Markov Processes and Martingales

Károly Simon

Department of Stochastics
Institute of Mathematics
Budapest University of Technology and Economics
www.math.bme.hu/~simonk

File B 2025

- One way to compute conditional expectation
- 2 Conditional probability in w.r.t. a σ -algebra (simple situation)
- Regular conditional Distribution
- Review of Multivariate Normal Distribution
 - The bivariate Case
 - Conditioning normal r.v. on their components

Review of a simple situation

Let X, Y be r.v. on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume they have joint density $f_{X,Y}(x,y)$. Then to compute $\mathbb{E}[X|Y]$ as first we determine the marginal and then the conditional densities

$$f_Y(y) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \text{ and } f_{X|Y}(x|y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

Let
$$g(y) := \mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx$$
. Then we get

$$\mathbb{E}\left[X|Y\right] = g(Y).$$

Lemma 1.1 (Independence Lemma)

Let $\mathbf{X} = (X_1, \dots, X_k)$ and $\mathbf{Y} := (Y_1, \dots, Y_\ell)$, where $X_1, \dots, X_k, Y_1, \dots, Y_\ell$ are r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. We assume that

- $\bullet X_1, \ldots, X_k \in \mathcal{G}$
- Y_1, \ldots, Y_ℓ are independent of \mathcal{G} .

Let ϕ be a bounded Borel function. Let $f_{\phi}: \mathbb{R}^k \to \mathbb{R}$, $f_{\phi}(x_1, \dots, x_k) := \mathbb{E} \left[\phi(x_1, \dots, x_k, \mathbf{Y}) \right]$. Then

(2)
$$\mathbb{E}\left[\phi(\mathbf{X},\mathbf{Y})|\mathcal{G}\right] = f_{\phi}(\mathbf{X}).$$

Example. Let $X \in \mathcal{G}$, and let Y be independent of \mathcal{G} . Define

$$\varphi(X, Y) = XY.$$

Then,

$$f_{\varphi}(X) := \mathbb{E}[\varphi(X,Y)] = \mathbb{E}[XY] = \frac{X}{\mathbb{E}[Y]}.$$

$$\mathbb{E}[\varphi(X,Y)\mid\mathcal{G}] = \mathbb{E}[XY\mid\mathcal{G}] = \frac{\mathsf{X}}{\mathsf{E}}[Y\mid\mathcal{G}] = X\mathbb{E}[Y].$$

The proof of the Lemma We follow the line of the proof in Resnik's book We present the main steps of the proof here for the case $k = \ell = 1$. It is a homework to fill the gaps.

Step 1. Let $K, L \in \mathcal{R}$ (that is K, L are Borel subsets of \mathbb{R}). Let $\phi := \mathbb{1}_J$ where $J = K \times L$. Then we say that J is a measurable rectangle.

$$\mathbb{E}\left[\phi(\mathbf{X},\mathbf{Y})|\mathcal{G}\right] = \mathbb{P}\left(X \in K, Y \in L|\mathcal{G}\right)$$

$$= \mathbb{1}\{X \in K\}\mathbb{P}\left(Y \in L|\mathcal{G}\right)$$

$$= \mathbb{1}\{X \in K\}\mathbb{P}\left(Y \in L\right) = \boxed{f_{\mathbb{1}_{K \times L}}(X)}.$$

Step 2. We write RECTS for the family of measurable rectangles (like J above). Let

$$\mathcal{C}:=\left\{J\in\mathcal{R}^2: (2) \text{ holds for } \phi=\mathbb{1}_J\right\}.$$

Then RECTS $\subset C$. Now we verify that C is a λ -system. That is

- (a) $\mathbb{R}^2 \in \mathcal{C}$. This holds because $\mathbb{R}^2 \in \text{RECTS}$.
- (b) $J \in \mathcal{C}$ implies $J^c \in \mathcal{C}$. This is so because

$$\mathbb{P}\left((X,Y)\in J^c|\mathcal{G}
ight)=1-\mathbb{P}\left((X,Y)\in J|\mathcal{G}
ight)\ 1-f_{\mathbb{I}_J}(X)=f_{\mathbb{I}_{J^c}}(X).$$

(c) If
$$A_n \in \mathcal{C}$$
 and A_n are disjoint then $\bigcup A_n \in \mathcal{C}$.

We do not prove (c) here. By definition, (a), (b) and (c) implies that

- C is a λ -system and
- $\mathcal{C} \supset \text{RECTS}$.

Using that RECTS is a π -system we get

(3)
$$C \supset \sigma(\text{RECTS}) = \mathcal{R}^2$$
.

So, we have indicated that (2) holds when ϕ is an indicator function of Borel subsets of the plane.

Step 3. We could prove that (2) also holds when ϕ is a simple function. We say that a Borel function ϕ is a simple function if

its range is finite. That is if there exist a k and a partition J_1, \ldots, J_k of \mathbb{R}^2 , $J_k \in \mathcal{R}$ and real numbers c_1, \ldots, c_k such that

$$\phi = \sum_{i=1}^k c_i \mathbb{1}_{J_i}.$$

Step 4. Then we represent $\phi = \phi^+ - \phi^-$ and we can find sequences of simple functions $\{\phi_n^+\}$ and $\{\phi_n^-\}$ such that

$$\phi_n^+ \uparrow \phi^+$$
 and $\phi_n^- \uparrow \phi^-$.

Then using Conditional Monotone Convergence Theorem we conclude the proof. \blacksquare

Monotone Class Theorem

We could have used in the previous proof the so called Monotone Class Theorem (for the proof see [6, p. 235])

Definition (π -system). A collection of sets A is called a π -system if:

$$A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}.$$

Example:

$$\mathcal{A} = \{(-\infty, x] \subseteq \mathbb{R} \mid x \in \mathbb{R}\}.$$

Monotone Class Theorem cont.

Theorem 1.2 (Monotone Class Theorem)

Let A be a π -system with $\Omega \in A$ and let \mathcal{H} be a family of real valued function defined on Ω with the following three properties:

- (a) $\mathbb{1}_A \in \mathcal{H}$ whenever $A \in \mathcal{A}$.
- (b) $f, g \in \mathcal{H} \Longrightarrow f + g \in \mathcal{H}$ further, $\forall c \in \mathbb{R} : c \cdot f \in \mathcal{H}$
- (c) If $f_n \in \mathcal{H}$ satisfying $f_n \geq 0$ and $f_n \uparrow f$, then $f \in \mathcal{H}$

Then \mathcal{H} contains all bounded functions measurable w.r.t. $\sigma(\mathcal{A})$.

