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IFS

Let Ai be d × d non-singular matrices with
‖Ai‖ < 1 and ti ∈ R

d for i = 1, . . . , m. Let

F := {fi}
m
i=1 = {Ai · x + ti}

m
i=1 , (1)

where we always assume that

‖Ai‖ < 1.

We study the attractor Λ of the IFS F .
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The attractor Λ (definition I)
Let B = B(0, r) be any closed ball centered at the
origin with radius r such that

r > max
1≤i≤m

‖ti‖

1 − max
1≤i≤m

‖Ai‖

then
∀i = 1, . . . , m : fi(B) ⊂ B. (2)

Thus

⋃

i1...in+1

fi1...in+1
(B) =

⋃

i1...in

fi1...in





m⋃

in+1=1

fin+1
(B)





⊂
⋃

i1...in

fi1...in(B) (3)
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The attractor Λ (definition II)

So we can define the non-empty compact set

Λ :=
∞⋂

n=1

⋃

i1...in

fi1...in(B). (4)

The definition is independent of B. Then Λ is the
only non-empty compact set satisfying

Λ =
m⋃

i=1

fi(Λ). (5)
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Coding the points of Λ
To code the elements of Λ we use the symbolic
space

Σ := {1, . . . , m}N .

To code the elements of Λ with the infinite
sequences from Σ we choose a sufficiently big
closed ball B centered at the origin. We have seen
that fi(B) ⊂ B for all i = 1, . . . , m. This follows
that for all infinite sequence i := (i1, i2, . . . ) ∈ Σ the
sequence of sets

{fi1...in(B)}∞
n=1

converge to a single point as n → ∞. We call this
point Π(i).
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Coding of the points of Λ (cont.)

For an i = (i1, i2, . . . ) ∈ Λ we have

i

Π
��

σ // σi

Π
��

Π(i) Π(σi)
fi1

oo

(6)
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Separation conditions

Strong separation Property

fi(Λ) ∩ fj(Λ) = ∅ for all i Ó= j (7)

Open Set Condition (OSC)
There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . , m

2 fi(V ) ∩ fj(V ) = ∅ for all i Ó= j .
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Box dimension

Let E ⊂ R
d , E Ó= ∅, bounded. Nδ(E ) be the

smallest number of sets of diameter δ which can
cover E . Then the lower and upper box dimensions
of E :

dimB(E ) := lim inf
r→0

log Nδ(E )

− log δ
, (8)

dimB(E ) := lim sup
r→0

log Nδ(E )

− log δ
. (9)

If the limit exists then we call it the box dimension
of E .
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Equivalent definitions I.

The definition of the box dimension does not change
if we define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ

that cover E ,
2 the smallest number of cubes of side δ that

cover E ,
3 the number of δ-mesh cubes that intersect E
4 the smallest number of sets of diameter at

most δ that cover E ,
5 the largest number of disjoint balls of radius δ

with centers in E .
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Equivalent definitions II.

dimB(E ) := d − lim sup
r→0

log voln([E ]δ)

− log δ
, (10)

dimB(E ) := d − lim inf
r→0

log voln([E ]δ)

− log δ
, (11)

where [E ]δ is the δ parallel body of E .
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Hausdorff measure on R
d

Let Λ ⊂ R
d and let t ≥ 0. We define

Ht(Λ) = lim
δ→0







inf







∞∑

i=1
|Ai |

t : Λ ⊂
∞⋃

i=1

Ai ; |Ai | < δ







︸ ︷︷ ︸

Ht

δ
(Λ)







(12)
Then Ht is a metric outer measure. The

t-dimensional Hausdorff measure is the restriction of
Ht to the σ-field of Ht-measurable sets which
include the Borel sets.
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Hausdorff dimension I.

Let Λ ⊂ R
d and 0 ≤ α < β. Then

Hβ
δ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = limδ→0 Ht
δ(Λ)

Hα(Λ) < ∞ ⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ) ⇒ Hα(Λ) = ∞ for all α < β.

Károly Simon (TU Budapest) Fractals 2nd talk 15 / 43

Hausdorff dimension II.

