Markov Processes and Martingales

Károly Simon

Department of Stochastics
Institute of Mathematics
Budapest University of Technology and Economics
www.math.bme.hu/~simonk

Measure Theory and Conditional Expectation (a review)

1/63

3/63

5/63

Introduction Basic Measure Theory

The most important reference material is

R. Durett Probability Theory and Examples 5. ed.

One can download it free of charge from:

https://sites.math.duke.edu/~rtd/PTE/pte.html

We do not follow this book closely but the material students of the course are supposed to know from previous semesters is available in this book.

2/63

Notation

Carathéodory's extension theorem

Properties of the integral

Random variables

Conditional Expectation

1 When we want to emphasize that the set A is a disjoint union of $A_1, A_1, \ldots A_n$ then we write

(1)

We remark that in Durrett's book [5] the same disjoint union is denoted by $+_{i=1}^n A_i$. If A is not necessarily disjoint union of $A_1, A_1, \ldots A_n$ then we write

$$A = \bigcup_{i=1}^{n} A_i.$$

4/63

② Given the sequences a_n, b_n with $b_n > 0$ for every n. We write that

• $a_n = \mathfrak{o}(b_n)$ if $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$.

• $a_n = O(b_n)$ if $\limsup \frac{|a_n|}{b_n} < \infty$

• $a_n = \Theta(b_n)$ if both $a_n = O(b_n)$ and $b_n = O(a_n)$.

• $a_n \sim b_n$ if $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

1 The Borel σ -algebra on \mathbb{R}^d is denoted by $\frac{\Re^d}{}$. When d=1 we write simply \Re .

1 The d-dimensional Lebesgue measure is denoted by \mathcal{L}^d .

Given a set X.

 \bullet The complement of an $A\subset X$ is denoted by ${\color{red}A^c}$. If there is a topology on X then

• \overline{A} stands for the closure of A (if it makes sense),

• A° is the interior of A.

1 Let \mathcal{F} be a collection of subsets of a set X. Then we write $\sigma(\mathcal{F})$ for the generated σ -algebra.

When we say a set is <u>countable</u> we mean that it is either finite or countably infinite.

6/63

Definition 1.1 (semialgebra, algebra, σ -algebra)

Given a set $\Omega.$ A collection $\mathcal{S} \subset 2^{\Omega}$ is called semialgebra: if

• $A, B \in \mathcal{S}$ implies $A \cap B \in \mathcal{S}$ and

• $\forall A \in \mathcal{F}$, A^c is a finite disjoint union of elements of \mathcal{F} .

algebra: if S is closed for all finite set operations.

 σ -algebra: if $\mathcal S$ is closed for all countable set operations.

Definition 1.2

3 Assume that S is a semialgebra. Then we write \overline{S} for the generated algebra (which the collection of disjoint unions of sets from S).

2 Let A be algebra. The σ -algebra $\sigma(A)$ generated by A is the smallest σ -algebra that contains A. This is the intersection of all σ -algebras that contain A.

Observe that any finitely additive set function defined on a semialgebra $\mathcal S$ extends to the generated algebra $\overline{\mathcal S}$ in an obvious way.

7/63

Basic Measure Theory

- Let \mathcal{F} be a σ -algebra of a given set X. We say that a function $\mu:\mathcal{F}\to [0,\infty]$ is a measure if
 - (a) $\mu(\emptyset) = 0$ and
 - (b) $\mu\left(\cup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}\mu(E_{i})$ for every disjoint sequence of sets $\{E_{i}\}_{i=1}^{\infty}$ in \mathcal{F} .
- We say that a set function v is a pre-measure v is defined on a algebra $\mathcal{A} \subset 2^X$ satisfying:
 - (i) $\nu(\emptyset) = 0$ and

9/63

Basic Measure Theory (cont.)

- (ii) $\nu\left(\cup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}\nu(E_{i})$ for every disjoint sequence of sets $\left\{ E_{i}\right\} _{i=1}^{\infty}$ in \mathcal{H} .
- An outer measure ν on X is defined on all subsets of X takes values from $[0,\infty]$ such that
 - $\nu(\varnothing) = 0$,
 - $\bullet \ \nu(A) \leqslant \nu(B) \text{ if } A \subset B,$
 - $\nu(\cup_{i=1}^{\infty} E_i) \leqslant \sum_{i=1}^{\infty} \nu(E_i)$ for all sequence of sets $\{E_i\}_{i=1}^{\infty}$.

