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We write M for the set of measures p satisfying:
@ 4 is a Radon measure,
@ spt(u) is compact,
e 0 < pu(RY) < oo.

Let

My = {p € M : pis a probability measure } . (1)
Let A C RY be a Borel set. Further, we define
M(A) == {n € M :spt(u) C A},
My(A) = {p € M(A): p(RT) =1.}.

Karoly Simon (TU Budapest) fourth talk 3/38



Hausdorff dimension of a measure
Let i € M. Recall: we have introduced the definition:

Definition
dimp(e) := inf {dimp(A) : u(R?\ A) = 0}.

Recall: we have proved the following theorem

Theorem

. . log u(B(x, r))
d — ess sup, lim inf .
imy (i) = ess sup, imin og 1

()

Roughly speaking, dimg(u) = ¢ if for a p-typical x we
have 1i(B(x, r)) ~ r’ for small r > 0.
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| ocal dimension |

Let i € M;. From now we denote the local dimension
by dp(x) instead of dimyy(1, x). That is

log p(B(x, r))

d,(x) = lim inf o8 1
_ | B
d,(x) := limsup og 1(Blx. r))
r—0 log r
_ . log u(B(x, r))
dulx) = MT?J log r

The lower local dimension, upper local dimension, local
dimension is defined by:

d,(x) ,du.(x) ,d.(x) respectively.
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What we have just proved it is a theorem due to Lai
Sang Young:

Figure : Lai Sang Young
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Theorem (L.S. Young)

Let A C RY be measurable and ji(N\) > 0. Suppose that
for every x € A,

log pu(B(x, r))

a < liminf < b. (3)
r—0 |og r
Then

Clearly, all limits remains unchanged if instead of r — 0
we change to a sequence r, | 0 satisfying

lim. ro/re1 = 1.
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@ Self-similar measures
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self-similar measures |
For a probability vector

p=(p1. .. Pn).

we define the infinite product measure:

pN = (p17 ) pm)N'

We are also given a self-similar IFS
S={S,...,5u}
on R? with contraction ratios

O<r<l.
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self-similar measures 1l

Recall that the similarity dimension s was defined as the
solution of the equation

ri---+r,=1 (5)
Using the natural projection (coding) I,
M) = lim S ;,(0),
we consider the push down measure of p'\:

v = M,p", (6)
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self-similar measures ||

that is, for Borel A C RY:
v(A) = p"(N~1(A)).

Homework Prove that for Borel A ¢ R?

V(A) = z piv(S7H(A)). (7)

Theorem
There is a unique measure |1 € M; satisfying (7).
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|dea of the proof

By (7): spt(v) C A. We introduce the metric L(u,n) for
p,m € My(N):

L(p,n) = sup {u(®) = n(¢)|¢ : A = R, Lip(¢) < 1}.
Further, consider the operator F : My(A) — M;(N):

(Fv)(0) = Zn/cbode

Then
(a) The metric space (M1(A), L) is complete.
(b) F is a contraction on (M3(A), L).
So, by Banach fixed point theorem we obtain that there
is a unique fixed point of F. [
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Natural measure (the definition)

Let s be the similarity dimension of the IFS §. The
important special case is:

vi=M,p") forp=(rf,...,r5). (8)

The measure v is called the natural measure on A.

Karoly Simon (TU Budapest) fourth talk 13 /38



The natural measure |

Fact
Assume that the IFS S = {S;(x) = rix + t;}]" | satisfies
the OSC. Then

d,(x) = s holds Vx € N\.

We remark that Young's Theorem and this Fact implies
that
dimgv =s. (9)

Proof We give the proof in the special case when the
Strong Separation Property holds that is we assume that
the sets A; := S;(A), i = 1,..., m are pairwise disjoint.
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The natural measure |l

Without loss of generality we may assume that |[A| = 1.
Let
d := mindist(A;, Aj), i # J.

Set fmax := max {r,..., rm}. Fix an ¢ such that
rrf]ax < d.

Fix an arbitrary x = [(i) and r > 0. We define n such
that
< rd <r<r .d (10)

iy ..ipys

Then

A C B(X, r) NAC /\,’1.._/". (11)

I‘]_...I‘,H,[
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The natural measure ||

Hence

Fiinee SV(B(x, 1)) <1 s (12)
Putting together (10) and (14) we obtain

log ri i, <|og1/(B(x,r))< |°gfisl.4.in+e (13)

log Fiycip g log r —logriy i, ,d

Now let r — 0 to get the assertion of the Fact. [
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Entropy, Lyapunov exponent

Recall that we are given a self-similar IFS

S ={51,...,5,} with contractions r := (r,...,ry)
respectively. As always A is the attractor and

Y ={1,..., m}N is the symbolic space. Further we

write (as always) 1: X — A,

I'I(|) = nILn;O 5,'17,“,'n(0), i = (il, f2, 50 0 )
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© Entropy, Lyapunov exponent
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Entropy, Lyapunov exponent

For a given probability vector p = (p1,...,pm) we
consider the self-similar measure:

v = M,p".