∞

t → Ht(Λ)

dimH(Λ) t

The Hausdorff dimension of Λ

dimH(Λ) = inf
{

t : Ht(Λ) = 0
}

= sup
{

t : Ht(Λ) = ∞
}

.
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Mass Distribution Principle
We say that a Borel measure µ on the set X is a
mass distribution if 0 < µ(X ) < ∞.

Lemma 1 (Mass Distribution Principle)
If A ⊂ X supports a mass distribution µ such that
for a constant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}
∞
j=1

A ⊂
∞⋃

j=1

Aj ⇒
∑

j
|Aj |

t ≥ C−1
∑

j

µ(Aj) ≥
µ(A)

C
.

Károly Simon (TU Budapest) Fractals 2nd talk 17 / 43

Frostman’s Energy method
Let µ be a mass distribution on R

d . The t-energy
of µ is defined by

Et(µ) :=
∫∫

|x − y |−tdµ(x)dµ(y).

Lemma 2 (Frostman (1935))

For a Borel set Λ ⊂ R
d and for a mass distribution

µ supported by Λ we have

Et(µ) < ∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) = ∞.
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Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=
∫ dµ(y)

|x − y |t
.

Then Et(µ) =
∫

Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since
∫

Φt(µ, x)dµ(x) = Et(µ) < ∞ we have M
such that µ(ΛM) > 0. Fix such an M.
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Proof of Frostman Lemma II

Let
ν := µ|ΛM

Then ν is a mass distribution supported by Λ.
(That is ν satisfies one of the assumptions of the
Mass Distribution Principle above.) Now we show
that for every bounded set D:

ν(D) < const · |D|t . (13)

If D ∩ ΛM = ∅ then (13) holds obviously. From now
we assume that D is a bounded set such that
D

⋃

Λm Ó= ∅.
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Proof of Frostman Lemma III

Pick an arbitrary x ∈ D
⋂

ΛM . We define

m := max
{

k ∈ Z : B(x , 2−k) ⊃ D
}

.

Then

|D| ≥ 2−(m+1) and |D| < 2 · 2−m. (14)
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Proof of Frostman Lemma IV

Observe that from the right hand side of (14):
y ∈ D we have |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥
∫ dν(y)

|x − y |t
≥

∫

D

dν(y)

|x − y |t
≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (14) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the
assumptions of the Mass Distribution Principle
which completes the proof of the Lemma.
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Hausdorff dimension of a measure
Let µ be a mass distribution on R

d .

Definition 1
dimH(µ) := inf

{

dimH(A) : µ(Rd \ A) = 0
}

.

Lemma 3

dimH(µ) = ess supx lim inf
r→0

log µ(B(x , r))

log r
.

Roughly speaking, dimH(µ) = δ if for a µ-typical x
we have

µ(B(x , r)) ≈ r δ

for small r > 0.
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Packing measure
δ-packing of E ⊂ R

d is a finite or countable
collection of disjoint balls {Bi}i of radii at most δ

and with centers in E . For δ > 0

P s
δ (E ) := sup







∞∑

i=1

|Bi |
s : {Bi} is a δ-packing of E







Since P s
0(E ) := lim

δ→0
P s

δ (E ) is NOT countably-sub

additive therefore we need one more step:

P s(E ) := inf







∞∑

i=1

P s
0(Ei) : E ⊂

∞⋃

i=1

Ei
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Packing dimension

dimP(E ) := inf {s : P s(E ) = 0}

= sup {s : P s(E ) = ∞} .

dimP(E ) = inf






sup

i
dimBEi : E ⊂

∞⋃

i=1

Ei






,

where the sup is taken for all covers {Ei}
∞
i=1 of E .

dimH(E ) ≤ dimP(E ) ≤ dimBE .
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Self-similar sets with OSC

Assume that F := {fi}
m
i=1 is a self-similar IFS on

R
d . The similarity dimension s = s(F) is defined

as the only positive solution of the equation

r s
1 + · · · + r s

m = 1, (15)

where ri is the similarity ratio for fi .
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Hutchinson Theorem

Hutchinson (1981)

Theorem 1
Given a self similar IFS F which satisfies the OSC.
Let s = s(F) be the similarity dimension. Then

0 < Hs(Λ) < ∞. (16)

Further,
dimH Λ = dimB = s.