10/63

Basic Measure Theory (cont.)

• Now we assume that (X,d) is a metric space. We say that the outer measure ν is a metric outer measure if

$$\nu(A \cup B) = \nu(A) + \nu(B)$$

holds for all $A, B \subset X$ with $\inf \{d(a, b) : a \in A, b \in B\} > 0$.

• The set function $\nu: \mathcal{A} \to [0,\infty]$ for an $\mathcal{A} \subset 2^X$ is called σ -finite if there exists $\{B_i\}_{i=1}^\infty$, $B_i \in \mathcal{A}$ such that $\Omega = \bigcup_{i=1}^\infty B_i$ and $\nu(B_i) < \infty$ for all i.

11/63

arathéodory's extension theore

- Notation
- Carathéodory's extension theorem
- Properties of the integral
- Random variables
- Conditional Expectation

12/63

athéodory's extension theorem

Carathéodory measurable sets

Let μ be a pre-measure on the algebra $\mathcal{A} \subset 2^X$. We define the corresponding outer measure

(2)
$$\mu^*(B) := \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : B \subset \bigcup A_i, \ A_i \in \mathcal{A} \right\}$$

and the family of Carathéodory-measurable sets:

$$\mathcal{M} := \{E : \forall A \subset X : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)\}.$$

The proof of the following theorem is available in the Appendix of [5].

13/63

arathéodory's extension theorem

Carathéodory measurable sets (cont.)

Theorem 2.1

- **1** M is a σ -algebra. We call it the σ -algebra of μ -measurable sets.
- **1** The restriction of μ^* to \mathcal{M} is a measure.
- lacktriangledown If (X,d) is a metric space and μ^* is a metric outer measure. Then $\mathcal M$ contains the Borel sets. That is the restriction of μ^* to $\mathcal M$ is a Borel measure.

14/63

rathéodory's extension theore

Carathéodory's Extension Theorem

Let $\mathcal S$ be a semialgebra and let μ be a set function $\mu:\mathcal S\to[0,\infty]$ satisfying

- If $S, S_i \in \mathcal{S}$ for i = 1, 2, ..., n s.t. $S = \bigsqcup_{i=1}^n S_i$ then $\mu(S) = \sum_{i=1}^n \mu(S_i)$. (That is μ is finitely additive.)
- If $S, S_i \in \mathcal{S}$ for $i = 1, 2, \ldots$ s.t. $S = \bigsqcup_{i=1}^{\infty} S_i$ then $\mu(S) \leqslant \sum_{i=1}^{\infty} \mu(S_i)$. (That is μ is sub-additive.)

Then

arathéodory's extension theorem

Carathéodory's Extension Theorem (cont.)

- (a) μ has a unique extension $\overline{\mu}$ that is a measure on the generated algebra \overline{S} . That is $\overline{\mu}$ is a pre-measure on \overline{S}
- (b) If $\overline{\mu}$ is σ -finite then there is a unique extension ν of μ that is a measure on $\sigma(S)$.
- (c) Assume that the measure ν in (b) is a probability measure. In this case, for every $\varepsilon>0$ and for every $B\in \sigma(\mathcal{S})$ there exists an $A\in \overline{\mathcal{S}}$ such that $\mu(A\Delta B)<\varepsilon$. That is $\overline{\mathcal{S}}$ is dense in $\sigma(\mathcal{S})$ in the metric $\rho(A,B):=\nu(A\Delta B)$.

For the proof of all but the last assertion see [5, p.4].

athéodory's extension theorem

Probability space

Definition 2.2 (Measurable space)

 (Ω,\mathcal{F}) is a measurable space if $\Omega \neq \emptyset$ is a set and $\mathcal{F} \subset 2^{\Omega}$ is a σ -algebra.

Definition 2.3 (Probability space)

 $(\Omega,\mathcal{F},\mathbb{P})$ is a probability space if \mathbb{P} is a probability measure on the measurable space (Ω,\mathcal{F}) .