Application of Monotone Class Theorem

The Monotone Class Theorem plays a crucial role in proving that conditional expectation satisfies key properties, such as:

- (i) $\mathbb{E}[aX + bY \mid \mathcal{G}] = a\mathbb{E}[X \mid \mathcal{G}] + b\mathbb{E}[Y \mid \mathcal{G}].$ (ii) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{A}] = \mathbb{E}[X \mid \mathcal{A}], \text{ if } \mathcal{A} \subseteq \mathcal{G}.$
- (iii) If Y is \mathcal{G} -measurable, then:

$$\mathbb{E}[YX \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}].$$

Idea of proof:

$$\mathcal{H} := \{X : \mathbb{E}[YX \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}] \text{ for all } \mathcal{G}\text{-measurable } Y\}.$$

- One way to compute conditional expectation
- **2** Conditional probability in w.r.t. a σ -algebra (simple situation)
- Regular conditional Distribution
- Review of Multivariate Normal Distribution
 - The bivariate Case
 - Conditioning normal r.v. on their components

Review

Lemma 2.1

Let $\Omega_1, \Omega_2, \ldots$ be a partition of Ω and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra generated by $\{\Omega_n\}$. Then

$$\mathbb{E}\left[X|\mathcal{G}\right](\omega) = \frac{\mathbb{E}\left[X;\Omega_i\right](\omega)}{\mathbb{P}\left(\Omega_i\right)}$$
 for a.s. $\omega \in \Omega$.

That is,

(5)
$$\mathbb{E}\left[X|\mathcal{G}\right](\omega) = \sum_{i} \mathbb{1}_{\Omega_{i}}(\omega) \frac{\int_{\Omega_{i}} X(\omega) d\mathbb{P}}{\mathbb{P}\left(\Omega_{i}\right)}$$
 for a.s. $\omega \in \Omega$.

Example 2.2

Let $\Omega=\mathbb{R}$ and $X\sim \mathcal{N}(0,1)$. Let $\Omega_1=\{\omega:X<0\}$ and $\Omega_1=\{\omega:X\geq 0\}$. Let $\mathcal{G}=\sigma(\{\Omega_1,\Omega_2\})$. Then

$$\mathbb{E}[X\mid\mathcal{G}](\omega) = egin{cases} 2rac{\int_{-\infty}^0 x e^{-x^2/2}\,dx}{\sqrt{2\pi}}, & ext{if } \omega\in\Omega_1, \ 2rac{\int_0^\infty x e^{-x^2/2}\,dx}{\sqrt{2\pi}}, & ext{if } \omega\in\Omega_2. \end{cases}$$

By Lemma 2.1,

$$\mathbb{E}\left[X|\mathcal{G}\right](\omega) = \sum_{i} \mathbb{1}_{\Omega_{i}}(\omega) \frac{\int_{\Omega_{i}} X(\omega) d\mathbb{P}}{\mathbb{P}\left(\Omega_{i}\right)}.$$

If we apply Lemma 2.1 with $X = \mathbb{1}_A$:

(6)
$$\mathbb{E}\left[\mathbb{1}_{A}|\mathcal{G}\right](\omega) = \frac{\mathbb{P}\left(A \cap \Omega_{i}\right)}{\mathbb{P}\left(\Omega_{i}\right)} = \mathbb{P}\left(A|\Omega_{i}\right), \text{ if } \omega \in \Omega_{i}.$$

We define the conditional probability w.r.t. sub- σ -algebra:

(7)
$$\mathbb{P}(A|\mathcal{G})(\omega) := \mathbb{E}[\mathbb{1}_A|\mathcal{G}](\omega).$$

This implies that the following assertions hold:

(i)
$$\mathbb{P}(A|\mathcal{G}) \in \mathcal{G}$$
.

(ii)
$$\mathbb{P}(A|\mathcal{G}) \in L^1(\Omega, \mathcal{G}, \mathbb{P})$$
 and (iii) $\int_{\mathcal{C}} \mathbb{P}(A|\mathcal{G}) d\mathbb{P} = \mathbb{P}(A \cap G)$ for all $G \in \mathcal{G}$.

$$\mathbb{P}(A \cap G) = \sum_{i:\Omega_i \subseteq G} \mathbb{P}(A \cap \Omega_i)$$
 $= \sum_{i:\Omega_i \subseteq G} \mathbb{P}(\Omega_i) \mathbb{P}(A|\Omega_i)$
 $= \sum_{i:\Omega_i \subseteq G} \mathbb{P}(\Omega_i) \mathbb{P}(A|\mathcal{G})$ by (6) and (7)
 $= \int_G \mathbb{P}(A|\mathcal{G}) d\mathbb{P}.$

Remark 2.3

For
$$A \in \mathcal{F}$$
, $\mathbb{E}[\mathbb{1}_A | \mathcal{G}] = \mathbb{P}(A | \mathcal{G})$ is defined on $\Omega_A \subset \Omega$, $\mathbb{P}(\Omega_A) = 1$. So, $\exists Z_A \in \mathcal{G}$ s.t. $\mathbb{P}(Z_A) = 0$ and $\mathbb{P}(A | \mathcal{G})$ is not defined on Z_A .

Theorem 2.4 (Basic properties)

Given $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} .

- (a) $\mathbb{P}(\emptyset|\mathcal{G})(\omega) = 0$ and $\mathbb{P}(\Omega|\mathcal{G})(\omega) = 1$ for $\omega \in \Omega \setminus (Z_1 \cup Z_2)$.
- (b) For $A \in \mathcal{F}$, $0 \leq \mathbb{P}(A|\mathcal{G}) \leq 1$, for $\omega \in \Omega \setminus Z_A$.
- (c) Let $A = \bigsqcup_{n=1}^{\infty} A_n$ (recall: \bigsqcup means disjoint union) and $A_n \in \mathcal{F}$ then

$$\mathbb{P}(A|\mathcal{G}) = \sum_{n=1}^{\infty} \mathbb{P}(A_n|\mathcal{G}), \quad \text{for } \omega \in \Omega \setminus \bigcup_{n=1}^{\infty} Z_{A_n}.$$

We have a problem: For each $\alpha \in [0,1]$, let $\{B_{\alpha,n}\}_n \in \mathcal{F}$. Then there exists $\bigcup_n Z_{\alpha,n}$ with $\mathbb{P}(\bigcup_n Z_{\alpha,n}) = 0$. Do we have

$$\mathbb{P}(\bigcup_{\alpha\in[0,1]}\bigcup_n Z_{\alpha,n})=0?$$

We wish that there exists $\widetilde{Z} \in \mathcal{G}$ with $\mathbb{P}(\widetilde{Z}) = 0$ such that for any fixed $\omega \in \Omega \setminus \widetilde{Z}$,

$$\mathbb{P}\left(igcup_{n=1}^{\infty}A_{n}|\mathcal{G}
ight)(\omega)=\sum_{n=1}^{\infty}\mathbb{P}\left(A_{n}|\mathcal{G}
ight)(\omega),\quadorall\{A_{n}\}\in\mathcal{F}.$$

which implies that $\mathbb{P}(\cdot|\mathcal{G})$ is a conditional probability measure.