For the proof see: [1].
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Hausdorff measure for self-similar
attractors

We cannot easily estimate the appropriate
dimensional Hausdorff measure of a self similar-set
in the plane or higher dimension. If Λ is the
Sierpinski triangle then the we know that
s = dimH Λ = log 3

log 2
. The best estimate for

s-dimensional Hausdorff measure:

0.77 ≤ Hs(Λ) ≤ 0.81

The upper bound is old (proved in 1999) but the
lower bound is new. It was given By Peter Móra
(PhD student).
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M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (1
4
, 2

5
) consider the following

self-similar set:

Λλ :=







∞∑

i=0

aiλ
i : ai ∈ {0, 1, 3}






.

Then Λλ is the attractor of the one-parameter (λ)
family IFS:

{

Sλ
i (x) := λ · x + i

}

i=0,1,3

Károly Simon (TU Budapest) Fractals 2nd talk 31 / 43

{0, 1, 3} problem II.

0

3λ

1−λ

3

1−λ

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Πλ : {0, 1, 3}N Ô→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N
︸ ︷︷ ︸

Σ

.

Iλi0,...,ik := Sλ
i0
◦ · · · ◦ Sλ

ik
(Iλ) and Πλ(i) :=

∞⋂

k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0

Iλ :=
[

0, 3

1−λ

]

Let k ∈ N

I
λ
i0,...,ik

:=

Example: Π

I
λ
0
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Basic Measure Theory
Let S be a σ-field of a given set X . We say that a
function µ : S → [0, ∞] is a measure if

µ(∅) = 0

µ (∪∞
i=1Ei) =

∞∑

i=1
µ(Ei) for every disjoint

sequence of sets {Ei}
∞
i=1 in S.

An outer measure ν on X is defined on all subsets
of X takes values from [0, ∞] such that

ν(∅) = 0,

ν(A) ≤ ν(B) if A ⊂ B,

ν(∪∞
i=1Ei) ≤

∞∑

i=1
ν(Ei) for all sequence of sets

{Ei}
∞
i=1.
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Measurable subsets

A set E is measurable with respect to the outer
measure ν if for every A ⊂ X we have
ν(A) = ν(A ∩ E ) + ν(A \ E ).
Let M be the collection of all measurable set for an
outer measure ν. Then M is a σ-field and the
restriction of ν to M is a measure.
Further, assume that (X , d) is a metric space. We
say that the outer measure ν is a metric outer
measure if ν(A ∪ B) = ν(A) + ν(B) holds for all
A, B ⊂ X with inf {d(a, b) : a ∈ A, b ∈ B} > 0.
In this case the restriction of ν to the σ-field of the
measurable sets M is a Borel measure.
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Definitions

Let (X , d) be a separable metric space and let µ be
a measure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such that
µ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µ

measurable. (The family of Borel sets in X is
the smallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if

(a) Borel measure and
(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).
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Radon measure definition
µ is a Radon measure if

(a) Borel measure,

(b) ∀K ⊂ X compact: µ(K ) < ∞,

(c) ∀V ⊂ X open: µ(V ) =
sup {µ(K ) : K ⊂ V is compact }

(d) ∀A ⊂ X : µ(A) =
inf {µ(V ) : A ⊂ and V is open }.

Theorem 2
A measure µ on R

d is a Radon measure if and only
if it is locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].
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Radon measure examples

1 The Lebesgue measure Lebd on R
d is a Radon

measure.
2 The Dirac measure δa(A) := 1 if a ∈ A and

δa(A) = 0 if a Ó∈ A is a Radon measure.
3 For every s ≥ 0 the Hausdorff measure is a

Borel regular measure but it need not be locally
finite. So, in general the Hausdorff measure is
not a Radon measure. However, for an A ⊂ R

d ,
Hs(A) < ∞ the restriction Hs |A is a Radon
measure. (See Mattila’s book: [2, p. 57].)
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