17/63

athéodory's extension theorem

π - λ systems

Definition 2.4

Let $\mathcal{P}, \mathcal{L} \subset 2^X$. We say that

 \bigcirc \mathcal{P} is a $\frac{\pi}{\pi}$ -system if

 $A, B \in \mathcal{P} \Longrightarrow A \cap B \in \mathcal{P}$

- ② \mathcal{L} is a λ -system if
 - (i) $X \in \mathcal{L}$
 - (ii) $A, B \in \mathcal{L} \& A \subset B \Longrightarrow B \setminus A \in \mathcal{L}$.
 - (iii) $A_n \in \mathcal{L} \& A_n \uparrow A \Longrightarrow A \in \mathcal{L}$

18/63

rathéodory's extension theoren

Theorem 2.5

Assume that

- (i) \mathcal{P} is a π -system,
- (ii) \mathcal{L} is a λ -system,
- (iii) $\mathcal{P} \subset \mathcal{L}$.

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

The proof is available in the Appendix A of Durrett's book [4].

rathéodory's extension theoren

Theorem 2.6

Let $\mathcal{F}_1, \mathcal{F}_2 \subset 2^X$ be σ -algebras and let v_1, v_2 be probability measures on $\mathcal{F}_1, \mathcal{F}_2$ respectively. Assume that

- (a) $\mathcal{P} \subset \mathcal{F}_1 \cap \mathcal{F}_2$ is a π -system and
- (b) The restriction of v_1 to $\mathcal P$ agrees with the restriction of v_2 to $\mathcal P$.

Then the restrictions of v_1 and v_2 to $\sigma(\mathcal{P})$ are the same.

20/63

19/63

21/63

- Notation
- Carathéodory's extension theorem
- Properties of the integral
- Random variables
- Conditional Expectation

roperties of the integr

Properties of the integral

On the next three slides we use the following notation:

Notation 1

Let μ be a not necessarily finite measure on the measurable space (Ω,\mathcal{F}) . Let $\{f_n\}_{n=1}^\infty$ be sequence of real valued functions $f_n:\Omega\to\mathbb{R}$ which are measurable w.r.t. \mathcal{F} . When $\Omega=\mathbb{R}$ and we write $\int f(x)dx$ then we mean integration w.r.t. the Lebesgue measure. We write $L^p(\mathbb{R}):=\big\{f:\mathbb{R}\to\mathbb{R}|\int |f(x)|^pdx<\infty.\big\}$

About the definition and properties of the integral see [4, Section 1.4]. Here I mention only some of the most important theorems.

22/63

- (a) Rieman-Lebesgue Lemma: Let $g \in L^1(\mathbb{R})$. Then $\lim_{t \to \infty} \int g(x) \sin(tx) dx = 0$.
- (b) Jensen's inequality: Let $\varphi:\mathbb{R}\to\mathbb{R}$ be a convex function and we assume that $f,\varphi\circ f\in L^1(\mu)$. Then $\varphi\left(\int fd\mu\right)\leqslant \int \varphi(f)d\mu$.
- (c) Hölder's inequality Let $p,q\in(0,\infty)$ be conjugates, that is , 1/p+1/q=1. Then

$$\int |fg|d\mu \leqslant \|f\|_p \cdot \|g\|_q.$$

. When p=q=2 then we obtain the Cauchy-Schwarz inequality:

(5)
$$\int |fg|d\mu \le ||f||_2 \cdot ||g||_2.$$
 23/63

Properties of the integ

Definition of a.s. convergence

Let $\{X_n\}_{n=1}^{\infty}$ be random variables defined on the probability space $(\Omega,\mathcal{F},\mathbb{P})$. It is easy to see that the set $\Omega_0:=\left\{\omega:\lim_{n\to\infty}X_n\text{ exists }\right\}$ is measurable. If $\mathbb{P}(\Omega_0)=1$ then we say that X_n converge almost surely. In this case we often write:

$$(6) X_{\infty} := \limsup_{n \to \infty} X_n.$$

In this case $X_{\infty}(\omega) = \lim_{n \to \infty} X_n(\omega)$ for \mathbb{P} -almost all ω . We express this is the following way: $X_{\infty} = \lim_{n \to \infty} X_n$ a.s.

- (e) Minkowski inequality Let $p \in [1, \infty]$ and $f, g \in L^p(\mu)$. Then
- $\|f+g\|_p \leqslant \|f\|_p + \|f\|_p.$ (f) Dominated Conv. Thm. Assume that there is a $g \in L^1(\mu)$ s.t. $|f_n| \leq g$ and $\lim_{n \to \infty} f_n = f$ a.e. (this means that for μ -almost all $\omega \in \Omega$ we have $\lim_{n \to \infty} f_n(\omega) = f(\omega)$.) Then $\lim \int f_n d\mu = \int f d\mu$.
- (g) Monotone convergence thm. Let $f_n \ge 0$ and $f_n \uparrow f$. Then $\lim \int f_n d\mu = \int f d\mu$.