Goal: Find a sufficient condition on $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ such that for a.s. $\omega \in \Omega$, $\mathbb{P}(\cdot|\mathcal{G})$ is a conditional probability measure.

Before we state the sufficient condition, let's start with a description of an abstract object that corresponds to conditional probability.

- One way to compute conditional expectation
- 2 Conditional probability in w.r.t. a σ -algebra (simple situation)
- Regular conditional Distribution
- Review of Multivariate Normal Distribution
 - The bivariate Case
 - Conditioning normal r.v. on their components

R.C.D.

- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- Sub- σ -algebra $\mathcal{G} \subseteq \mathcal{F}$.
- Measurable space (S, S).
- Measurable map $X:(\Omega,\mathcal{F}) \to (S,\mathcal{S})$.

Definition 3.1 (Regular conditional Distribution)

We say that $\mu_{X|\mathcal{G}}:\Omega imes\mathcal{S} o[0,1]$ is a

Regular conditional Distribution for X given \mathcal{G} if

- (a) Fix $A \in \mathcal{S}$, $\omega \mapsto \mu_{X|\mathcal{G}}(\omega, A)$ is \mathcal{G} measurable.
- (b) Fix $\omega \in \Omega \setminus \widetilde{Z}$ with $\mathbb{P}(\widetilde{Z}) = 0$, $B \mapsto \mu_{X|\mathcal{G}}(\omega, B)$ is a probability measure on (S, \mathcal{S}) . Moreover, $\mu_{X|\mathcal{G}}(\omega, B) = \mathbb{P}(X \in B|\mathcal{G}), \forall B \in \mathcal{S}$.

If $S = \Omega$ and X is the identity map $X(\omega) = \omega$ then we say that $\mu_{X|\mathcal{G}}$ is a regular conditional probability.

Existence of R.C.D.

Theorem 3.2 (Existence of R.C.D.)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Further, let (S, \mathcal{S}) be a Borel space. Then any S-valued r.v. X admits a regular conditional distribution given \mathcal{G} .

The proof follows [13, Proposition 7.14].

Remark: We say that a space is a Borel space (or a nice space) if there is an injective map $\varphi:S\to\mathbb{R}$ such that both φ and φ^{-1} are measurable.

Existence of R.C.P.

Corollary of Theorem 3.2:

If $(\Omega, \mathcal{F}, \mathbb{P})$ is a Borel space, then $\mu_{X|\mathcal{G}}$ is a regular conditional probability.

Example 3.3 (Example of R.C.D.)

Assume that (X, Y) has density f(x, y) > 0. Let

$$\mu(y,A) := \int_A f(x,y) dx / \int_{-\infty}^{\infty} f(x,y) dx.$$

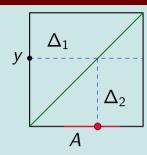
Then $\mu(Y(\omega), A)$ is an r.c.d. for X given $\sigma(Y)$.

Concrete example:

Let

$$\Delta_1 = \{(x, y) \in [0, 1]^2 : y > x\},\$$

 $\Delta_2 = \{(x, y) \in [0, 1]^2 : y \le x\}.$



$$f(x,y) = \begin{cases} \frac{1}{2}, & (x,y) \in \Delta_1 \\ \frac{3}{2}, & (x,y) \in \Delta_2 \end{cases}$$

f is a density function.

The conditional measure $\mu(y, A)$ is given by:

$$\mu(y,A) = \frac{\int_A f(x,y) dx}{f_Y(y)} = \frac{\frac{1}{2}\mathcal{L}(A \cap [0,y]) + \frac{3}{2}\mathcal{L}([y,1] \cap A)}{\frac{1}{2}y + \frac{3}{2}(1-y)}$$

$$MX[g(\omega, A) = P(X \in A | g) = \frac{L(A \cap Lo, Y(\omega)] + 3L([Y(\omega)] \cap A)}{3 - 2Y(\omega)}$$
 28/69

The conditional density function $f_{X|E}: \Omega \times \mathbb{R} \to Lo_1 \infty$) satisfies (by def.) $x \mapsto f_{X|E}(w, x)$ is Borel measurable $f_{X|E}(w, x)$ is $f_{X|E}(w, x)$ is $f_{X|E}(w, x) = f_{X|E}(w, x) = \begin{cases} f_{X|E}(w, x) = f_{X|E}($ For every fixed WESP, ACIR Borelset

 $\int_{A}^{A} \int_{X}^{L} \frac{(w,x)dx}{3-2!(w)} = \frac{\mathcal{L}(A \cap \mathcal{L}_{X}(w)) + 3\mathcal{L}(A \cap \mathcal{L}_{X}(w), 1]}{3-2!(w)} = \mu_{X|g}(w,A).$

Proof of Theorem. 3.2 for $S = \mathbb{R}$

First we assume that $(S, S) = (\mathbb{R}, \mathcal{R})$.

We first consider the collection of sets $\mathcal{A} = \{(-\infty, x) : x \in \mathbb{R}\}$. We claim that for a.s. $\omega \in \Omega$, there exists a probability measure $\mu_{X|\mathcal{G}}(\omega, \cdot)$ on \mathbb{R} such that

(*i)
$$\mu_{X|\mathcal{G}}(\omega, (-\infty, x])$$
 is \mathcal{G} - measurable function, $\forall x \in \mathbb{R}$.

(*ii)
$$\mu_{X|\mathcal{G}}(\omega, (-\infty, x]) = \mathbb{P}(X \le x|\mathcal{G})(\omega).$$

For a rational number $q \in \mathbb{Q}$ we define the r.v.

$$P^{q}(\omega) := \mathbb{P}\left(X \leq q|\mathcal{G}\right)(\omega)$$
.

 $P^q(\cdot)$ is \mathcal{G} -measurable.

By throwing away countably many null sets we may suppose that

(8)
$$P^{q}(\omega) \leq P^{r}(\omega), \quad \forall q \leq r, \ q, r \in \mathbb{Q} \text{ and } \forall \omega$$

and

$$0 = \lim_{q o -\infty} P^q(\omega), \quad \lim_{q o \infty} P^q(\omega) = 1, \quad orall \omega.$$

For an $x \in \mathbb{R}$ let

(9)
$$F(\omega, x) := \lim_{q \in \mathbb{Q}, q > x} P^{q}(\omega).$$

For each $x \in \mathbb{R}$, $F(\cdot, x)$ is \mathcal{G} -measurable.

