vx. pixig(w, (—00,x]) = P(X < x|G) (), Vx €R.

For each x € R, pix(g(-, (—00,x]) is G-measurable, which proves (*i). This proves (¥ii)
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Regul:

ar conditional Distribution

Now we write £ for the family of all Borel sets B € R satisfying the
following two conditions:

(i) w= pxg(w,B) is arv..
(i) pixjg(w, B) is a version of P (X € B|G) (w).
Cleary,
L2 A(={(—00,x): x € R}).
Check that
o L is A-system (we omit this proof).
o Ais a m-system such that R = o(A).
Then £ D R . The proof of Theorem 3.2 is completed in the case of

(5.8) = (R, R).

33769"

Regul:

ar conditional Distribution

Proof of Theorem. 3.2 in the general case

Let X : (Q,F) — (S,S) is measurable. Using that (S,S) is a nice
space, there exists an injective map p: S — R such that both p and p~!
are r.v.. Then the composition

Y =poX: Q=R
is also a r.v. for which we consider the corresponding r.c.d.:

,l,l,y‘g(w,A) = P(Y € A‘g), AeR.
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Regular conditional Distribution

Now we can define the r.c.d for X:
pxig(w, B) := pyig(w, p(B)) -

Then it is not hard to prove that .xg(w, B) satisfies the conditions (a)
and (b) of Definition 3.1.
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Regular conditional Distribution

Corollary of Theorem 3.2:

Theorem 3.4 (Expectation w.r.t. the R.C.D.)
Let j1(w, A) be a r.c.d. for X given F and let f : (5,8) — (R, R) be

measurable. (This means that f : S — R and for every Borel set B € R
we have f 1(B) € S .) Further, we assume that E[|f(X)|] < oo. Then

(11) E[f(X)|F] = [ f(x) - p(w, dx).

E.g. If f = 1p, then
E[1alF] (w) = p(w, A).
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Regul

ar conditional Distribution

Conditional Characteristic Function

Notation for the next slides:
e (Q, F,P) is the given probability space,
@ G is a sub-c-algebra of F,
o X:Q — R"is a given vector-valued r.v.,
@ jixjg : Q2 x R" — [0,1] be the regular conditional distribution of X
given G.
Definition 3.5 (Regular conditional cdf)

F(w,x) = pxig (w,{y ER":y <, x}) x€eR"

37 /69
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ar conditional Distribution

Conditional Characteristic Function cont.

Definition 3.6
fxig : 2 x R" — [0, 00) is the conditional density function of X given G
if

0 x — fxig(w, x) is Borel measurable,

0 w— fxjg(w,x) is G-measurable for every x € R”,

° éfx|g(w,x)dX = pixig(w, B) .

38 /69

Regul

ar conditional Distribution

Conditional Characteristic Function cont.

Definition 3.7 (Conditional characteristic function)

The conditional characteristic function of X given G,
Wx‘gZQXRnH(CiS

@X‘g(w,t) D= /e"t‘xdux‘g(w, dx)
R"

By Theorem 34 [e*X|] (w), teR",

(12)

where t - x above means the scalar product of t and x.

39/69
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Conditional Characteristic Function cont.

Theorem 3.8

The following two assertions are equivalent
(a) There exists a function ¢ : R" — C such that for P-almost all
w € Q,
<pX|g(o.),t) =p(t), VteR"

(b) o(X) is independent of G.
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Regular con

ditional Distribution

Proof of Theorem 3.8 (a)= (b):
By (12),

(13) E [e"%|G] () = pxig(w, 1)

Multiply both sides with a r.v. Y which is bounded (real-valued) and
G-measurable, we get

YE [e"t‘x|g} (W) = Yoxg(w,t) = Yo(t).
Taking expectations,

E(YE[e*|g]) [N - #(*) E].

For Y =1 we get o(t) = E "X . Substitute this to the previous
equality to get

ditional Distribution

Regular con

(14)

BNER] - =)

Proof of Theorem 3.8 (a)= (b)
holds for all G-measurable bounded Y and t € R". So, (14
r.v.

) holds for all
Y =e7
where Z is any G-measurable R™-valued r.v. and s € R". So from (14)
E[e*Xt#Z] — E [¢™] . E[*7], Vs,teR".