Set

hp — —ij |ngJ and Hp’r = _ij logG (14)
j=1 =1

We call
@ hp the entropy

@ rp, the Lyapunov exponent .
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@ Local dimension for self-similar measures
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| ocal dimension of self-similar measures
assuming OSC |

In what follows we always assume that the OSC
holds.

Theorem

dy(x) = lim '°8Bn) — e gor ) gex e A (15)

r—0 log r Kipr

v
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| ocal dimension of self-similar measures

assumi\R/g OSC I

Proof: give the proof for the case when the SSP
holds. That is for

d := mindist(A;, \;), i # J,
d > 0. Like above, we set fyay := max{r, ..., rn} and
we fix an ¢ such that

rt o <d.

max

We obtained on slide 16 that

rF o <u(B(x,r) <rf (16)

11...I',,+g I1...in7
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| ocal dimension of self-similar measures
assuming OSC Il

A similar argument as on slide 16 yields that for
[-a.e. i € L

o logu(B(x,r)) _ — fim i(logpi +---+logp) _ hy
Im = = ]
r—0 log r Llogr, +---+logr,) Fpr

(17)
where in the last step we used the LLN both in the
nominator and denominator.

— |im
n—oo
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| ocal dimension of self-similar measures

assuming OSC IV

Remark
It follows from (11) that

log v(B(x,r)) = lim log piy ...y (18)

d,,(X) = lLr;% log r n—o0 logriy ip "

log v(B(x,r))
log

limit on the right hand side in (18) also exists and the
two limits are the same. This is true even in the
(v-atypical) case when this limit is not equal to :—"

p.r

That is whenever the limit lim
r—0

exists then the
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@ Multifractal analysis of self-similar measures with SSP
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In this section we consider a self-similar measure v and
study the size (Hausdorff dimension) of the set K, where

log v(B(x,r)) of the

the local dimension d,(x) = lim,_ log "

measure 1 is equal to a given number . That is
K, ={xeNA:d,(x)=a}. (19)
The object of our study is, the function

D : o+ dimg(K,) (20)

Clearly K, =0 if a & [a, ], where

log p; _ log p;
, and amay (= max .
1<i<m log r; 1<i<m log r;

g gr

Karoly Simon (TU Budapest) fourth talk 26 / 38



Principal assumptions and def. of T(q)
Principal assumptions:
(A1) S satisfies SSP. That is

d := mindist {S,(A). §;(A)} > 0. (21)

(A2) p# (s ),

Definition
Fora g € R, let T(q) be the unique solution of the
equation

£ ol =1 (22)

Homework Prove that T"(g) > 0 for all g € R.
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i é"amax
T(q) %
:slope = —Omin
2 dimH‘f‘spty
A\ 1 ]
I o4
slope = —amax ni\ q 02;
LIS T T T Qmnin---
-3 -2 -1 K min
: 6 42 o 24 e
(a) The function T(q) (b) The function a(q) := —T'(q)

Figure : m=2, p= (%,%), r= (%,%)
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The main Theorem

We assume that assumptions (A1) and (A2) hold for
the IFS & . Then the multifractal spectrum of the
self-similar measure v =TI, (pN) is

D(a) = dimg{x:d,(x)=a}
_ T*(Q)a if v € [amim @max];
10, otherwise.

where T is the Legendre transform of the convex
function 7. That is

T () :==infe (T(q) +a-q). (23)
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Example

Let us assume that m =2 and p = (Z’ %) r= (5, %)
That is we consider the IFS

1 1 2
S=1!-.x =. =
{9 Hog nET 3} ’
and we write v for the self similar measure with
probabilities p. In this case we can find formulaes for

See Figure ?77.
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dimy v

dimp spty Y
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Figure : Dimension spectrum D(«) in the case when m = 2 and

p=(31).r=(}1) o= (gl pilog pf)/(gl1 pilog r;) = dimy v,

2
az == (3 r7 log p)/(% 17 log 1)
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Definition
Q

" N
T {pf VU , pd - r,:(q)} , Vg = (1)

@ Déefinition of a(q):

T(q)

noq
2 Piti log p

a(q) == —-T'(q) = F
.;1 pl_qu_T(q) log r;

@ Definition of g(«). For oo € (min, 'max) We define

the function g(«) as the inverse function of a(q) .
(T"(g) > 0 so this makes sence.)
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Lemma

For v, a.e. x =TI(i) the following two assertions hold

. logpi,..i,
dlx) = fim B = a(g).(24)

and

dvy(x) = T(q) + q-alq) & d(x) = a(q).  (25)]

The proof of the Lemma is a simple application of LLN
and left as an exercise. Let

f(a):=T(q(x))+a-q(a), Ey {x eN:d,,,(x)= f(a)}.
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It follows from (25) that
K, ={x:d,(x) =a} =E,.

Using L.S. Young's Theorem for the measure v4(,) we
obtain that
f(a) = dimg(K,).

Now we prove that
fla) =T («). (26)

First observe that by differentiation a function
g — T(q) + a - g attains its minimum at the g, where
a = —T'(q), which is equal to a(q) by definition.
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