Fix an arbitrary ω . Then $\forall \omega$ the function $x \mapsto F(\omega, x)$:

- is right continuous,
- non-decreasing,
- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

Hence there exists a probability measure $\mu_{X|\mathcal{G}}(\omega, \bullet)$ satisfying

(10)
$$\mu_{X|\mathcal{G}}(\omega, (-\infty, x]) = F(\omega, x), \quad \forall \omega, \forall x.$$

For each $x \in \mathbb{R}$, $\mu_{X|\mathcal{G}}(\cdot, (-\infty, x])$ is \mathcal{G} -measurable, which proves (*i).

Moreover, since for a.s. ω ,

$$\begin{aligned}
F(\omega, x) &= \inf_{q > x, q \in \mathbb{Q}} P^{q}(\omega) = \lim_{q \downarrow x, q \in \mathbb{Q}} P^{q}(\omega) \\
&= \lim_{q \downarrow x} \mathbb{P}\left(X \le q | \mathcal{G}\right)(\omega) = \frac{\mathbb{P}\left(X \le x | \mathcal{G}\right)(\omega)}{\mathbb{P}\left(X \le x | \mathcal{G}\right)(\omega)}, \quad \forall x \in \mathbb{R}.
\end{aligned}$$

By this and (10) we have for a.s. ω ,

$$\mu_{X|\mathcal{G}}(\omega,(-\infty,x]) = \mathbb{P}(X \leq x|\mathcal{G})(\omega), \quad \forall x \in \mathbb{R}.$$

This proves (*ii).

Now we write \mathcal{L} for the family of all Borel sets $B \in \mathcal{R}$ satisfying the following two conditions:

- (i) $\omega \mapsto \mu_{X|\mathcal{G}}(\omega, B)$ is a r.v..
- (ii) $\mu_{X|\mathcal{G}}(\omega, B)$ is a version of $\mathbb{P}(X \in B|\mathcal{G})(\omega)$.

Cleary,

$$\mathcal{L} \supseteq \mathcal{A}(:=\{(-\infty,x):x\in\mathbb{R}\}).$$

Check that

- \mathcal{L} is λ -system (we omit this proof).
- \mathcal{A} is a π -system such that $\mathcal{R} = \sigma(\mathcal{A})$.

Then $\mathcal{L} \supseteq \mathcal{R}$. The proof of Theorem 3.2 is completed in the case of $(S, \mathcal{S}) = (\mathbb{R}, \mathcal{R})$.

Proof of Theorem. 3.2 in the general case

Let $X:(\Omega,\mathcal{F})\to (S,\mathcal{S})$ is measurable. Using that (S,\mathcal{S}) is a nice space, there exists an injective map $\rho:S\to\mathbb{R}$ such that both ρ and ρ^{-1} are r.v.. Then the composition

$$Y := \rho \circ X : \Omega \to \mathbb{R}$$

is also a r.v. for which we consider the corresponding r.c.d.:

$$\mu_{Y|\mathcal{G}}(\omega, A) := \mathbb{P}(Y \in A|\mathcal{G}), \quad A \in \mathcal{R}.$$

Now we can define the r.c.d for X:

$$\mu_{X|\mathcal{G}}(\omega, B) := \mu_{Y|\mathcal{G}}(\omega, \rho(B)).$$

Then it is not hard to prove that $\mu_{X|\mathcal{G}}(\omega, B)$ satisfies the conditions (a) and (b) of Definition 3.1.

Corollary of Theorem 3.2:

Theorem 3.4 (Expectation w.r.t. the R.C.D.)

Let $\mu(\omega, A)$ be a r.c.d. for X given \mathcal{F} and let $f:(S, \mathcal{S}) \to (\mathbb{R}, \mathcal{R})$ be measurable. (This means that $f:S \to \mathbb{R}$ and for every Borel set $B \in \mathcal{R}$ we have $f^{-1}(B) \in \mathcal{S}$.) Further, we assume that $\mathbb{E}[|f(X)|] < \infty$. Then

(11)
$$\mathbb{E}\left[f(X)|\mathcal{F}\right] = \int f(x) \cdot \mu(\omega, dx).$$

E.g. If $f = \mathbb{1}_A$, then

$$\mathbb{E}\left[\mathbb{1}_{A}|\mathcal{F}\right](\omega) = \mu(\omega, A).$$

Conditional Characteristic Function

Notation for the next slides:

- $(\Omega, \mathcal{F}, \mathbb{P})$ is the given probability space,
- \mathcal{G} is a sub- σ -algebra of \mathcal{F} ,
- $X : \Omega \to \mathbb{R}^n$ is a given vector-valued r.v.,
- $\mu_{X|\mathcal{G}}: \Omega \times \mathcal{R}^n \to [0,1]$ be the regular conditional distribution of X given \mathcal{G} .

Definition 3.5 (Regular conditional cdf)

$$F(\omega, \mathbf{x}) := \mu_{\mathbf{X}|\mathcal{G}} (\omega, \{\mathbf{y} \in \mathbb{R}^n : \mathbf{y} \leq_n \mathbf{x}\}) \quad \mathbf{x} \in \mathbb{R}^n$$

Conditional Characteristic Function cont.

Definition 3.6

$$f_{\mathbf{X}|\mathcal{G}}: \Omega \times \mathbb{R}^n \to [0,\infty)$$
 is the conditional density function of X given \mathcal{G}

- $\mathbf{x} \mapsto f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$ is Borel measurable,
- $\omega \mapsto f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$ is \mathcal{G} -measurable for every $\mathbf{x} \in \mathbb{R}^n$,
- $\oint_B f_{\mathbf{X}|\mathcal{G}(\omega,\mathbf{x})} dx = \mu_{\mathbf{X}|\mathcal{G}}(\omega,B).$

Conditional Characteristic Function cont.

Definition 3.7 (Conditional characteristic function)

The conditional characteristic function of X given \mathcal{G} ,

$$arphi_{X\mid\mathcal{G}}:\Omega imes\mathbb{R}^n o\mathbb{C}$$
 is

(12)
$$\varphi_{X|\mathcal{G}}(\omega, \mathbf{t}) := \int_{\mathbb{R}^n} e^{i\mathbf{t}\cdot\mathbf{x}} d\mu_{\mathbf{X}|\mathcal{G}}(\omega, d\mathbf{x})$$
By Theorem 3.4 To [.it·X | .?]