(h) Fatou Lemma If $f_n \ge 0$ then

(7)
$$\liminf_{n\to\infty} \int f_n d\mu \geqslant \int \liminf_{n\to\infty} f_n d\mu.$$

25/63 26/63

Fubini Theorem

The basic reference is [4, Section 1.7] Let (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) be two σ -finite measure spaces. Let $\Omega:=X\times Y$ and let $\mathcal{F}:=\mathcal{A}\times\mathcal{B}$ be the product σ -algebra which is generated by the semi-algebra

$$S := \{A \times B : A \in \mathcal{A} \text{ and } B \in \mathcal{B}\}.$$

For all elements $A \times B \in \mathcal{S}$ we define $\nu(A \times B) := \mu_1(A) \cdot \mu_2(B)$. This measure ν can be extended uniquely \mathcal{F} . The resulted measure is called the product measure $\mu_1 \times \mu_2$.

27/63

Fubini Theorem (cont.)

Theorem 3.1 (Fubini)

Assume that (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) be two σ -finite measure spaces. We assume that either $f \ge 0$ or $\int |f| d(\mu_1 \times \mu_2) < \infty$. Then

(8)
$$\iint_{X} f(x,y) d\mu_2(y) d\mu_1(x) = \iint_{X \times Y} f(x,y) d\mu_1 \times \mu_2(x,y) =$$

$$\iint_{X} f(x,y) d\mu_1(x) d\mu_2(y)$$

28/63

Random variables

Random variables

Let $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and let (S, S) be a measurable space. A function $X: \Omega \to S$ is called measurable if

$$X^{-1}(B) \in \mathcal{F}$$
, $\forall B \in \mathcal{S}$.

In this case we say that X is an S-valued random variable. If S is countable then X is a discrete random variable. In this case

$$p_X: S \rightarrow [0,1], \quad p_X(s) = \mathbb{P}(X=s)$$

30/63

29/63

Random variables (cont.)

is the (probability) mass function of X. The push forward measure

$$(\mathbb{P} \circ X^{-1})(A) := \mathbb{P}(X^{-1}(A)), \quad A \in \mathcal{S}.$$

is the distribution of X. Sometimes we denote the distribution of X by \mathbb{R}^* . Let \mathbb{R}^* be the extended real line that is $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}$ and \mathbb{R}^* is the σ -algebra generated by interval (a,b), $[-\infty,b)$, $(a,\infty]$ where $a,b \in \mathbb{R}$. If $(S,\mathcal{S}) = (\mathbb{R}^*, \mathfrak{R}^*)$ then we say that X is a random variable.

Independence

- (a) Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$
- (b) Two r.v. X and Y are independent if for all $A, B \in \mathcal{R}$ we have $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B).$
- (c) Two σ -algebras $\mathcal F$ and $\mathcal G$ are independent if for all $A \in \mathcal{F}, B \in \mathcal{G}$, the events A and B are independent.
- (d) An infinite collection of objects (events, r.v., σ -algebras) is independent if every finite sub-collection is independent.

andom variables

Independence (cont.)

(e) σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if

$$A_i \in \mathcal{F}_i \Longrightarrow \mathbb{P}\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n \mathbb{P}(A_i).$$

(f) R.v. X_1, \ldots, X_n are independent if

$$B_i \in \mathcal{R} \Longrightarrow \mathbb{P}\left(\bigcap_{i=1}^{\infty} \{X_i \in B_i\}\right) = \prod_{i=1}^{\infty} \mathbb{P}(X_i \in B_i).$$

33/63

andom variable

Independence (cont.)

