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Abstract. Widespread usage of broadband Internet connections has al-
lowed the birth of a new threat against service providers and subscribers
as well. Botnets are vast networks of compromised hosts under the con-
trol of single masters who possess the ability to launch crippling denial of
service attacks, send vast quantities of unsolicited e-mail messages and in-
fect thousands of vulnerable systems with privacy-violating spyware and
other forms of malicious software. Our goal is to propose a distributed
architecture and introduce novel algorithms for malicious (potential bot-
net) activity recognition based on network traffic statistics generated by
NetFlow. Scalability and robustness were the main principles during the
design of the architecture. In this paper, we demonstrate that we are
able to reduce the number of NetFlow records significantly with an ag-
gregation scheme. Furthermore, we are able to detect botnet participant
computers (zombies) with the help of aggregated samples originating
from other networks, while the algorithms provide utmost anonymity to
participants.
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1 Introduction

In the last decade the global Internet threats transformed considerably from the
previous plain attacks executed individually to those distributed attacks that are
capable of disabling whole infrastructures. This new kind of threat - indirectly
or directly - seeps into the everyday life of millions of people and it does not
spare the business world either. In most cases botnets are responsible for these
attacks.

Actually, malicious botnets are multitude of infected computers that are re-
motely controlled by master host via one or more controller hosts. The master
host itself is a computer that is used by the owner of the botnet to send com-
mands to controllers. In most cases, these controllers are infected hosts as well
and take a part in the network’s coordination: relaying the instructions to exec-
utive hosts (bots).

Botnets are used for various malicious purposes such as: distributed denial-of-
service (DDoS) attacks, sending spam, phising or trojan e-mails, serving phising
sites, distributing pirated media, stealing personal information, performing click
fraud, etc. Besides, they also have aggressive exploit activity as they rope in new
vulnerable systems to increase size of the network.



However, it is relatively easy to detect attacks [10] [17] [18] [19] the elimina-
tion or paralysis of botnets raise more serious challenges.

In this paper we introduce a novel security architecture which is capable to
work globally, scalable, efficient and can be anonymous. The architecture relies
on a peer-to-peer (P2P) distributed hash table (DHT) to satisfy the scalability
and the global availability requirements. Because of the high volume of network
traffic NetFlow [20] is used to reduce the storage space required for traffic logs.
Data anonymization is a key issue in the system, because joined peers do not have
the intention of revealing its traffic properties. With the proposed architecture
network administrators will be able to detect new threads and efficiently can
react to the infections.

The remainder of the paper is organized as follows. In Section 2 the related
work is presented. In Section 3 the system model is introduced including the
system architecture and the different type of nodes participating in it. In Sec-
tion 4 the components of our system and realization of the design priorities are
presented. In Section 5 efficiency of algorithms are evaluated. Finally, some open
questions are discussed and the results are summarized in Section 6.

2 Related Work

There has been a rich literature on NetFlow-based data collection and its appli-
cations. Network monitoring and anomaly detection are the focuses of researches.
The passive monitoring system introduced by Sprint [12] was installed within
the Sprint IP backbone network. Data was collected from different monitoring
points and it was transmitted into a central repository for further analysis. The
Gigascope approach [11] is similar to the Sprint’s passive monitoring system,
because Gigascope is using a central repository for further analysis as well. The
passive monitoring infrastructure CoMo [13] allows users to query network data
gathered from multiple administrative domains. Numbers of distributed monitor-
ing nodes are available in the network to serve the user’s needs. LOBSTER [14]
is another passive network traffic monitoring infrastructure including forty sen-
sors in twelve countries in three continents. With LOBSTER more than 600,000
sophisticated cyber attacks were captured during a one-year period.

Liu Bin et. al. [15] proposed a flow analysis and monitoring system based on
NetFlow as well. The system was designed in client-server model for enterprise
networks. The system relies on different modules, such as data collection module
receiving and analyzing NetFlow and display module serving the web users. In
addition, the IDS module included into the system runs with low computational
complexity and high detection accuracy.

