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We write M for the set of measures µ satisfying:
µ is a Radon measure,
spt(µ) is compact,
0 < µ(Rd) <∞.

Let

M1 := {µ ∈M : µ is a probability measure } . (1)

Let A ⊂ Rd be a Borel set. Further, we define

M(A) := {µ ∈M : spt(µ) ⊂ A} ,

M1(A) :=
{
µ ∈M(A) : µ(Rd) = 1.

}
.

Károly Simon (TU Budapest) Fractals 2012 fourth talk 3 / 38



Hausdorff dimension of a measure
Let µ ∈M. Recall: we have introduced the definition:

Definition
dimH(µ) := inf

{
dimH(A) : µ(Rd \ A) = 0

}
.

Recall: we have proved the following theorem

Theorem
dimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r . (2)

Roughly speaking, dimH(µ) = δ if for a µ-typical x we
have µ(B(x , r)) ≈ r δ for small r > 0.
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Local dimension I
Let µ ∈M1. From now we denote the local dimension
by dµ(x) instead of dimloc(µ, x). That is

dµ(x) := lim inf
r→0

log µ(B(x , r))

log r ,

dµ(x) := lim sup
r→0

log µ(B(x , r))

log r ,

dµ(x) := lim
r→0

log µ(B(x , r))

log r ,

The lower local dimension, upper local dimension, local
dimension is defined by:

dµ(x) , dµ(x) , dµ(x) respectively.
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What we have just proved it is a theorem due to Lai
Sang Young:

Figure : Lai Sang Young
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Theorem (L.S. Young)
Let Λ ⊂ Rd be measurable and µ(Λ) > 0. Suppose that
for every x ∈ Λ,

a ≤ lim inf
r→0

log µ(B(x , r))

log r ≤ b. (3)

Then
a ≤ dimH(Λ) ≤ b. (4)

Clearly, all limits remains unchanged if instead of r → 0
we change to a sequence rn ↓ 0 satisfying
limn→∞ rn/rn+1 = 1.
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self-similar measures I
For a probability vector

p = (p1, . . . , pm).

we define the infinite product measure:

pN := (p1, . . . , pm)N.

We are also given a self-similar IFS

S = {S1, . . . , Sm}

on Rd with contraction ratios

0 < ri < 1 .
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self-similar measures II
Recall that the similarity dimension s was defined as the
solution of the equation

r s
1 · · ·+ r s

m = 1. (5)

Using the natural projection (coding) Π,

Π(i) := limn→∞ Si1...in(0),

we consider the push down measure of pN:

ν := Π∗pN, (6)
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self-similar measures III
that is, for Borel A ⊂ Rd :

ν(A) := pN(Π−1(A)).

Homework Prove that for Borel A ⊂ Rd

ν(A) =
m∑

i=1
piν(S−1

i (A)). (7)

Theorem
There is a unique measure µ ∈M1 satisfying (7).
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Idea of the proof
By (7): spt(ν) ⊂ Λ. We introduce the metric L(µ, η) for
µ, η ∈M1(Λ):

L(µ, η) := sup {µ(φ)− η(φ)|φ : Λ→ R, Lip(φ) ≤ 1} .

Further, consider the operator F :M1(Λ)→M1(Λ) :

(Fν)(φ) :=
m∑

k=1
pi
∫
φ ◦ Sidν.

Then
(a) The metric space (M1(Λ), L) is complete.
(b) F is a contraction on (M1(Λ), L).

So, by Banach fixed point theorem we obtain that there
is a unique fixed point of F . �

Károly Simon (TU Budapest) Fractals 2012 fourth talk 12 / 38



Natural measure (the definition)

Let s be the similarity dimension of the IFS S. The
important special case is:

ν := Π∗(pN) for p = (r s
1 , . . . , r s

m). (8)

The measure ν is called the natural measure on Λ.
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The natural measure I
Fact
Assume that the IFS S = {Si(x) = rix + ti}m

i=1 satisfies
the OSC. Then

dν(x) ≡ s holds ∀x ∈ Λ.

We remark that Young’s Theorem and this Fact implies
that

dimH ν = s. (9)
Proof We give the proof in the special case when the
Strong Separation Property holds that is we assume that
the sets Λi := Si(Λ), i = 1, . . . ,m are pairwise disjoint.
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The natural measure II
Without loss of generality we may assume that |Λ| = 1.
Let

d := min dist(Λi ,Λj), i 6= j .
Set rmax := max {r1, . . . , rm}. Fix an ` such that

r `max < d .

Fix an arbitrary x = Π(i) and r > 0. We define n such
that

ri1...in+` ≤ ri1...ind ≤ r < ri1...in−1d . (10)
Then

Λi1...in+` ⊂ B(x , r) ∩ Λ ⊂ Λi1...in. (11)
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The natural measure III

Hence
r s
i1...in+` ≤ ν(B(x , r)) ≤ r s

i1...in, (12)

Putting together (10) and (14) we obtain

log r s
i1...in

log ri1...in+`
<log ν(B(x ,r))

log r ≤
log r s

i1...in+`
log ri1...in−1d (13)

Now let r → 0 to get the assertion of the Fact. �
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Entropy, Lyapunov exponent

Recall that we are given a self-similar IFS
S = {S1, . . . , Sm} with contractions r := (r1, . . . , rm)
respectively. As always Λ is the attractor and
Σ := {1, . . . ,m}N is the symbolic space. Further we
write (as always) Π : Σ→ Λ,

Π(i) := limn→∞ Si1,...in(0), i = (i1, i2, . . . ).
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Entropy, Lyapunov exponent
For a given probability vector p = (p1, . . . , pm) we
consider the self-similar measure:

ν := Π∗pN.