(g) Events $A_1, \ldots A_n$ are independent if

$$I \subset \{1,\ldots,n\} \Longrightarrow \mathbb{P}\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} \mathbb{P}(A_i).$$

(h) Collection of sets $\mathcal{A}_1,\ldots,\mathcal{A}_n\subset\mathcal{F}$ is called independent if

$$A_i \in \mathcal{A}_i$$
 and $I \subset \{1, \ldots, n\}$

$$\Longrightarrow \mathbb{P}\left(\bigcap_{i\in I}A_i
ight)=\prod_{i\in I}\mathbb{P}(A_i).$$

34/63

ndom variable

Theorem 4.1 (Change of variables Theorem)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, \mathcal{S}) be a measurable space. Let $f: \Omega \to S$ be measurable and $g: S \to [0, \infty]$ be a Borel measurable function. Then the change of variable formula holds:

(9)
$$\int_{S} g dv = \int_{\Omega} (g \circ f) d\mathbb{P},$$

where ν is the push forward measure of \mathbb{P} by f. That is

$$\nu(B) = \mathbb{P}(f^{-1}(B)), \quad \forall B \in \mathcal{S}.$$

An application:

35/63

Random varial

Corollary 4.2

Given (X_1, \ldots, X_n) random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and let ν be the distribution of the vector valued random variable (X_1, \ldots, X_n) . That is

$$\nu := \mathbb{P}_{(X_1,...,X_n)}.$$

Further, let $g: \mathbb{R}^d \to \mathbb{R}$ be a Borel measurable function which is either non-negative or bounded and $f: \Omega \to \mathbb{R}^n$ is defined by $f:=(X_1,\ldots,X_n)$ then the expectation of $g(X_1,\ldots,X_n)$:

(10)
$$\mathbb{E}\left[g(X_1,\ldots,X_n)\right] = \int_{\mathbb{R}^n} g dv.$$

36/63

ndom variable

Definition 4.3 (continuous r.v.)

Let X be a r.v. defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that X is a continuous r.v. if there exists a non-negative function $f: \mathbb{R} \to [0, \infty)$ such that

$$\mathbb{P}(X \leqslant x) = \int_{-\infty}^{\infty} f(t)dt, \quad \forall x \in \mathbb{R}.$$

Then f is the density function of X.

landom varia

Distribution functions

Let X be a random variable (r.v.) on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The cumulative distribution function (CDF) or simply distribution function is

(11)
$$F(x) = F_X(x) := \mathbb{P}(X \leqslant x).$$

Remark 4.4

In some books instead of " \leq " they write " < " in (11). This does not matter when we deal with continuous r.v. however, the proper use of tables of discrete distributions is effected by this convention!

38/63

adom variable

Distribution functions (cont.)

Theorem 4.5

Every CDF (cumulative distribution function) F has the following properties:

- F is non-decreasing
- **1** F is right continuous. That is $\lim_{y \downarrow x} F(y) = F(x)$.
- $\lim_{x \to -\infty} F(x) = 0 \text{ and } \lim_{x \to \infty} F(x) = 1.$

Conversely, if F is a function satisfying (1)-(3) then F is the CDF of a r.v. (see Homework $\ref{eq:converse}$).

Random variat

Stieltjes measure functions

Definition 4.6

We say that $F: \mathbb{R} \to \mathbb{R}$ is a Stieltjes measure function if

- $(i)\ F$ is nondecreasing and
- (ii) F is right continuous that is $\lim_{y \downarrow x} F(y) = F(x)$.

Theorem 4.7

Let F be a Stieltjes measure function. Then there exists a measure $\mu = \mu_F$ on (\mathbb{R}, \mathbb{R}) such that $\mu((a,b]) = F(b) - F(a)$.

Stieltjes measure functions (cont.)

The idea of the proof.

Let S be the collection of semiopen intervals of the form (a, b] on \mathbb{R} $-\infty \leqslant a < b \leqslant \infty$. We define $\mu(a,b] = F(b) - F(a)$. Then $\mathcal S$ is a semialgebra $(F(-\infty) = \lim_{x \to \infty} F(x) \text{ and } F(\infty) = \lim_{x \to \infty} F(x))$ and μ is a pre-measure on the generated algebra \mathcal{A} . Let μ^* be defined as in (2). Then μ^* is a metric outer measure so the measure μ generated in Theorem 2.1 is a Borel measure on $\mathbb R$ such that $\mu((a,b]) = F(b) - F(a).$

41/63

Stieltjes measure functions (cont.)

Note that this theorem implies that the CDF of a random variable uniquely determines the distribution of a the random variable.

42/63

- Conditional Expectation

Conditional Expectation

Assume that a random vector (X, Y) has the joint density function $f_{X,Y}(x,y)$. Assume that for an y the marginal probability density function we have

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx > 0.$$

Then we can introduce the conditional density

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

44/63

43/63

Conditional Expectation (cont.)