This implies that X and Z are independent, and thus, X and G are
independent.
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The continuous case
Theorem 3.9
Pro?f O)f Theorem 3.8 cont (b)= (a) On the probability space (Q, F,P) we are give a random vector
By (13),
exig(w.t) = E[e"X|G] = E [¢*X] = ¢(t) Z=(Xt,...,. X, Y1,..., Y0) = (X,Y).
X Y
We assume that Z admits a density fz : R“+¢ — [0,00). Let G := o(Y).
Then there exists a conditional density fx|g : R* — [0, 00) of X given G
by the formula:
43 /69 44 /69
The continuous case cont. The continuous case cont.
proof
Theorem 3.9 cont. We have to check that for all A € R,
w . -l f ) d 4 )
oo 1 L Y(w)dx > 0; k)
(15)  fxjglw,x) =4 & =
fo(x), otherwise, is a version of P (X € A|G) (w). This follows if
where fy : R — [0, is an arbitrary density function.
0 [0, ) y y (16) E|lycs(w / frig(w, x)dx| = E [Lyes(w) - Ixea(@)],
45 / 69 holds for VA € R¥ and B € R’. We verify this: 46 /69 |

The continuous case cont.

proof cont.

E ]lyeg fx|g(w,x)} dX

/fx|g w X /]E ]IYEB
A

Observe that by definition of fxg(w, x) and change of variables formula:

E [HYGB(w) . fx|g(w,X)} = / fz(x,y)dy.

B

47 / 69

The continuous case cont.

proof cont.

So,

E ]lyeg /fx‘g w X)d

= //fz(x7y)dydx
AB

=P(XcAYcB)N

y
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© Review of Multivariate Normal Distribution
@ The bivariate Case
@ Conditioning normal r.v. on their components

Definition 4.1 (Normal distribution (on R))

Let 1 € R and o > 0. Random variable The r.v. X has normal (or
Gaussian) distribution with parameters (y1,02), if its density function:

1 Gom?

f(x) = U'mf*??_.

Then we write X ~ N(j1,02). If 1 =0 and o = 1, then we get the
standard normal distribution N(0,1). Let us use the following notation:

1 _ 7
(17) o) = =-e 00 = [ ely)dy.
T —x
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Some properties Multivariate normal distribution
X ~ N(p,0%) and X; ~ N(p;,02), i =1,2. Then Definition 4.2
E[X] = p. Var(X) = o2
gg; F)E(J) :ﬂp(;ri 3() :U(D (x ,l) A random vector X € RY is non-degenerate multivariate normal or
(€) X1+ Xo = N(ji1 + j1a, 02 + 52). jointly Gaussian, if the density function f(x) of X
(d) X ~ N(0,1), then
_V det(A) . Lx—p)T-A(x—p) d
(18) L . (X—l _ Xfa) .e7)<2/2 <P (X > x) < L L x L. eﬂ?/z (20) f(x) - (27r)d/2 e , x€RY,
V2r - = T\2r
(e) Fix a p € (0,1). Let Y, ~ Bin(n, p), a < b, then or
1 L) T (x—p) d
. Yynp . _ (21) f(x) = —— e 2 Mo xeRY,
(19) AL, I ("" = el b) = b(b) — (a). (2m)7 - det(x) ]
51/69 52769
Multivariate normal distribution cont. Multivariate normal distribution cont.
where A and g and X satisfy: o
e A isad x d matrix which is Definition 4.3
@ symmetric and Let X be as above. Let A1,..., Ay be the eigenvalues of A, and
o POSditi}/e dEf_iﬂit- Further, V1, ...,Vvy be the ortonormal basis of RY with the appropriate
© p €R%is a fixed vector eigenvectors. Let us define diagonal matrix
The meaning of matrix A is as follows:
- D := diag(\q, ..., Ad)-
(A1), = Cov(X. X)) = E[(X; — E[X])- (X — E[X]]. diag(h... Ad)
where X = (Xy,...,Xy). The d x d matrix £ = A ! with We define the orthogonal d x d matrix P = [vl vy ... vd] from
the eigenvectors vy, ..., v, as column vectors.
Y := Cov(X;, X))
is called covariance matrix. We write X ~ N (p, ¥) 53 /69 54 /69

Multivariate normal distribution cont.

Lemma 4.4
Let X be as above. Then
(22) X=P- D' (Vy,...,Ya) +1,

where Y; ~ N(0,1),i =1,...,d and they are independent. In this case
we call Y standard multivariate normal vector.