 $\stackrel{\mathsf{By} \ \mathsf{Theorem}}{=} {}^{3.4} \, \mathbb{E}\left[\mathsf{e}^{i\mathbf{t}\cdot\mathsf{X}}|\mathcal{G}\right](\omega), \quad \mathbf{t} \in \mathbb{R}^n,$

where $\mathbf{t} \cdot \mathbf{x}$ above means the scalar product of \mathbf{t} and \mathbf{x} .

Conditional Characteristic Function cont.

Theorem 3.8

The following two assertions are equivalent

(a) There exists a function $\varphi: \mathbb{R}^n \to \mathbb{C}$ such that for \mathbb{P} -almost all $\omega \in \Omega$,

$$\varphi_{X|\mathcal{G}}(\omega, \mathbf{t}) = \varphi(t), \quad \forall t \in \mathbb{R}^n.$$

(b) $\sigma(\mathbf{X})$ is independent of \mathcal{G} .

Proof of Theorem 3.8 (a) \Rightarrow (b):

By (12),

(13)
$$\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}}|\mathcal{G}\right](\omega) = \varphi_{X|\mathcal{G}}(\omega,\mathbf{t}).$$

Multiply both sides with a r.v. Y which is bounded (real-valued) and \mathcal{G} -measurable, we get

$$Y\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}}|\mathcal{G}\right](\omega) = Y\varphi_{X|\mathcal{G}}(\omega,\mathbf{t}) = Y\varphi(t).$$

Taking expectations,

$$\mathbb{E}(Y\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}}|\mathcal{G}\right]) = \mathbb{E}\left[Ye^{i\mathbf{t}\cdot\mathbf{X}}\right] = \varphi(t)\cdot\mathbb{E}\left[Y\right].$$

For Y=1 we get $\varphi(t)=\mathbb{E}\left[\mathrm{e}^{i\mathbf{t}\cdot\mathbf{X}}\right]$. Substitute this to the previous equality to get

$$\mathbb{E}\left[\mathbf{Y}e^{i\mathbf{t}\cdot\mathbf{X}}\right] = \mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}}\right]\cdot\mathbb{E}\left[\mathbf{Y}\right]$$

Proof of Theorem 3.8 (a) \Rightarrow (b)

holds for all \mathcal{G} -measurable bounded Y and $\mathbf{t} \in \mathbb{R}^n$. So, (14) holds for all r.v.

$$Y=e^{i\mathbf{s}\cdot Z},$$

where Z is any \mathcal{G} -measurable \mathbb{R}^n -valued r.v. and $\mathbf{s} \in \mathbb{R}^n$. So from (14)

$$\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}+i\mathbf{s}\cdot\mathbf{Z}}\right] = \mathbb{E}\left[e^{i\mathbf{t}\mathbf{X}}\right]\cdot\mathbb{E}\left[e^{i\mathbf{s}\mathbf{Z}}\right], \quad \forall \mathbf{s}, \mathbf{t} \in \mathbb{R}^n.$$

This implies that X and Z are independent, and thus, X and \mathcal{G} are independent.

Proof of Theorem 3.8 cont (**b**) \Rightarrow (**a**)

By (13),

$$arphi_{m{\mathsf{X}}|m{\mathcal{G}}}(\omega,\mathbf{t}) = \mathbb{E}\left[\mathrm{e}^{i\mathbf{t}\cdot\mathbf{X}}|m{\mathcal{G}}
ight] = \mathbb{E}\left[\mathrm{e}^{i\mathbf{t}\cdot\mathbf{X}}
ight] = arphi(t)$$

The continuous case
$$P(Z \in H) = \int_{H}^{R} f_2(t) dt$$

Theorem 3.9

On the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we are give a random vector

$$\mathbf{Z} = (\underbrace{X_1, \ldots, X_k}_{\mathbf{X}}, \underbrace{Y_1, \ldots, Y_\ell}_{\mathbf{Y}}) = (\mathbf{X}, \mathbf{Y}).$$

We assume that **Z** admits a density $f_{\mathbf{Z}}: \mathbb{R}^{k+\ell} \to [0, \infty)$. Let $\mathcal{G} := \sigma(\mathbf{Y})$. Then there exists a conditional density $f_{\mathbf{X}|\mathcal{G}}: \mathbb{R}^k \to [0,\infty)$ of **X** given \mathcal{G} by the formula:

defined on slide 38)

The continuous case cont.

Theorem 3.9 cont.

(15)
$$f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x}) = \begin{cases} \frac{f_{\mathbf{Z}}(\mathbf{x}, \mathbf{Y}(\omega))}{\int f_{\mathbf{Z}}(\mathbf{x}, \mathbf{Y}(\omega)) d\mathbf{x}}, & \text{if } \int_{\mathbb{R}^{\ell}} f(\mathbf{x}, \mathbf{Y}(\omega)) d\mathbf{x} > 0; \\ f_{0}(\mathbf{x}), & \text{otherwise,} \end{cases}$$

where $f_0: \mathbb{R}^k \to [0, \infty)$ is an arbitrary density function.

The continuous case cont.

proof

We have to check that for all $A \in \mathcal{R}^k$,

$$\int\limits_{A} f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x}) d\mu_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$$

is a version of $\mathbb{P}(\mathbf{X} \in A|\mathcal{G})(\omega)$. This follows if

(16)
$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right]=\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\mathbb{1}_{\mathbf{X}\in A}(\omega)\right],$$

holds for $\forall A \in \mathcal{R}^k$ and $B \in \mathcal{R}^\ell$. We verify this:

Tf Sf (w,x/dx dp(w) = S | [XXEA|G) dp(w) then Sf (w,x/dx is a version of | [XXEA|G). G = 5(1) version of IR(XEA)G). Sf (w,x/dxdplw) = |E[1] (w) Sf (w,x/dx) the (.G.S. in (16)) S P(XEA/G) d/P(w) = SP(XA)/G) dP(w) = [E[1] (w) |G] o(P(w) = E[1] . |E[1] |G]

Y'(B) Y'(B) Y'(B) Y'(B) XEA |G] = |E[1| (w) |G] o(P(w) = E[1] . |E[1] |G]

= |E[1| |E[1| |Ye| |Xea| |G]] = |E[1| |Ye| |Xea] the r.l.s. of (16).

The continuous case cont.

proof cont.

