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Let A; be d X d non-singular matrices with
|Ail <land t; e R fori=1,...,m. Let
— m . m
Fo={fitl ={A x+t}l,, (1)
where we always assume that
|Ai|| < 1.
We study the attractor A of the IFS F.
a3/ a4/

The attractor A (definition I)
Let B = B(0, r) be any closed ball centered at the
origin with radius r such that

&1l
N o lm
"7 E20 1 max A
1<i<m

The attractor A (definition II)

So we can define the non-empty compact set

N = ﬁ U f,...(B). (4)

n=1 il...i,,

then o .
Viel,...m: £(B) C B. ) The definition is independent c?f B Then A is the
only non-empty compact set satisfying
Thus
m
u A= J fi(N). 5
U f;'l...l'n+1(B) = U ﬁ1...in ( U f;'n+1(B)) iLle I( ) ( )
i1 eipng1 eeein int1=1
c U fii(B) 3)
I...ln
Coding the points of A Coding of the points of A (cont.)
To code the elements of A we use the symbolic
space
yo={1,...,m". -
) - For an i = (i, i,...) € A we have
To code the elements of A with the infinite
sequences from ¥ we choose a sufficiently big 5@ (6)
closed ball B centered at the origin. We have seen ”l l”
that £;(B) C Bforall i =1,...,m. This follows ) )
that for all infinite sequence i := (i, fp,...) € X the I_l(')‘T1 M(oi)
sequence of sets
{fllln(B)};C:I
converge to a single point as n — oo. We call this
point (i).
Kéroly Simon (TU Budapest) Fractals ondtalk  7/43 Kéroly Simon (TU Budapest) Fractals 2ndtalk  8/43




Separation conditions

Strong separation Property
fi(N)NF(AN) =0 forall i # j (7)

Open Set Condition (OSC)

There exists a non-empty open set V such that
Q fi(V)C Vholdsforalli=1,....m
Q@ (V)Nf(V)=0 forall i #j.
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@ Box- Hausdorff dimension
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Box dimension

Let E C RY, E # (), bounded. N;(E) be the
smallest number of sets of diameter § which can
cover E. Then the lower and upper box dimensions

of E:
log Ns(E)

dimo(£) = gt E WD), (g
-  log Ns(E
dimg(E) := |Ir?jé.lp Eloog(é)' (9)

If the limit exists then we call it the box dimension
of E.
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Equivalent definitions |.

The definition of the box dimension does not change
if we define Ns(E) in any of the following ways:
@ the smallest number of closed balls of radius &
that cover E,
© the smallest number of cubes of side § that
cover E,
© the number of d-mesh cubes that intersect E
© the smallest number of sets of diameter at
most ¢ that cover E,

@ the largest number of disjoint balls of radius ¢
with centers in E.
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Equivalent definitions II.

dimp(E) i= d — limsup Iogiolié[§]5)7 (10)
dimp(E) = d — liminf 28V UEL) )

r—0 —logd
where [E]; is the 0 parallel body of E.
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Hausdorff measure on R¢

Let A ¢ RY and let t > 0. We define

%t(/\) = (|SI_I‘)T'(|) mf{ i:zol |A,~|t N\ C 'L__Jl Ai; |A,| < (5}

HE(N)
(12)
Then H! is a metric outer measure. The
t-dimensional Hausdorff measure is the restriction of
H! to the o-field of H!-measurable sets which
include the Borel sets.
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Hausdorff dimension |.

Let AC R? and 0 < o < 3. Then
Hi(N) < 57 HG(N).
Using that H*(A) = lims_,0 HE(A)

HO(N) < 0o = HP(N) =0 for all o < 3.

0 < H(N) = HYA) = oo for all @ < 6.
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Hausdorff dimension |I.

t = H'(A)

dimp (A)v t

The Hausdorff dimension of A
dimg(A) = inf {t: H'(A) =0}
= sup{t: H'(A) = oo}.
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Mass Distribution Principle

We say that a Borel measure i on the set X is a
mass distribution if 0 < p(X) < oo.

Lemma 1 (Mass Distribution Principle)

If A C X supports a mass distribution . such that
for a constant C and for every Borel set D we have

(D) < const - |D|*

Then dimg(A) > t.

Proof For all {A;}

c2 A
acUA= Sl 2 Py ua) > 0
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Frostman’s Energy method

Let i be a mass distribution on R¢.
of 1 is defined by

E(n) = [[ Ix = y|"tdp(x)duly)-

The t-energy

Lemma 2 (Frostman (1935))

For a Borel set N € R? and for a mass distribution
1 supported by \ we have

Er(p) < oo = dimg(A) > t.

In this case H'(N\) = oo
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Proof of Frostman Lemma |

This proof if due to Y. Peres. Let

/ du(y)

x =yl
Then &(p) = | ®¢(p, x)dp(x). Let
Ay i={x e N: (1, x) < M}.
Since [ ®¢(p, x)du(x) = E(p) < oo we have M
such that p(Ap) > 0. Fix such an M.
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Proof of Frostman Lemma Il

Let

V= :U’|/\M
Then v is a mass distribution supported by A.
(That is v satisfies one of the assumptions of the

Mass Distribution Principle above.) Now we show
that for every bounded set D:

v(D) < const - |D|". (13)

If DN Ay = 0 then (13) holds obviously. From now
we assume that D is a bounded set such that
DUA, # 0.
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Proof of Frostman Lemma Il|

Pick an arbitrary x € DN Ay. We define

m:=max{k € Z: B(x,27%) > D}.