That is the random vector Y is presented as the affine transform of
independent standard normal r.v.. See [1, chapters 6 and 7].
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Converse of the previous lemma

Lemma 4.5
Let Y be a standard multivariate normal vector in R". Let B be a
non-singular d x d matrix and p € R". Let

X=B-Y+pu

Then X ~ N(u, A- AT).
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An equivalent definition

Lemma 4.6

The random vector X = (X, .

.., Xp) € R" has a multivariate normal
distribution if for all a = (ay,

..., ap) € R" the following holds:

a1 X1 + - - - + a,X,, has univariate normal distribution.

The bivariate Case

The bivariate Case

Assume that Z = (X, Y) has a bivariate normal distribution. Let

Hxs by, OX, Oy

be the expectation and standard deviation of X and Y respectively.

The proof are available in [3]

57 /69

Further, recall the definitions of covariance and correlation:

cov(X,Y) :=E[(X — px)(Y — py)]

58 /69

E[(X — x)[(Y = py)]
a(X)o(Y)
The mean vector and the variance-covariance matrix is:

fhx
= d¥ =
" { Ly } an

2

Ox  POX0y
2 .

POXTyY Oy

The bivariate Case cont. The bivariate Case cont.
The correlation of (X, Y) is: Let

_ . _ cov(X,Y) Qx,y) =
(23) p:=px,y =corr(X,Y) = SO0 (V)

1 ((x *étx)z L *wa)2 2ﬂ(X — )y — py)
1-—p? o% oy oxoy

So, the density is

1 1
fz2(x,y) = ———————ex <7 , )
Z( y) 27TUXUYM p 2Q(X )/)

59 /69 60 / 69

The bivariate Case cont. Uncorrelated = independent for Gussian
Consider the marginal densities:

p 1 L 1 _y?

= ————-e 22 an =——e ¥
X ox V27 Y oy 2 Theorem 4.7
o Let X = (Xi,...,X,) be multivariate normal vector. Assume that
Observe that whenever X and Y are uncorrelated, that is p = 0 then Cov(X:, X)) = 0 for all i # j. Then X, ..., X, are independent.
fz = fx - fy.
This means that X and Y are independent. In a similar way one can
prove the same in higher dimension:
61 /69 62 /69

Multivariate normal distribution cont.

A more general theorem in this direction is:
Theorem 4.8
Let X = (X1,...,X,) be random vector such that the marginal

distributions (the distributions of the component vectors X; ) are
@ normal and

@ independent

Then X has a multivariate normal distribution.
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CF and MGF

Theorem 4.9
Let X ~ N(p,X). Then The characteristic function is
ox(t) :=E |exp(it” - X)| = exp (ip"t — 3t"Lt)

The moment generating function is

Mx(t) :=E [exp(t” - X)| = exp (p” -t + 3t"5t) .
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of Multivariate Normal Distribution

Conditioning normal r.v. on their components

Conditioning normals

Given the multivariate normal vector

Z=(X,.. YD) = (X,Y).

Xk Ya, .
NEIERSEIL
X Y
with mean g1 and variance-covariance matrix X:

Yxx Xxy
Yyx Xyy

n= [’ul},Z:E[z-iT:
M2

whereZ:=Z —pand for X :=X —px, Y =Y — py
ZXX:E{)\(-)\(T] ZXY:IEP\('?T}

ZYX:E{AYV-)N(T} ZW:E[??T}

Normal Distribution

Conditioning normal r.v. on their components

Conditioning normals cont.

We may assume that Y yy is invertible. Then for A:= Y xy - Z;%, we
have (simply by definitions) that

(24) E[(X - AY)-YT] =0.

By Theorem 4.7 this implies that X —AY and Y are independent. By

Theorem 3.8 we have that the characteristic function of X — AY given
G = o(Y) is deterministic and is equal to (for every w):

SO)N(,A?(t) =FE [eit()N(iA?”g] s Vt € Rk.

Since AY is G-measurable, we can pull out what is known and use (4.9):

66 / 69

Conditioning normal r.v. on their components

ivariate Normal Distribution

Conditioning normals cont.

E [eit»X|g} _ eituxeitA?efétTﬂ fort c Rk,
where R N o ~
Y =E[(X—AY)(X — AY)"].
Then an easy calculation shows that conditionally, X given G is

multivariate normal N(/Lx‘g,ZX‘g) with mean and variance-covariance
matrix:

67 /69

Conditioning normal r.v. on their components

ultivariate Normal Distribution
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e Normal Distribution

Conditioning normal r.v. on their components
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