Set

hp := −
m∑

j=1
pj log pj and κp,r := −

m∑
j=1

pj log rj . (14)

We call
hp the entropy .
κp,r the Lyapunov exponent .
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Local dimension of self-similar measures
assuming OSC I

In what follows we always assume that the OSC
holds.
Theorem

dν(x) = lim
r→0

logµ(B(x ,r))
log r = hp

κp,r
for ν-a.e x ∈ Λ. (15)
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Local dimension of self-similar measures
assuming OSC II
Proof: We give the proof for the case when the SSP
holds. That is for

d := min dist(Λi ,Λj), i 6= j ,

d > 0. Like above, we set rmax := max {r1, . . . , rm} and
we fix an ` such that

r `max < d .

We obtained on slide 16 that

r s
i1...in+` ≤ ν(B(x , r)) ≤ r s

i1...in, (16)
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Local dimension of self-similar measures
assuming OSC III

A similar argument as on slide 16 yields that for
µ-a.e. i ∈ Σ

lim
r→0

log ν(B(x , r))

log r =
− limn→∞

1
n(log pi1 + · · ·+ log pin)

− limn→∞
1
n(log ri1 + · · ·+ log rin)

=
hp

κp,r
,

(17)
where in the last step we used the LLN both in the
nominator and denominator.
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Local dimension of self-similar measures
assuming OSC IV
Remark
It follows from (11) that

dν(x) = lim
r→0

log ν(B(x ,r))
log r = limn→∞

log pi1...in
log ri1...in

. (18)

That is whenever the limit lim
r→0

log ν(B(x ,r))
log r exists then the

limit on the right hand side in (18) also exists and the
two limits are the same. This is true even in the
(ν-atypical) case when this limit is not equal to hp

κp,r
.
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In this section we consider a self-similar measure ν and
study the size (Hausdorff dimension) of the set Kα where
the local dimension dν(x) = limr→0

log ν(B(x ,r))
log r of the

measure µ is equal to a given number α. That is

Kα := {x ∈ Λ : dν(x) = α} . (19)

The object of our study is, the function

D : α 7→ dimH(Kα) (20)

Clearly Kα = ∅ if α 6∈ [α1, α2] , where

αmin := min
1≤i≤m

log pi

log ri
, and αmax := max

1≤i≤m

log pi

log ri
.
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Principal assumptions and def. of T (q)
Principal assumptions:

(A1) S satisfies SSP. That is

d := min
i 6=j

dist {Si(Λ), Sj(Λ)} > 0. (21)

(A2) p 6= (r s
1 , . . . , r s

m),

Definition
For a q ∈ R, let T (q) be the unique solution of the
equation

m∑
i=1

pq
i r

T (q)
i = 1 (22)

Homework Prove that T ′′(q) > 0 for all q ∈ R.
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The main Theorem
We assume that assumptions (A1) and (A2) hold for
the IFS S . Then the multifractal spectrum of the
self-similar measure ν = Π∗

(
pN
)
is

D(α) = dimH {x : dν(x) = α}

=

 T ∗(α), if α ∈ [αmin, αmax];
0, otherwise.

where T ∗ is the Legendre transform of the convex
function T . That is

T ∗(α) := infq (T (q) + α · q) . (23)
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Example
Let us assume that m = 2 and p =

(3
4 ,

1
4
)
, r =

(1
9 ,

1
3
)
.

That is we consider the IFS

S =

{1
9 · x ,

1
3 · x +

2
3

}
,

and we write ν for the self similar measure with
probabilities p. In this case we can find formulaes for

See Figure ??.
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Figure : Dimension spectrum D(α) in the case when m = 2 and
p =

(
3
4 ,

1
4

)
, r =

(
1
9 ,

1
3

)
. α1 := (

m∑
i=1

pi log pi)/(
m∑

i=1
pi log ri) = dimH ν,

α2 := (
m∑

i=1
r s
i log pi)/(

m∑
i=1

r s
i log ri)
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Definition
1

µq :=
{
pq

1 · r
T (q)
1 , . . . , pq

m · rT (q)
m

}N
, νq := Π∗(µq).

2 Definition of α(q):

α(q) := −T ′(q) =

m∑
i=1

pq
i r

T (q)
i log pi

m∑
i=1

pq
i r

T (q)
i log ri

3 Definition of q(α). For α ∈ (αmin, αmax) we define
the function q(α) as the inverse function of α(q) .
(T ′′(q) > 0 so this makes sence.)
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Lemma
For νq a.e. x = Π(i) the following two assertions hold

dν(x) = limn→∞
log pi1...in
log ri1...in

= α(q). (24)

and

dνq(x) = T (q) + q · α(q)⇔ dν(x) = α(q). (25)

The proof of the Lemma is a simple application of LLN
and left as an exercise. Let

f (α):=T (q(α))+α·q(α),Eα:=
{
x ∈ Λ : dνq(α)(x) = f (α)

}
.
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It follows from (25) that

Kα = {x : dν(x) = α} = Eα.

Using L.S. Young’s Theorem for the measure νq(α) we
obtain that

f (α) = dimH(Kα).

Now we prove that

f (α) = T ∗(α). (26)

First observe that by differentiation a function
q → T (q) + α · q attains its minimum at the q, where
α = −T ′(q), which is equal to α(q) by definition.
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