Then

D] >27 (™Y and D] < 227" (14)
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Proof of Frostman Lemma |V

Observe that from the right hand side of (14):
y € D we have [x — y|7t > |D|7t > 27t.2™ S,

M > v(D)-27t. 2™t
/|x—y|f /|x—y|f— )

Using this and the left hand side of (14) we obtain

v(D) < M. 2t.2t. 2= (M)t < pp. 22t | DIt

So, the mass distribution v satisfies the
assumptions of the Mass Distribution Principle
which completes the proof of the Lemma.
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Hausdorff dimension of a measure
Let 1 be a mass distribution on R¢.

Definition 1
dimg(p) = inf {dimH(A) cpu(RY\ A) = 0} .

Lemma 3

log u(B(x, r))

dimy () = ess sup, I|rr1L|61f log r

Roughly speaking, dimy(p) = 0 if for a p-typical x
we have

w(B(x,r)) = =

for small r > 0.
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Packing measure

§-packing of E C RY is a finite or countable
collection of disjoint balls {B;}; of radii at most §
and with centers in E. For >0

P;5(E) :=sup {io: |Bi|° : {B;} is a d-packing of E }
i=1

Since P§(E) = I|m $(E) is NOT countably-sub
additive therefore we need one more step:

P(E) = inf{f Pi(E)E U E"}

i=1 =l
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Packing dimension

dimp(E) := inf{s:P°(E) =0}

= sup{s:P°(E) =oo}.

dimp(E) = inf {squimBE,' (EC Ej E;},

i=1
where the sup is taken for all covers {E;};2; of E.
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@ Self-similar sets with OSC
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Self-similar sets with OSC

Assume that F := {f;}\", is a self-similar IFS on
as the only positive solution of the equation
R+t =1

where r; is the similarity ratio for f;.
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Hutchinson Theorem

Hutchinson (1981)

Theorem 1
Given a self similar IFS F which satisfies the OSC.
Let s = s(F) be the similarity dimension. Then

0 < H(N) < o0. (16)

Further,
dimg A = dimg = s.

For the proof see: [1].

2nd talk

Kroly Simon (TU Budapest) Fractals

28 /43

Hausdorff measure for self-similar
attractors

We cannot easily estimate the appropriate

in the plane or higher dimension. If A is the

Sierpinski triangle then the we know that

s=dimgA = :gi;. The best estimate for
g

s-dimensional Hausdorff measure:

0.77 < H3(A) < 0.81

The upper bound is old (proved in 1999) but the
lower bound is new. It was given By Peter Moéra
(PhD student).
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@ Overlapping
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M. Keane's " {0,1,3}" problem:

12

For every A € (3, ¢

self-similar set:

) consider the following

Ay = {Z a\:a € {071.,3}}.

i=0
Then A, is the attractor of the one-parameter (\)
family IFS:

{Sf\(x) =A-x+ i}

i=0,1,3
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{0,1, 3} problem II.
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My :{0,1,3}" — A,

Let k € N and i = (ig, 1,...) € {0,1,3}". Let k € N
———
= =)
Bty = Sy 000 SHI) and () = 1), .
Example: 11, (0, 3,1,0,...) Example:
I3 I3
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Basic Measure Theory

Let S be a o-field of a given set X. We say that a
function i : S — [0, 00] is a measure if

o 1(0)=0
o u(UXE) = 'i,u(E,-) for every disjoint
sequence of sets {E;};~; in S.

An outer measure v on X is defined on all subsets
of X takes values from [0, oo] such that

e v(0) =0,

e v(A) <v(B)if AC B,

o V(UXE) < '§1 v(E;) for all sequence of sets
{Ei}7y-

(TU Budapest)

Karoly Simon

Fractals

2nd talk

34 /43

Measurable subsets

A set E is measurable with respect to the outer
measure v if for every A C X we have
v(A)=v(ANE)+v(A\E).

Let M be the collection of all measurable set for an
outer measure . Then M is a o-field and the
restriction of v to M is a measure.

Further, assume that (X, d) is a metric space. We
say that the outer measure v is a metric outer
measure if (AU B) = v(A) + v(B) holds for all
A, B C X with inf {d(a,b):a€ A be B} >0.

In this case the restriction of v to the o-field of the
measurable sets M is a Borel measure.

© Geometric measure theory

Let (X, d) be a separable metric space and let i be
a measure on X.

Q@ 1 is locally finite if Vx € X, 3r > 0, such that
w(B(x,r)) > 0.

@ 1 is a Borel measure if all Borel sets are p
measurable. (The family of Borel sets in X is
the smallest o-algebra containing all open sets.)

© The measure p is Borel regular if

(a) Borel measure and
(b) VA C X, 3AC B C X Borel set stt.

w is a Radon measure if
(a) Borel measure,
(b) VK C X compact: u(K) < oo,
(c) VV C X open: pu(V) =
sup {u(K) : K C V is compact }
(d) YA C X: p(A) =
inf {u(V):AC and V is open }.

Theorem 2

A measure ;i on R? is a Radon measure if and only
if it is locally finite and Borel regular

Definitions Radon measure definition

Proof: See Mattila's book [2, p. 11-12].

2nd talk

38 /43

Radon measure examples

@ The Lebesgue measure Leby on R? is a Radon
measure.

@ The Dirac measure §,(A) :=1if a € A and
95(A) =0if a ¢ A is a Radon measure.

© For every s > 0 the Hausdorff measure is a
Borel regular measure but it need not be locally
finite. So, in general the Hausdorff measure is
not a Radon measure. However, for an A C RY,
H*(A) < oo the restriction H*|4 is a Radon
measure. (See Mattila's book: [2, p. 57].)
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