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Measure Theory and Conditional

|
Introduction Basic Measure Theory

The most important reference material is

R. Durett Probability Theory and Examples 5. ed.

One can download it free of charge from:
https://sites.math.duke.edu/~rtd/PTE/pte.html

We do not follow this book closely but the material students of the
course are supposed to know from previous semesters is available in
this book.
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@ When we want to emphasize that the set A is a disjoint union of
0 Notation A1, A1, ... A, then we write
(1) A=A
i=1
We remark that in Durrett’s book [5] the same disjoint union is
denoted by + | A;. If A is not necessarily disjoint union of
A, Ay, ... A, then we write
A= UA,-.
i=1
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@ Given the sequences ay, b, with b, > 0 for every n. We write that
® a, =o(b,) if lm}z— =0.
@ a, = O(b,) if lim sup% <
o a, = O(b,) it both a, = O(b,) and b, = O(ay).
@ a, ~b,if lilgz—:: .
© The Borel o-algebra on R¢ is denoted by %?. Whend = 1 we
write simply R.
@ The d-dimensional Lebesgue measure is denoted by £ .
Q Givenaset X.

@ The complement of an A c X is denoted by A¢ . If there is a topology on
X then
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@ A stands for the closure of A (if it makes sense),
@ A° is the interior of A.

©Q Let ¥ be a collection of subsets of a set X. Then we write o (F)
for the generated o-algebra.

@ When we say a set is countable we mean that it is either finite or
countably infinite.
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Notation

Definition 1.1 (semialgebra, algebra,c-algebra)
Given a set Q. A collection S = 2% is called
semialgebra: if
@ A,Be SimpliesA n Be Sand
@ VA € ¥, A%is a finite disjoint union of elements of 7.
algebra: if S is closed for all finite set operations.
o-algebra: if Sis closed for all countable set operations.
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Notation

Definition 1.2

@ Assume that S is a semialgebra. Then we write S for the
generated algebra (which the collection of disjoint unions of sets
from S).

© Let A be algebra. The o-algebra o(A) generated by A is the
smallest o-algebra that contains A. This is the intersection of all
o-algebras that contain A.

Observe that any finitely additive set function defined on a semialgebra
S extends to the generated algebra S in an obvious way.
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Basic Measure Theory

@ Let ¥ be a o-algebra of a given set X. We say that a function
w:F —[0,00]is a measure if
(a) u() = 0and
(b) u (U, E) = X u(E;) for every disjoint sequence of
i=1
sets {E;};2, in F.
@ We say that a set function v is a pre-measure v is defined on a
algebra A < 2X satisfying:
(i) (&) =0and

Basic Measure Theory (cont.)

o0
(i) v (U, E;) = ) v(E;) for every disjoint sequence of
i=1
sets {E;}2, in A.
@ An outer measure v on X is defined on all subsets of X takes
values from [0, «o] such that
L4 y(@) =0,
@ v(A) <v(B)ifAc B,
@ v(UPE;) < Z v(E;) for all sequence of sets {E;}7,.

i
i=1
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Basic Measure Theory (cont.)
@ Now we assume that (X, d) is a metric space. We say that the
outer measure v is a metric outer measure if © Carathéodory’s extension theorem
v(Au B) =v(A) + v(B)
holds for all A, B < X with inf {d(a,b) : a € A,b € B} > 0.
@ The set function v : A — [0, ] for an A = 2% is called o-finite if
there exists {B;}-,, B; € A such that Q = | J B; and v(B;) < w for
i=1
all i.
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[Carathéodory’s extension theorem

Carathéodory measurable sets

Let i be a pre-measure on the algebra A — 2%. We define the
corresponding outer measure

@ u*(B) :=inf{2u(A,-) :Bc UA,-, Aieﬂ}
i=1

and the family of Carathéodory-measurable sets:
() M:={E:VAcX:u(A) =u(AnE)+u(A\E)}.

The proof of the following theorem is available in the Appendix of [5].
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[Carathéodory’s extension theorem

Carathéodory measurable sets (cont.)

Theorem 2.1

@ M s a o-algebra. We call it the o-algebra of u-measurable sets.
Q@ Mo o(A).

© The restriction of u* to M is a measure.

Q VB e A we have u*(B) = u(B).