$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int\limits_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right]=\int\limits_{A}\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})\right]d\mathbf{x}$$

Observe that by definition of $f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$ and change of variables formula:

$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})\right]=\int_{\Omega}f_{\mathbf{Z}}(x,y)d\mathbf{y}.$$

Namely,

Change of variables formula in general THE (X, M)

(2) The change of variables fermula states:

(2) The change of variables fermula states:

(3) The change of variables fermula states:

(4) The change of variables fermula states:

(4) The change of variables fermula states:

(5) The change of variables fermula states:

(4) The change of variables fermula states:

(5) The change of variables fermula states:

(6) Define the push for
(7) The change of variables fermula states:

(8) The change of variables fermula states:

(9) The change of variables fermula states:

(10) The change of variables fermula states:

(11) The change of variables fermula states:

(12) The change of variables fermula states:

(13) The change of variables fermula states:

(13) The change of variables fermula states:

(14) The change of variables fermula states:

(15) The change of variables fermula states for the variables fermula states for the variables for the var What is $|Y_{k}|P = 2$. This is the distribution of Y (by definition) $Y (R^{2}, R^{2}, Y_{k}P)$ Let $H \subset \mathbb{R}^{2}$. Then $(Y_{k}P)(H) = \mathbb{R}(Y^{2}H) = \mathbb{R}(X \in \mathbb{R}^{2}, Y \in H) = \int \int_{\mathbb{R}^{2}} \int_$ This means that Mis Means when $d(f_{\chi}Y)(y) = f_{\chi}(y)dy = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ $f_{\chi}(t,y)(t,y) = \int_{\mathcal{L}} f_{\chi}(t,y)dt dy \qquad (9 > 0)$ fig the marginal density feeting (5 3 (4) d (1/11)(4) = 5 g (4(w) · d (P(w)) *)

[E[[(w) sfx(w,x)dx] = [E[s] (w) f(w,x)dx] = sell (w) f(w,x)dx deg x

The continuous case cont.

proof cont.

So,

$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right]$$

$$=\int_{A}\int_{B}f_{\mathbf{Z}}(x,y)d\mathbf{y}d\mathbf{x}$$

 $= \mathbb{P}(X \in A; Y \in B.) \blacksquare$

- One way to compute conditional expectation
- ② Conditional probability in w.r.t. a σ -algebra (simple situation)
- Regular conditional Distribution
- Review of Multivariate Normal Distribution
 - The bivariate Case
 - Conditioning normal r.v. on their components

Definition 4.1 (Normal distribution (on \mathbb{R}))

Let $\mu \in \mathbb{R}$ and $\sigma > 0$. Random variable The r.v. X has normal (or Gaussian) distribution with parameters (μ, σ^2) , if its density function:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Then we write $X \sim \mathcal{N}(\mu, \sigma^2)$. If $\mu = 0$ and $\sigma = 1$, then we get the standard normal distribution $\mathcal{N}(0,1)$. Let us use the following notation:

(17)
$$\varphi(x) := \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}, \quad \Phi(x) := \int_{-\infty}^{\infty} \varphi(y) dy.$$

Some properties

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, 2$. Then (a) $\mathbb{E}[X] = \mu$, $\mathrm{Var}(X) = \sigma^2$.
(b) $F_X(x) = \mathbb{P}(X \le x) = \Phi(\frac{x-\mu}{\sigma})$.
(c) $X_1 + X_2 = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
(d) $X \sim \mathcal{N}(0, 1)$, then

(18)
$$\frac{1}{\sqrt{2\pi}} \cdot (x^{-1} - x^{-3}) \cdot e^{-x^2/2} \le \mathbb{P}\left(X \ge x\right) \le \frac{1}{\sqrt{2\pi}} \cdot x^{-1} \cdot e^{-x^2/2}$$

(e) Fix a $p \in (0,1)$. Let $Y_n \sim \text{Bin}(n,p)$, a < b, then

(19)
$$\lim_{n\to\infty} \mathbb{P}\left(a < \frac{Y_n - np}{\sqrt{np(1-p)}} < b\right) = \Phi(b) - \Phi(a).$$

Definition 4.2

A random vector $\mathbf{X} \in \mathbb{R}^d$ is non-degenerate multivariate normal or jointly Gaussian, if the density function $f(\mathbf{x})$ of \mathbf{X}

(20)
$$f(\mathbf{x}) = \frac{\sqrt{\det(A)}}{(2\pi)^{d/2}} \cdot e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \cdot A \cdot (\mathbf{x} - \boldsymbol{\mu})}, \quad \mathbf{x} \in \mathbb{R}^d,$$

or

$$(21) f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \cdot \det(\Sigma)}} \cdot e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \cdot \Sigma^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu})}, \quad \mathbf{x} \in \mathbb{R}^d,$$

where A and μ and Σ satisfy:

- A is a $d \times d$ matrix which is
 - symmetric and positive definit. Further,
- \bullet $\mu \in \mathbb{R}^d$ is a fixed vector

The meaning of matrix
$$A$$
 is as follows:
$$\left(A^{-1}\right)_{ii} = Cov(X_i, X_j) = \mathbb{E}\left[\left(X_i - \mathbb{E}\left[X_i\right]\right) \cdot \left(X_j - \mathbb{E}\left[X_j\right]\right],$$

where
$$\mathbf{X} = (X_1, \dots, X_d)$$
. The $d \times d$ matrix $\mathbf{\Sigma} = A^{-1}$ with

$$\Sigma_{ij} := Cov(X_i, X_j)$$

is called covariance matrix. We write $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Definition 4.3

Let **X** be as above. Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of A, and $\mathbf{v}_1, \ldots, \mathbf{v}_d$ be the ortonormal basis of \mathbb{R}^d with the appropriate eigenvectors. Let us define diagonal matrix

$$D := \operatorname{diag}(\lambda_1, \ldots, \lambda_d).$$

We define the orthogonal $d \times d$ matrix $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_d]$ from the eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$ as column vectors.

Lemma 4.4

Let X be as above. Then

(22)
$$\mathbf{X} = P \cdot D^{-1/2} \cdot (Y_1, \dots, Y_d) + \boldsymbol{\mu},$$

where $Y_i \sim \mathcal{N}(0,1), i=1,\ldots,d$ and they are independent. In this case we call **Y** standard multivariate normal vector.

That is the random vector \mathbf{Y} is presented as the affine transform of independent standard normal r.v.. See [1, chapters 6 and 7].

Converse of the previous lemma

Lemma 4.5

Let **Y** be a standard multivariate normal vector in \mathbb{R}^n . Let B be a non-singular $d \times d$ matrix and $\mu \in \mathbb{R}^n$. Let

$$\mathbf{X} := B \cdot \mathbf{Y} + \boldsymbol{\mu}$$

Then $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, A \cdot A^T)$.

