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An application of fractals in Numb3rs

Click here to see a way how to apply fractals.
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http://www.youtube.com/watch?v=UKENmL8lNik&feature=related


Application of fractals

We use fractals to describe objects or phenomena in
which some sort of scale invariance exists.
Fractals appear physics, astronomy, biology, chemistry,
market fluctuation analysis, and so on.
At the conference
Practical Applications of Fractals
17 - 19 November 2004
Miramare, Trieste, Italy the following main applications
were discussed:
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Fractals in industry and man-made
fractals:

Fractal antennae,
Fractal sound barriers,
Use of fractal polymeric surfaces,
Fractal reactor design,
Fractal studies of heterogeneous catalysis,
Petroleum research.
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Natural fractal objects:

Fractal bronchial trees in mammals,
Growth of fractal trees in nature,
Optimal fractal distribution,
Absolute limitations of tree distributive structures,
River Networks,
Fractals and allometry (relative growth of a part in
relation to an entire organism or to a standard; also:
the measure and study of such growth).
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Applications of fractal concepts to the
study of complex systems:

Image analysis and compression
Multifractal signal analysis
Scaling topology of the internet and the www
Fractal aviation communication network
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How long is the coast of Britain?

Figure: Britain coastline, 200km: 2400km, 100km, 50 km:3400km
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Figure: Lewis R.
Richardson 1881-1953

Richardson conjectured: The
measured length L(G) of a
geographic boarder is

L(G) ≈ M · G1−D,

M is a constant and D is the
dimension . Namely:

L(G) = N(G) · G

logN(G)

logG−1 ≈ D =⇒ L(G) ≈ G1−D.

Britain: D = 1.25, Germany:
D = 1.14, South Africa D = 1.02.
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Figure: The famous Mandelbrot set (we do not learn much about it
on this course).

Károly Simon (TU Budapest) Fractals 2012 first talk 10 / 45



Beniot Mandelbrot

Figure: The father of fractal
geometry

In École Polytechnique,
student of Julia, Lévy.
Later post. doc.
working with J.
Neumann at Princeton.
Worked for IBM for 35
years. Then moved to
Yale. Books:
Fractals: Form, Chance
and Dimension 1975.
The Fractal Geometry
of Nature, 1982.
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Figure: Waclaw Sierpinski

Born in Warsaw 1882.
Ph.D. in 1908 at Univ.
of Krakkow (Poland).
1919-1969 worked at
the Univ of Warsaw,
died: 1969
A GREAT
mathematician. Very
important results in:
set theory, real analysis
and topology.
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Figure: The third approximation of the Sierpinski gasket
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Figure: S312(x) := S3 ◦ S1 ◦ S2(x) = S3(S1(S2(x)))

Si are translations of the appropriate
homothety-transformatons of the form:

Si(x) = 1
2x + ti .
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Figure: The third approximation of the Sierpinski carpet
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Figure: von Koch snowflake (from Wikipedia)
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Figure: von Koch snowflake (from Wikipedia)
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Figure: The third approximation of the golden gasket
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Figure: Menger Sponge (from Wikipedia)
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Figure: The Hironika curve
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Figure: The generator of a self-affine set
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A1 :=

 0.3464101616 −0.1250000000
0.2 0.2165063510

 ,

A2 :=

 0.2 0.2165063510
−0.3464101616 0.1250000000


t1 := [0.5196152, 0.3], t2 := [−0.4688749, 0.5721152]

Let f1(x) := A1x + t1 and f2(x) := A2x + t2 and

Di1...in := fi1 ◦ · · · ◦ fin(D),

where D is the unit disk.
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Figure: The third approximation of the attractor of the self affine
IFS.
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Figure: The Barnsly’s fern
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Julia sets: the definition

Let f (z) = p(z)/q(z), where p(z), q(z) complex
polynomials. A point z0 is a periodic point of f with
period n ≥ 1 if f n(z0) = z0 but f k(z0) 6= z0 for
0 < k < n. We say that such a z0 is repelling if
|f ′(z0)| > 1.

Definition (Julia set of f )
The Julia set of f denoted by J(f ) , is the closure of
the repelling periodic points of f .
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Julia sets: properties
(a) f −1(J(f )) = f (J(f )) = J(f )

(b) ∀z ,w ∈ J(f ), we have
|f (z)− f (w)| > |z − w | if w is close enough
to z .

(c) For all but at most two z , J(f ) is the set of
limit points of ∪nf −nz .

If f is a polynomial then
1 J(f ) is the boundary of the set of points whose

orbit (the sequence {f n}∞n=1 ) tend to infinity.
2 J(f ) is the boundary of the set of points whose

orbit is bounded. (We call this set filled Julia set.)
Next three pictures are from the Wikipedia.
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J(fc) for fc = z2 + c , c = −0.80.156i

Figure: Menger Sponge (from Wikipedia)
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J(fc) for fc = z2 + c ,
c = −0.70176− 0.3842i

Figure: Menger Sponge (from Wikipedia)
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Mandelbrot set

M := {c ∈ Z| {f n
c (0)}∞n=0 is bounded.} ,

where fc(z) = z2 + c . E.g. 1 6∈ M but i ∈M.
Equivalently,

M := {c ∈ Z : |{f n
c (0)}∞n=0| ≤ 2, ∀n} .