Q If(X,d) is a metric space and u* is a metric outer measure. Then

M contains the Borel sets. That is the restriction of u* to M is a
Borel measure.
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Carath

Carathéodory’s Extension Theorem

Let S be a semialgebra and let u be a set function u : S — [0, ]
satisfying
Q IfS,S;eSfori=1,2,....,nst. S = | |S;then u(S) = > pu(S)).
i=1 i=1
(That is  is finitely additive.)

Q IfS,S;eSfori=1,2,...st. 5 = | |S:then u(S) < 3 u(S).

i=1 i=1

(That is i is sub-additive.)
Then
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h

Carathéodory’s Extension Theorem (cont.)

(a) u has a unique extension u thatis a measure on the
generated algebra S. That is 7 is a pre-measure on S

(b) If uis o-finite then there is a unique extension v of u that is a
measure on o (S).

(c) Assume that the measure v in (b) is a probability measure.
In this case, for every ¢ > 0 and for every B € o(S) there
exists an A € S such that u(AAB) < &. That is S is dense in
o (8) in the metric p(A, B) := v(AAB).

For the proof of all but the last assertion see [5, p.4].
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[Carathéodory’s extension theorem

Probability space

Definition 2.2 (Measurable space)

(Q,F) is a measurable space if Q # ¢fisasetand F < 2%isa
o-algebra.

Definition 2.3 (Probability space)

(Q,F,P) is a probability space if P is a probability measure on the
measurable space (Q, F).

[Carathéodory’s extension theorem

n-A systems

Definition 2.4

Let P, £ < 2%. We say that
Q Pisa m-system if

AL BEP=—=ANBe®P

Q _Lisa A-system if
() Xe £
(i) ABe L& Ac B—> B\A< L.
(i) Ay e L&A1 A=—>Ac L
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Theorem 2.5 Theorem 2.6
Assume that Let 71, %> < 2X be o-algebras and let v,, v, be probability measures
(i) P is a n-system, on ¥, 7, respectively. Assume that
(i) £ is a A-system, (a) P < F1 N, is a n-system and
(i) P < L. (b) The restriction of v, to P agrees with the restriction of v, to
Then o(P) < £. .
Then the restrictions of v; and v, to o(P) are the same.
The proof is available in the Appendix A of Durrett’s book [4] .
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Properties of the integral
On the next three slides we use the following notation:
Notation 1
. . Let u be a not necessarily finite measure on the measurable space
© Properties of the integral (Q,F). Let {f,}.~, be sequence of real valued functions f, : Q@ — R
which are measurable w.rt. 7. When Q = R and we write § f(x)dx
then we mean integration w.r.t. the Lebesgue measure. We write
LP(R) == {f: R — R|[|f(x)[Pdx < 0.}
About the definition and properties of the integral see [4, Section 1.4].
Here | mention only some of the most important theorems.
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Properties of the integral

(a) Rieman-Lebesgue Lemma: Let g € L'(R). Then
lim § g(x) sin(tx)dx = 0.

(b) Jensen’s inequality: Let ¢ : R — R be a convex function
and we assume that f, o f € L'(u). Then
¢ (§ fdu) < §e(f)dp.

(c) Hélders inequality Let p,q € (0, 0) be conjugates, that is ,
1/p+1/q=1.Then

@ [ 176t < 171, el
.When e 2 then we obtain the Cauchy-Schwarz
inequalty:

(5) [\fgldu <|£ll2 - lgla- 23/63

Properties of the integral

Definition of a.s. convergence

Let {X,} , be random variables defined on the probability space
(Q,F,P). Itis easy to see that the set Q) := {w : lim X, exists } is

measurable. If P(Q) = 1 then we say that X, converge almost
surely . In this case we often write:

(6) X, = limsup X,,.

n—w0
In this case X, (w) = lim X,(w) for P-almost all w. We express this is
n—oo

the following way: X, = lim X,, a.s. .
n—oo
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Properties of the integral

Properties of the integral

(e) Minkowski inequality Let p € [1,00] and f, g € L?(u). Then
el < Iy + 111

() Dominated Conv. Thm. Assume that there is a g € L' (u) (h) ERSESIIE It /. > 0 then
s.t. |fu] < gand lim f, = f a.e. (this means that for o o
p-almost all w € Q we have lim f,(w) = f(w). ) Then ) h,?l)lffjﬁ’d“ Z Jh}fl»lffﬁ’du'

Lim § fudp = § fdp.
(9) Monotone convergence thm. Let f, > 0and f, 1 f. Then
lim § fody = § fdp.
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Properties of the integral

Properties of the integral

Fubini Theorem Fubini Theorem (cont.)