Using this we can define

(12)
$$\mathbb{P}\left(X \in A \middle| Y = y\right) = \int_A f_{X|Y}(x) dx,$$

although the condition $\mathbb{P}\left(Y=y\right)=0$. The corresponding conditional expectation is

(13)
$$\mathbb{E}\left[X|Y=y\right] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x,y) dx.$$

45/63

Conditional Expectation (cont.)

This is a random variable which is a function of Y. In general: We learned in the course Stochastic Processes that for any r.v. X, Y_1, \ldots, Y_n there exists a Borel function g s.t.

$$\mathbb{E}\left[X|Y_1,\ldots,Y_n\right] = g(Y_1,\ldots,Y_n).$$

As we have seen earlier this means that

(15)
$$\mathbb{E}\left[X|Y_1,\ldots,Y_n\right]\in\sigma\left(Y_1,\ldots,Y_n\right).$$

In the lights of the previous comments, we define the conditional expectation as follows:

46/63

Conditional Expectation (cont.)

Definition 5.1 (Conditional Expectation)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} and let X be an L^1 r.v.. We say that Z is a version of the conditional expectation of X w.r.t. \mathcal{G} , $\mathbb{E}[X|\mathcal{G}]$ if:

(a)
$$Z \in \mathcal{G}$$
 and

(b)
$$\int_A X d\mathbb{P} = \int_A Z d\mathbb{P}$$
 for every $A \in \mathcal{G}$.

Conditional Expectation (cont.)

We have seen that

Theorem 5.2

- (i) There exists a conditional expectation $\mathbb{E}[X|\mathcal{G}]$ for any L^1 r.v. *X* and $\mathcal{G} \subset \mathcal{F}$ sub- σ -algebra.
- (ii) Any two versions of $\mathbb{E}[X|\mathcal{G}]$ are equal \mathbb{P} -a.s..

The construction of $\mathbb{E}\left[X|\mathcal{G}\right]$ by the Radon Nikodym theorem: Suppose that *X* is an L^1 r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$. We introduce the signed measure ν on (Ω, \mathcal{F}) :

$$\nu(B) := \int_{B} X d\mathbb{P}$$

Conditional Evacetation

Conditional Expectation (cont.)

Then

(16)

 $\nu \ll \mathbb{P}$.

Let $\nu^{\mathcal{G}}$ be the restriction of the measure ν from \mathcal{F} to \mathcal{G} and similarly let $\mathbb{P}^{\mathcal{G}}$ be the restriction of \mathbb{P} from \mathcal{F} to \mathcal{G} . Then $\mu^{\mathcal{G}}$ and $\mathbb{P}^{\mathcal{G}}$ are measures on (Ω,\mathcal{G}) and by (16)

$$v^{\mathcal{G}} \ll \mathbb{P}^{\mathcal{G}}$$
.

49/63

ditional Expectation

Conditional Expectation (cont.)

Let Z be the Radon-Nikodym derivative

$$Z = \frac{d\nu^{\mathcal{G}}}{d\mathbb{P}^{\mathcal{G}}} \in L^1(\Omega, \mathcal{G}, \mathbb{P}^{\mathcal{G}}).$$

Then $\forall A \in \mathcal{G}$:

(17)
$$\int_{A} X d\mathbb{P} = \nu(A) = \nu^{\mathcal{G}}(A) = \int_{A} Z d\mathbb{P}^{\mathcal{G}} = \int_{A} Z d\mathbb{P}.$$

50/63

nditional Expectatio

Conditional Expectation (cont.)

since $A \in \mathcal{G}$ and Z is \mathcal{G} -measurable. If Z_1 and Z_2 satisfy (18) the $Z_1(\omega) = Z_2(\omega)$ for \mathbb{P} almost all $\omega \in \Omega$. In this way a r.v. Z satisfying (18) is a version of $\mathbb{E}\left[X|\mathcal{G}\right]$.

Conditional Expectat

Conditional Expectation (cont.)