Equivalently:

M := {c : J(fc) is a connected set. }
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Figure: Menger Sponge (from Wikipedia)
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The main cardioid consists of c ∈M for which fc has an
attracting fixed point.
For (p, q) = 1, there is a bulb tangent to the main
cardioid at

c p
q

=
e2πi p

q

2

1− e2πi p
q

2


which bulb consists of those c ∈M for which fc has an
attracting periodic orbit of period q.
click here for further information about the Mandelbrot
set.
To see the corresponding Julia set for a c ∈M click here
click here
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http://www.mandelbrotset.net/index.html
http://www.javaview.de/vgp/tutor/fractal/PaFractalImage.html


Heighway Dragon I

Click here to see a vidio on youtube how the Heighway
dragon fractal builds up.
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http://www.youtube.com/watch?v=b92gp1gLNaA


Heighway Dragon II

S1(x) =

 1
2 −

1
21

2
1
2

 · x
S2(x) =

 −1
2 −

1
21

2 −
1
2

 · x +

 1
0

 .
SH := {S1(x), S2(x)} . (1)
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Heighway Dragon III
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Figure: The first four approximations of the Heighway dragon.
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Heighway Dragon IV

Let Pn the broken line that we obtain after n steps. Then
{Pn}∞n=1 is a Cauchy sequence of compact sets in the
Hausdorff metric (defined later). It converges to a set Λ
(the attractor) which is called Heighway dragon .

The interior of Λ is non-empty
The plane can be tiled with congruent copies of Λ.
The Hausdorff dimension (to be defined later) of
the boundary is 2 log λ/ log 2 = 1.5236270862 . . .,
where λ is the largest real zero of λ3 − λ2 − 2.
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Figure: Fractal percolation
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Brown mozgás

Figure: Brownian motion

Károly Simon (TU Budapest) Fractals 2012 first talk 37 / 45



Hausdorff metric
Let E ⊂ Rd be a bounded set. The δ-parallel body of E
is

[E ]δ :=

{
x ∈ Rd : inf

y∈E
|x − y |

}

The Hausdorff metric distH is defined for the non-empty
compact sets E ,F ⊂ Rd as follows:

distH(E ,F ) := inf {δ : F ⊂ [E ]δ and E ⊂ [F ]δ}

Let Q ⊂ Rd be a compact set and let CQ be the space
of compact sets of Rd which are contained in Q. Then
distH is a metric on CQ.
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Blaschke selection theorem
Given a Q ⊂ Rd non-empty compact set.

(a) Let {Ei}∞i=1 be a Cauchy sequence in the
metric space (CQ, distH). Set

E :=
∞⋂

n=1

∞⋃
k=n

Ei , (2)

where bar denotes the closure. Then
Ei → E in Hausdorff metric. (In particular,
(CQ, distH) is a complete metric space.)
Moreover,

(b) (CQ, distH) is a compact metric space.
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Proof of part (a) first slide

Fix an arbitrary ε > 0 and choose N such that

∀n > N , distH(Ei ,Ej) < ε/3. (3)

It is enough to prove that

∀k > N , E ⊂ [Ek ]ε (4)

and
∀k > N , Ek ⊂ [E ]ε . (5)
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Proof of (4)
Fix an arbitrary x ∈ E . By the definition of E , we can
find an i > N such that

B(x , ε/3) ∩ Ei 6= ∅.

Choose ei ∈ B(x , ε/3) ∩ Ei . Then for every k > N there
is an ek such that |ei − ek | < ε/3 (since Ei ⊂ [Ek ]ε/3).
Thus

|x − ek | < 2ε/3.
This completes the proof of (4).
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Proof of (5)

Fix an y ∈ Ek It follows from (3) that

∀j > N , ∃ej ∈ Ej such that |y − ej | < ε/3.

Clearly, ej ∈ Q for all j . So, there exists an e ∈ Q and
{jk}∞k=1 such that ejk → e.
It is immediate that e ∈ E and |y − e| ≤ ε/3. This
completes the proof of (5).
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Proof of (b) first slide
It is well known that a metric space is compact if every
infinite subset has an accumulation point contained in
the metric space. (See [1, p. 112].)
Let D ⊂ CQ be an infinite subset and let {E1,i}∞i=1 be an
arbitrary sequence of distinct elements of D. For each
k > 1 we define a subsequence of distinct elements
{Ek,i}∞i=1 of {Ek−1,i}∞i=1 as follows:
Cover Q with finitely many balls of diameter 1/k in any
particular way. Let B be the finite collection of these
balls. Let {Ek,i}∞i=1 be an infinite subsequence of
{Ek−1,i}∞i=1 such that for every i , j :
{B ∈ B : B ∩ Ek,i 6= ∅} = {B ∈ B : B ∩ Ek,j 6= ∅} .

Károly Simon (TU Budapest) Fractals 2012 first talk 43 / 45



Proof of (b) second slide
Let

F :=
⋃

B∈B
B.

Then
∀i , Ek,i ⊂ F ⊂ [Ek,i ]1/k .

Hence

∀i , distH(F ,Ek,i) < 1/k =⇒ ∀i , j , distH(Ek,i ,Ek,j) < 1/k .

This implies that the sequence Ei := Ei ,i is a Cauchy
sequence in (CQ, distH), which tends to a compact set
E ⊂ Q according to part (a).
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A.N. Kolmogorov, Sz.V. Fomin
A függvényelmélet és a funkcionálanalízis elemei
Mûszaki Könykiadó, 1981.
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