The basic reference is [4, Section 1.7] Let (X, A, ;) and (Y, B, uz) be Theorem 3.1 (Fubini)
two o-finite measure spaces. Let Q := X x Y and let ¥ := A x B be -
the product o-algebra which is generated by the semi-algebra Assume that (X, A, 1) and (Y, B, i2) be two o-finite measure spaces.

We assume that either f > 0 or { | f|d(u1 x po) < . Then
={AxB:AeAand Be B}.

For all elements A x B € S we define v(A x B) := u;(A) - p2(B). This Jff X, y)dpa(y)dpn (x fff (0. y)dpy x pa(x.y) =

measure v can be extended uniquely . The resulted measure is Xxy
fff (x, y)dpi (x)dpa(y)
Y X

called the product measure w; x up .

y
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Random variables
Let (Q, F,P) is a probability space and let (S, S) be a measurable
space. A function X : Q — § is called measurable if
X '(ByeF, VBeS.
° Random variables In this case we say that X is an S-valued random variable. If S is

countable then X is a discrete random variable. In this case

px:S —[0,1], px(s) =P(X =5s)
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Random variables (cont.) Independence

is the (probability ) mass function of X. The push forward measure (a) Two events A and B are independent if

P(A n B) = P(A) - P(B).

(b) Two r.v. X and Y are independent if for all A, B € R we have
P(X € A,Y € B) = P(X € A)P(Y € B).

(PoX ") (A):=P(X '(4)), AeS.

is the distribution of X . Sometimes we denote the distribution of X by

X - T . (c) Two o-algebras ¥ and G are independent if for all

Py . Let R” be the extended real line that is R* := R u {—ac, 0} and % AeF,Be G, the events A and B are independent.

is the o-algebra generated by interval (a, b), [-0, b), (a, ] where (d) An infinite collection of objects (events, r.v., o-algebras) is
a,beR. If(S,8) = (R*,R*) then we say that X is a random variable . ) > [V, o7l

independent if every finite sub-collection is independent.
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[Random variables

Independence (cont.)

(e) o-algebras 71,...,F, are independent if

A,‘ € 7:, — P <ﬁA,) = ﬁP(A,)

(f) R.v. Xi,...,X, are independent if

B,‘ ER=DP (ﬁ {X, € Bl}> = ﬁP(X, € Bl)

i=1 i=1
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[Random variables

Independence (cont.)
(g) Events Ay,...A, are independent if
Ic{l,....n} =P <ﬂA,-> = [ Te.
il i€l

(h) Collection of sets Aj, ..., A, = F is called independent if

AjeA;and I {1,...,n}

—Pp (ﬂA,-) = [T=.

i€l iel
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Theorem 4.1 (Change of variables Theorem)

Let (Q,F,P) be a probability space and (S, S) be a measurable space.
Let f: Q — S be measurable and g : S — [0, 0] be a Borel
measurable function. Then the change of variable formula holds:

9) §gdv = (go f)dP,
S Q

where v is the push forward measure of P by f. That is

v(B) =P(f'(B)), VBeS.

An application:
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Corollary 4.2

Given (X,...
distribution of the vector valued random variable (X, ...,

,X,) random variables on (Q, ¥ ,P) and let v be the
X,). That is

V= P(Xl,m,X,,)'

Further, let g : R? — R be a Borel measurable function which is either
non-negative or bounded and f : QQ — R" is defined by
f = (X1,...,X,) then the expectation of g(X,,...,X,):

(10) Elg(Xi,...,X,)] :Dgngdv.
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[Random variables

Definition 4.3 (continuous r.v.)

Let X be a r.v. defined on the probability space (Q, ¥, P). We say that
X is a continuous r.v. if there exists a non-negative function
f: R — [0,00) such that

Then f is the density function of X.
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[Random variables

Distribution functions

Let X be a random variable (r.v.) on the probability space (Q, ¥, P).
The cumulative distribution function ( CDF ) or simply distribution
function is

(11) F(x) = Fx(x) =P(X < x) .

Remark 4.4

In some books instead of " < " they write " < " in (11). This does not
matter when we deal with continuous r.v. however, the proper use of
tables of discrete distributions is effected by this convention!
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Distribution functions (cont.)