Example 5.3 (This Example is from [17])

Let $\Omega:=\{a,b,c,d,e,f\}, \mathcal{F}=2^\Omega$ and $\mathbb P$ is the uniform distribution on Ω . The r.v. X,Y,Z are defined by

$$X \sim \left(\begin{array}{ccccc} a & b & c & d & e & f \\ 1 & 3 & 3 & 5 & 5 & 7 \end{array}\right), Y \sim \left(\begin{array}{cccccc} a & b & c & d & e & f \\ 2 & 2 & 1 & 1 & 7 & 7 \end{array}\right)$$

$$Z \sim \left(\begin{array}{ccccc} a & b & c & d & e & f \\ 3 & 3 & 3 & 3 & 2 & 2 \end{array}\right)$$

Then $\mathbb{E}\left[X|\sigma(Y)\right]$ and $\mathbb{E}\left[X|\sigma(Z)\right]$ are given on the next slides.

52/63

51/63

itional Expectation

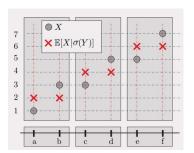


Figure: Figure for Example 5.3. The Figure is from [17]

53/63

55/63

ditional Expectatio

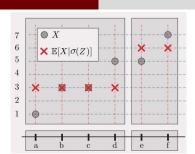


Figure: Figure for Example 5.3. The Figure is from [17]

54/63

onditional Expectat

Properties of the conditional expectation Here we follow the Zitkovicz's Lecture notes [17]. All the proofs are available either there or in [5].

Let $X, Y, \{X_n\}_{n=1}^{\infty}$ be r.v. on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Further, let $\mathcal{F}, \mathcal{G} \subset \mathcal{A}$ be sub- σ -algebras of \mathcal{A} .

- (a) Linearity: $\mathbb{E}\left[a \cdot X + b \cdot Y | \mathcal{F}\right] = \mathbb{E}\left[a \cdot X | \mathcal{F}\right] + \mathbb{E}\left[b \cdot Y | \mathcal{F}\right]$
- **(b)** Monotnicity If $X \leqslant Y$ then $\mathbb{E}[X|\mathcal{F}] \leqslant \mathbb{E}[Y|\mathcal{F}]$ a.s.
- (c) If $X \in \mathcal{F}$ then $\mathbb{E}[X|\mathcal{F}] = X$.
- (d) Conditional Jensen: Let $\varphi:\mathbb{R}\to\mathbb{R}$ be convex and $\mathbb{E}\left[|\varphi(X)|\right]<\infty$. Then

$$\mathbb{E}\left[\varphi(X)|\mathcal{F}\right]\geqslant \varphi\left(\mathbb{E}\left[X|\mathcal{F}\right]\right), \text{ a.s.}$$

Conditional Expectat

(e) L^p -non-expansive: Let $p \in [1, \infty]$. If $X \in L^p$ then $\mathbb{E}[X|\mathcal{F}] \in L^p$ and

$$\|\mathbb{E}\left[X|\mathcal{F}\right]\|_{L^{p}} \leqslant \|\mathbb{E}\left[X\right]\|_{L^{p}}$$

- **(f)** Pulling out what is known: Let $Y \in \mathcal{F}$ and $XY \in L^1$ then
- (18) $\mathbb{E}\left[XY|\mathcal{F}\right] = Y\mathbb{E}\left[X|\mathcal{F}\right].$
- (g) L^2 -projection Assume that $X \in L^2(\mathcal{A})$. Then minimum of

$$\min_{Z \in L^2(\mathcal{F})} \mathbb{E}\left[(X - Z)^2 \right]$$

Conditional Evacetati

is attained at $Z=\mathbb{E}\left[X|\mathcal{F}\right]$. That is $\mathbb{E}\left[X|\mathcal{F}\right]$ is the orthogonal projection of X to $L^2(\mathcal{F})$ if $X\in L^2(\mathcal{A})$.

(h) Tower property If $\mathcal{F} \subset \mathcal{G}$ then

(19)
$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{F}\right] = \mathbb{E}\left[X|\mathcal{F}.\right]$$

(i)Irrelevance of independent information If $\mathcal F$ is independent of $\sigma(\mathcal G,\sigma(X))$ then

(20)
$$\mathbb{E}\left[X|\sigma(\mathcal{F},\mathcal{G})\right] = \mathbb{E}\left[X|\mathcal{G}\right]$$

In particular

(21) If X is independent of \mathcal{F} then $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$ a.s.