An equivalent definition

Lemma 4.6

The random vector $\mathbf{X} = (X_1, \dots, X_n) \in \mathbb{R}^n$ has a multivariate normal distribution if for all $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ the following holds:

$$a_1X_1 + \cdots + a_nX_n$$
 has univariate normal distribution.

The proof are available in [3]

The bivariate Case

Assume that $\mathbf{Z} = (X, Y)$ has a bivariate normal distribution. Let

$$\mu_{\mathsf{X}}, \ \mu_{\mathsf{Y}}, \ \sigma_{\mathsf{X}}, \ \sigma_{\mathsf{Y}}$$

be the expectation and standard deviation of X and Y respectively. Further, recall the definitions of covariance and correlation:

$$cov(X, Y) := \mathbb{E}\left[(X - \mu_X)(Y - \mu_Y)\right]$$

The bivariate Case cont.

The correlation of (X, Y) is:

(23)
$$\rho := \rho_{X,Y} := \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma(X)\sigma(Y)}$$
$$= \frac{\mathbb{E}\left[(X - \mu_X)[(Y - \mu_Y)]\right]}{\sigma(X)\sigma(Y)}$$

The mean vector and the variance-covariance matrix is:

$$\mu := \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}$.

The bivariate Case cont.

Let

$$\frac{Q(x,y)}{1-\rho^2} := \frac{1}{1-\rho^2} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} \right)$$

So, the density is

$$\frac{f_{\mathbf{Z}}(x,y)}{2\pi\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2}Q(x,y)\right).$$

The bivariate Case cont.

Consider the marginal densities:

$$f_X := rac{1}{\sigma_X \cdot \sqrt{2\pi}} \cdot \mathrm{e}^{-rac{(x-\mu_X)^2}{2\sigma^2}} ext{ and } f_Y := rac{1}{\sigma_Y \cdot \sqrt{2\pi}} \cdot \mathrm{e}^{-rac{(y-\mu_Y)^2}{2\sigma_Y^2}}.$$

Observe that whenever X and Y are uncorrelated, that is ho=0 then

$$f_{\mathbf{Z}} = f_X \cdot f_Y$$
.

This means that X and Y are independent. In a similar way one can prove the same in higher dimension:

Uncorrelated \Rightarrow independent for Gussian

Theorem 4.7

Let $\mathbf{X} = (X_1, \dots, X_n)$ be multivariate normal vector. Assume that $\mathrm{Cov}(X_i, X_j) = 0$ for all $i \neq j$. Then X_1, \dots, X_n are independent.

A more general theorem in this direction is:

Theorem 4.8

Let $\mathbf{X} = (X_1, \dots, X_n)$ be random vector such that the marginal distributions (the distributions of the component vectors X_i) are

- normal and
- independent

Then X has a multivariate normal distribution.

CF and MGF

Theorem 4.9

Let $X \sim \mathcal{N}(\mu, \Sigma)$. Then The characteristic function is

$$|\varphi_{\mathbf{X}}(\mathbf{t})| := \mathbb{E}\left[\exp(i\mathbf{t}^T \cdot \mathbf{X})\right] = \exp\left(i\boldsymbol{\mu}^T \mathbf{t} - \frac{1}{2}\mathbf{t}^T \Sigma \mathbf{t}\right)$$

The moment generating function is

$$M_{\mathbf{X}}(\mathbf{t}) := \mathbb{E}\left[\exp(\mathbf{t}^T \cdot \mathbf{X})\right] = \exp\left(i\mu^T \cdot \mathbf{t} + \frac{1}{2}\mathbf{t}^T \Sigma \mathbf{t}\right).$$

Conditioning normals

Given the multivariate normal vector

$$\mathbf{Z} = (\underbrace{X_1, \ldots, X_k}_{\mathbf{X}}, \underbrace{Y_1, \ldots, Y_\ell}_{\mathbf{Y}}) = (\mathbf{X}, \mathbf{Y}).$$

with mean μ and variance-covariance matrix Σ :

$$\boldsymbol{\mu} = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right], \boldsymbol{\Sigma} = \mathbb{E} \left[\tilde{\mathbf{Z}} \cdot \tilde{\mathbf{Z}}^T \right] = \left[\begin{array}{cc} \boldsymbol{\Sigma}_{XX} & \boldsymbol{\Sigma}_{XY} \\ \boldsymbol{\Sigma}_{YX} & \boldsymbol{\Sigma}_{YY} \end{array} \right],$$

where
$$\widetilde{\mathbf{Z}}:=\mathbf{Z}-oldsymbol{\mu}$$
 and for $\widetilde{\mathbf{X}}:=\mathbf{X}-oldsymbol{\mu}_X$, $\widetilde{\mathbf{Y}}:=\mathbf{Y}-oldsymbol{\mu}_Y$

$$egin{aligned} \Sigma_{XX} &= \mathbb{E}\left[\widetilde{\mathbf{X}}\cdot\widetilde{\mathbf{X}}^T
ight] & \Sigma_{XY} &= \mathbb{E}\left[\widetilde{\mathbf{X}}\cdot\widetilde{\mathbf{Y}}^T
ight] \ \Sigma_{YX} &= \mathbb{E}\left[\widetilde{\mathbf{Y}}\cdot\widetilde{\mathbf{X}}^T
ight] & \Sigma_{YY} &= \mathbb{E}\left[\widetilde{\mathbf{Y}}\cdot\widetilde{\mathbf{Y}}^T
ight] \end{aligned}$$

Conditioning normals cont.

We may assume that Σ_{YY} is invertible. Then for $A := \Sigma_{XY} \cdot \Sigma_{YY}^{-1}$ we have (simply by definitions) that

(24)
$$\mathbb{E}\left[\left(\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}}\right) \cdot \widetilde{\mathbf{Y}^T}\right] = 0.$$

By Theorem 4.7 this implies that $\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}}$ and $\widetilde{\mathbf{Y}}$ are independent. By Theorem 3.8 we have that the characteristic function of $\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}}$ given $\mathcal{G} = \sigma(Y)$ is **deterministic** and is equal to (for every ω):

$$\varphi_{\widetilde{\mathbf{X}}-A\widetilde{\mathbf{Y}}}(\mathbf{t}) = \mathbb{E}\left[e^{i\mathbf{t}(\widetilde{\mathbf{X}}-A\widetilde{\mathbf{Y}})}|\mathcal{G}\right], \quad \forall \mathbf{t} \in \mathbb{R}^k.$$

Since \overrightarrow{AY} is \mathcal{G} -measurable, we can pull out what is known and use (4.9):

Conditioning normals cont.