Theorem 4.5

Every CDF (cumulative distribution function) F has the following
properties:

@ F is non-decreasing

@ F is right continuous. That is lvlﬁl F(y) = F(x).

Q lim F(x) = 0and lim F(x) = 1.
X——0 X—0

Conversely, if F is a function satisfying (1)-(3) then F is the CDF of a
r.v. (see Homework ??).
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[Random variable:

Stieltjes measure functions

Definition 4.6
We say that F : R — R is a Stieltjes measure function if
(i) F is nondecreasing and

(i) F is right continuous that is lian(y) = F(x).
ylx

Theorem 4.7

Let F be a Stieltjes measure function. Then there exists a measure
u = up on (R,R) such that u((a,b]) = F(b) — F(a) .

y
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[Random variables

Stieltjes measure functions (cont.)

The idea of the proof.

Let S be the collection of semiopen intervals of the form (a, b] on R

—0 < a < b < w. We define u(a,b] = F(b) — F(a). Then Sis a

semialgebra (F(—o0) = lim F(x) and F(o0) = lim F(x))and uis a
xX——00 xX—0

pre-measure on the generated algebra A. Let u* be defined as in (2).

Then p* is a metric outer measure so the measure u generated in

Theorem 2.1 is a Borel measure on R such that

u((a,b]) = F(b) — F(a) .- O
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[Random variables

Stieltjes measure functions (cont.)

Note that this theorem implies that the CDF of a random variable
uniquely determines the distribution of a the random variable.
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[Conditional Expectation

e Conditional Expectation
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[Conditional Expectation

Conditional Expectation
Assume that a random vector (X, Y) has the joint density function

fxy(x,y). Assume that for an y the marginal probability density
function we have

fr(y) = J_ Sry(x,y)dx > 0.

Then we can introduce the conditional density

Ny Sxr(xy)
fX\Y(xb) fY(y) .
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[Conditional Expectation

Conditional Expectation (cont.)
Using this we can define

(12) P(XeAlY =y) = §fX\Y(x)dX,

although the condition P (Y = y) = 0. The corresponding conditional
expectation is

0

J’ x - fypy(x,y)dx.

D

(13) E[X|Y =y] =
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[Conditional Expectation

Conditional Expectation (cont.)

This is a random variable which is a function of Y. In general: We
learned in the course Stochastic Processes that for any r.v.

X, Y1,...,Y, there exists a Borel function g s.t.

(14) E[X|Y1,....Ys] = g(Y1,....Y,) .
As we have seen earlier this means that

(15) E[X|Y),....Y, e o (Y1,....Y,).

In the lights of the previous comments, we define the conditional
expectation as follows:
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Conditional Expectation (cont.)
Definition 5.1 (Conditional Expectation)

Given a probability space (Q, 7, P). Let G = F be a sub-c-algebra of
¥ and let X be an L' r.v.. We say that Z is a version of the conditional
expectation of X w.r.t. G, E [X|G] if:

(a) Ze Gand

(b) §XdP = {ZdP forevery AeG.
A A
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Conditional Expectation (cont.)

We have seen that
Theorem 5.2

(i) There exists a conditional expectation E [X|G] for any L! r.v.
X and G — ¥ sub-c-algebra.

(i) Any two versions of E [X|G] are equal P-a.s..

The construction of E [X|G] by the Radon Nikodym theorem:
Suppose that X is an L' r.v. on (Q, ¥, P). We introduce the signed
measure v on (Q, F):

v(B) := [ XdP.

B
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onditional Expectation

Conditional Expectation (cont.)

Then
(16) v<P.

Let v¥ be the restriction of the measure v from ¥ to G and similarly let
PPY be the restriction of P from ¥ to G. Then u9 and PY are measures

on (Q,G) and by (16)
V9« PY.
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[Conditional Expectation

Conditional Expectation (cont.)

Let Z be the Radon-Nikodym derivative

dv9 1 G
zfmeun,g,]?).
ThenVAeG:
(17) §XdP = v(A) = »9(A) = dePg = (zdp,
A A
A
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Sonditional Expectation

Conditional Expectation (cont.)

since A € G and Z is G-measurable. If Z, and Z, satisfy (18) the
Zi(w) = Zx(w) for P almost all w € Q. In this way a r.v. Z satisfying (18)
is a version of E [X|G].