57/63

onditional Expectation

(j) Conditional monotone convergence theorem If $0 \le X_n \le X_{n+1}$ a.s. for all n and $X_n \to X \in L^1$ a.s. then

$$\mathbb{E}\left[X_n|\mathcal{F}\right]\uparrow\mathbb{E}\left[X|\mathcal{F}\right]$$
.

(k) Conditional Fatau Lemma Let $X_n \geqslant 0$ a.s. for $\forall n$ and assume that $\liminf_{n \to \infty} X_n \in L^1$. Then

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n | \mathcal{F}\right] \leqslant \liminf_{n\to\infty} \mathbb{E}\left[X_n | \mathcal{F}\right] \text{ a.s.}$$

(I)Cond. dominated convergence Theorem Assume that

•
$$\exists Z \in L^1$$
 s.t. $\forall n, |X_n| \leqslant Z$ a.s.

58/63

• $X_n \to X$ a.s.

Then

(22) $\mathbb{E}[X_n|\mathcal{F}] \to \mathbb{E}[X|\mathcal{F}]$ both in L^1 and a.s.

(m)Cond. expectation for countable partition generated sub- σ -algebra Let $\{\Omega_1,\Omega_2,\dots\}$ be a partition of Ω . We define $\mathcal{F}:=\sigma\left(\Omega_1,\Omega_2,\dots\right)$. Then

(23)
$$\mathbb{E}\left[X|\mathcal{F}\right](\omega) = \frac{\mathbb{E}\left[X;\Omega_{i}\right]}{\mathbb{P}(\Omega_{i})}, \text{ for } \omega \in \Omega_{i}.$$

If $\mathcal{F} = \{\emptyset, \Omega\}$ then $\mathbb{E}\left[X|\mathcal{F}\right] = \mathbb{E}\left[X\right]$.

59/63

	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x}p^{x}(1-p)^{n-x}$ $x = 0, 1, \dots, n$	$\left(pe'+1-p\right)^{*}$	np	np(1-p
Poisson with parameter $\lambda > 0$	$e^{-i\frac{A^x}{x!}}$ $x = 0, 1, 2, \dots$	$\exp\{\lambda(e'-1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{z-1}$ x = 1, 2,	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with parameters $r_* p$; $0 \le p \le 1$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$ $n = r, r + 1,$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$

Figure: Figure is from [15]

60/63

	Probability mass function, $f(x)$	Moment generating function, $M(t)$	Mean	Variance
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{ib}-e^{ia}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential with parameter $\lambda > 0$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma with parameters $(s, \lambda), \lambda > 0$	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda s} (\lambda x)^{s-1}}{\Gamma(s)} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^{t}$	$\frac{s}{\lambda}$	$\frac{s}{\lambda^2}$
Normal with parameters (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-x)^2/2\sigma^2} - \infty < x < \infty$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2

Figure: Figure is from [15]

61/63

Conditiona	al Expectation	
[1]	P. Billindsley Convergence of probability measures Wiley, 1968	
[2]	B. Driven Analysis tools with examples Lecturenotes, 2012. Click here.	
[3]	R. Durkett Essentials of Stochastic Processes, Second edition Springer, 2012. Click here	
[4]	R. Durkett Probability: Theory with examples, 4th edition Cambridge University Press, 2010.	
[5]	R. Dunnett Probability: Theory and Examples Click here	
[6]	D.H. FRENCH Measure Theory Volume I Click here	
[7]	D.H. FREMUN Measure Theory Volume II Click here	
[8]	O. vax GAANS Probability measures on metric spaces Click here	
		62/63

| S. Kerus, H.M. Toron
A flat course in stochastic processes
Academic Press, New York, 1975
| 10 | S. Kerus, H.M. Toron
Satochaszikus Polyamatok
Giordolar, Budapest, 1985
| 11 | S. Kerus, H.M. Toron
A second course in stochastic processes
, Academic Press, 1981
| 12 | G. Luwas
Introduction to Stochastic Processes
Chapman & Hall 1985
| 13 | D.A. Levy, Y. Press, E.L. Wissen
Markov chains and mixing times
American Mathematical Society, 2009.
| 14 | P. Marra, Geometry of sets and measure in Euclidean spaces. Cambridge, 1995.
| 15 | S. Rese
A Fear Course in Probability, 6th ed.
Prendice Hall, 2002
| 16 | D. Wissen
Probability with Marringales
Cambridge 2003
| Cambridge 2003
| Cambridge 2007
| Click here