$$\mathbb{E}\left[\mathrm{e}^{i\mathbf{t}\cdot\mathbf{X}}|\mathcal{G}\right]=\mathrm{e}^{i\mathbf{t}\boldsymbol{\mu}_X}\mathrm{e}^{i\mathbf{t}A\widetilde{\mathbf{Y}}}\mathrm{e}^{-\frac{1}{2}\mathbf{t}^T\widehat{\boldsymbol{\Sigma}}\mathbf{t}} \text{ for } \mathbf{t}\in\mathbb{R}^k,$$

where

$$\widehat{\mathbf{\Sigma}} = \mathbb{E}\left[(\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}})(\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}})^T\right].$$

Then an easy calculation shows that conditionally, \mathbf{X} given \mathcal{G} is multivariate normal $\mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{X}|\mathcal{G}}, \boldsymbol{\Sigma}_{\mathbf{X}|\mathcal{G}}\right)$ with mean and variance-covariance matrix:

$$\mu_{\mathsf{X}|\mathcal{G}} = \mu_{\mathsf{X}} + A(\mathsf{Y} - \mu_{\mathsf{Y}})$$
 and $\Sigma_{\mathsf{X}|\mathcal{G}} = \Sigma_{\mathsf{XX}} - \Sigma_{\mathsf{XY}} \Sigma_{YY}^{-1} \Sigma_{\mathsf{YX}}$.

Assume that V=(X, Y) is a multivariate normal r.v. and (ECY3=0. Question F[X | Y] =? A= Zxy Zyy, where Zxy=F[(X-mx)(Y-my)]= Cov(X,Y) Zyy=(E((Y-My)2) = Var(Y). A= Zxi Eyy = Cov(Kit). So, by the formula at the bottom of slide 64 (X) Using that pey=0 we get

E[X(Y)= \mu_X + \frac{\cov(X, Y)}{\var(Y)}(Y-\mu_Y)} \frac{\tangle \tangle \ta Example for using this formula. Suppose that the weights X in (lbs) and the heights (in inches) Y of undergraduate collage men have a multivariate normal distribution with $\mu = \begin{pmatrix} 175 \\ 71 \end{pmatrix} & = \begin{pmatrix} 550 & 40 \\ 40 & 8 \end{pmatrix}$. Then by formula & the Conditional distribution of X given that Y=y, is a normal distribution Mean: $\mu_1 + \frac{6}{92}(y-\mu_1) = 175 + \frac{40}{8}(y-71) = 5y - 180$.

By the last formula on the Variance $\Sigma_{XX} - \Sigma_{XY} \Sigma_{YY} \Sigma_{YX} = \Sigma_{H} - \frac{\Sigma_{H}}{\Sigma_{H}} = 550 - \frac{40}{8} = 350$ | By the last formula on the previous slide.

Question What is IE[X 15]=? This is MXIG=MX+A(Y-MY). What is A? $H = \sum_{XY} \sum_{YY} = E[\tilde{X} \cdot \tilde{Y}^T] = E[(X - \mu_X) \cdot (Y_1 - \mu_{K_1} Y_2 - \mu_{Y_2})] = (Cov(X_1 Y_1), Cov(X_1 Y_2)).$ Zyy= IE[[x-142]. [x-142] - [x-142] = [IE[(x-142)2] IE[(x-142)2] = [cov(x,x) voo(x)] A = (cov(X, K), cov(X, K)]. (var(K) cov(K, K)) -1 So, $\mathbb{E}[X(g] = \mu_{X}|g = \mu_{X} + \left(\text{cov}(X_{i}|x_{i}), \text{cov}(X_{i}|x_{i})\right) \cdot \left(\text{cov}(X_{i}|x_{i}), \text{cov}(X_{i}|x_{i$

Assume that $Z = (X_1 Y_1 Y_2)$ is a multivariate normal vector. Let $G := G(Y_1, Y_2)$.

Assume that IECt, 3=IECt, 3=0 & 4, 1/2 are independent.
$$\begin{split} \mathbb{E}[X|\mathcal{G}] &= \mu_{x} + \left[\mathbb{E}[(X - \mu_{x}) Y_{1}]_{1} \mathbb{E}[(X - \mu_{x}) Y_{2}]_{1} \right] \cdot \begin{bmatrix} \mathbb{E}[Y_{1}^{2}]_{1} & 0 \\ 0 & \mathbb{E}[Y_{2}^{2}]_{2} \end{bmatrix} \cdot \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix} \\ &= \mu_{x} + \left[\mathbb{E}[(X - \mu_{x}) \cdot Y_{1}]_{1} \mathbb{E}[(X - \mu_{x}) \cdot Y_{2}]_{2} \right] \cdot \begin{bmatrix} \mathbb{E}[Y_{1}^{2}]_{1}^{-1} & 0 \\ 0 & \mathbb{E}[Y_{2}^{2}]_{2}^{-1} \end{bmatrix} \cdot \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix} \end{split}$$
7 (E[K2]-K2] = Mx + 1E(X-Mx). ([E[Y2]). Y, + (E[K2]). Y,] So, [EXIG] = Mx + IE[X-Mx). [(E[Y2]). Y, + (E[Y2]). We put together A RKX to get OE[X14, 4] = IE[X14]+ IE[X14]- IE[X]

- [1] MŔTON BALÁZS,BÁLINT TÓTH

 Lecture notes: Introductory probability (in Hungarian)

 Click here.
- [2] P. BILLINGSLEY

 Probability and measure

 Wiley, 1995
- [3] M. BOLLA, A. KÁMLI Statisztikai kvetkezttetések elmélete Typotex, 2005
- [4] R. DURRETT

 Essentials of Stochastic Processes, Second edition

 Springer, 2012. Click here
- R. DURRETT
 Probability: Theory with examples, 4th edition
 Cambridge University Press, 2010.
- [6] R. DURRETT

 Probability: Theory and Examples

 Click here
- S. KARLIN, H.M. TAYLOR
 A first course in stochastic processes
 Academic Press, New York, 1975
- [8] S. KARLIN, H.M. TAYLOR Sztochasztikus Folyamatok Gondolat, Budapest, 1985

- [9] S. KARLIN, H.M. TAYLOR A second course in stochastic processes , Academic Press, 1981
- $[10] \qquad {\rm P.~MATTILA~Geometry~of~sets~and~measure~in~Euclidean~spaces.~Cambridge,~1995}.$
- A probability Path
 Birkhäuser 2005

 [12] D. WILLIAMS
 Probability with Martingales

S. I. Resnik

[11]

- Probability with Martingales Cambridge 2005
- [13] G. ZITKOVIC Theory of Probabilty I, Lecture 7 Click here