[Conditional Expectation

Conditional Expectation (cont.)
Example 5.3 (This Example is from [17])

Let Q:={a,b,c,d,e, [}, F = 22 and P is the uniform distribution on Q.
Ther.v. X, Y, Z are defined by

7 abcdelf
333322
Then E [X|o(Y)] and E [X|o(Z)] are given on the next slides.
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 ifex i R
6 | X EXI00) s B EX) R [
5 |l PN .
e IR B
R SR 3
2 |3 |- 1
1 ‘ ‘
: I P P R ra|
re——— la b ¢ dle ]
l a b ‘] s
Figure: Figure for Example 5.3. The Figure is from [17]
Figure: Figure for Example 5.3. The Figure is from [17]
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Conditional Expectation

Properties of the conditional expectation Here we follow the
Zitkovicz’s Lecture notes [17]. All the proofs are available either there
orin [5].

Let X, Y, {X,}.~, be r.v. on the probability space (Q, A, P). Further, let

F,G < A be sub-c-algebras of A.
(@) Linearity: Ela- X +b-Y|F| =Ela-X|F| +E[b- Y|F]
(b) Monotnicity If X < Y then E [X|F| < E[Y|F] a.s.
(c) If X € ¥ then E [X|F] = X.
(d) Conditional Jensen: Let ¢ : R — R be convex and E [|¢(X)|] < oo.
Then
Ble(X)|F] > ¢ (E[X|F]). as.
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(e) LP-non-expansive: Let p € [1,0]. If X € LP then E[X|F] € L? and

|E X7 < 1B [X]].

(f) Pulling out what is known: Let Y € & and XY € L! then
(18) E[XY|F] = YE[X|F].
(g) L*-projection Assume that X € L?(A). Then minimum of

. _ 72
Z;Ilel(I;r)E[(X Z2)]
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[Conditional E:

is attained at Z = E [X|¥|. That is E [X|¥ | is the orthogonal projection
of X to L*(F) if X € L*(A).

(h) Tower property If ¥ < G then

(19) E[E([X|G]|F] = E[X|F ]

(i)Irrelevance of independent information If F is independent of
o (G, (X)) then

(20) E[X|o(F.9)] = E[X|G]
In particular

(21) If X is independent of # then E [X|F] = E[X] a.s.

57/63

[Conditional Expectation

(j) Conditional monotone convergence theorem If 0 < X,, < X,,4; a.s.
forallnand X, — X € L' a.s. then

E[X,|F] T E[X|F].
(k) Conditional Fatau Lemma Let X,, > 0 a.s. for ¥n and assume that
liminf X, € L'. Then
E [hminfxn\sf] < liminfE [X,|7] a.s.
n—00 n—0

(I)Cond. dominated convergence Theorem Assume that
@ 3Zel'st Vn, |X,| <Zas.
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[Conditional Expectation

@ X, — Xa.s.
Then

(22) E[X,|#] — E[X|F] bothin L' and a.s.

(m)Cond. expectation for countable partition generated sub-c-algebra
Let {Q,Qy, ...} be a partition of Q. We define F := o (Q1,Q,,...).
Then

E[X; Q]

W, forw e Qi.

(23) E[X[F] (@) =

fF = {7, Q} then E [X|F] = E[X].
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[Conditional Expectation

Mean Variance
np rp(l = p
A 1
Poisson with parametes i explale 1 A A
A= £
x 01,2,
pe’ 1 P
Geometric with parameter p(l = pyt — ="
G=p=1 rmil F= (1= ple ) 7
g i 3 pet i r (1 —p}
Negaive binomial with Py - e
1= pe ) 7

Figure: Figure is from [15]
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Conditional E:
Moment
Probability mass generating
furiction, f(x} function, M(r) Mean Variance
f 1 cx<h ati (b~ o’
Uniform over (a, b) fey={b—a *°° F] ST
lu atherwise
Exponential with o [ ez Y 1 1
parameter A > fhr=iy x=<0 A-t A bl
Ao (Ax) ;
= r= s
Gamma with paramelers flx) = (s} (_/\ ) s s
(s,A)LA>0 il x<0 A1 A A
Normal with parameters gon b paame o ;. . o .
{.HVOJ'] f‘-\’) = Jﬂf‘ RS A expypd + 2 L= o
Figure: Figure is from [15]

[Conditional Expectation
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[Conditional Expectation
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