Our proposed architecture offers more than the aforementioned ones, because
it does not only captures the network traffic, detects and indicates new threats,
but processes the incoming anonymized data and redistributes the results to the
nodes of the network. With these capabilities the system is able to react fast
and efficient way to new infections.
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3 System Architecture

Fig. 1. System architecture with agents, honeypots data processors and distributors

The proposed architecture is depicted in Figure 1. and consists of four dif-
ferent types of nodes: agents, honeypots, data processors and distributors. The
first three are connected via a P2P network designed for distributed data search
and transfer considering scalability issues. This property is required to attach
as many nodes to the system as possible to reach a globally available and dis-
tributed malware detection system. The roles of the components in the system
are the following:

– Agents: Computers in enterprises and home users are connected to the In-
ternet via a local gateway. This gateway separates their own LAN from the
Internet. In enterprise networks or just in a SOHO environment gateways
are capable to dump network traffic. Agents can be placed next to gateways,
because it is a requirement for agents to collect and process traffic infor-
mation of their LAN. Agents are connected to the P2P network and can
communicate with other agents. Nevertheless, agents have another impor-
tant role in the network: they monitor the traffic and try to detect malicious
activities coming from its own subnet, such as DoS attack or spam. When
an agent has detected a new threat, it should search the current designated
data processor using the P2P network and has to send the anonymized and
compressed traffic data of the suspicious node to the flow processor.

– Honeypots: These entities mark the suspicious traffic. When a new threat
was detected, honeypots should create traffic traces of the malware, mark
their command and control (C&C) channel and have to send the marked
and anonymized trace to the current data processor.
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– Data processor: It is a designated node of the P2P network. At the same
time only one data processor presents in the network, but data processor is
changing at times. It collects the reports of malicious activities and the corre-
sponding anonymized and compressed flows from agents and the anonymized
and marked flows from honeypots. Its task is to create clusters from the data,
evaluate the results and if malicious activities are detected it will have to
send the network traces to a distributor.

– Distributors: Distributors are responsible for collecting anomalous traces and
sharing them with the agents. Distributors are independent from the P2P
network. They accept requests from the data processors and store them to
be available for the agents as a regular update.

4 System Components

4.1 Overlay Network

Robustness is a requirement for the architecture to eliminate DoS attacks. Re-
sources (for instance: zombie networks) controlled by the attacker can be divided
into two sets. One set of the zombies disable the detection system by distributed
denial of service attack (DDoS) while the other set of infected computers com-
mit the originally planed attack. Several papers [6] [7] [8] describe methods to
defend a computer against flood attacks. Our transfer solution applies a protec-
tion against DoS as well, by using the Secret Overlay Service (SOS) [9], because
this method guarantees the further high of design priorities, such as flexibility,
scalability and fairness in task distribution.

Basically, SOS is a large distributed firewall which has two essential parts.
First of all, targets are protected by sophisticated filters against ’unauthorized’
traffic. On the another hand, a multilevel hierarchy endeavors to hide the ac-
cess of target nodes from the attacker. This hierarchy with filtering mechanisms
makes this scheme robust against the DDoS attacks, because each component
is easily replicated within the architecture. If the attacker blocks a node A its
duties will be reassigned by the DHT and node B will take charge. Hence, the
attacker has to block node B also, while his attack against node A can not
to be stopped. Otherwise, that one who is released rejoins to the system. The
resistance of a SOS network against DoS attacks considerably depends on the
number of nodes that participate in the overlay.

Task Distribution Method For the analysis of the collected attack samples a
responsible node is appointed in the DHT. The current data processor is deter-
mined by locally stored and maintained seed value. This seed value is denoted by
S and it serves as input to the hash function of the DHT. The value received in
this manner always selects one node from the DHT. The chosen node transmits
the packets towards to the data processor by SOS routing mechanism.

The next value of S has to be locally computable to reduce operational
message overhead. The designation of the data processor by changing value of S
may happen according to the following methods fundamentally:
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– Time interval: in this case, S is actually a numerator increased after a certain
interval. Typically, this interval means a couple of hours. For more details
see also the results in Section 5.

– Victim network address: at this time the IP address (S ) of the attacked
network is used as input of the hash function.

– Attack types: certain attack types are predefined (e.g.: scanning, DDoS,
spam, etc.). All these types are associated to unique values. Finally, these
values are going to serve as S.

4.2 Flow Aggregation

Our method is based on NetFlow [20] logs. The most important fields in a Net-
Flow record are the source and destination IP addresses, the source and destina-
tion port numbers and the transport protocol, since these define a session. If four
of them (including the IP addresses and the protocol) are the same in two Net-
Flow records, namely the same IP addresses are communicating with the same
transport protocol, and at least one of them on the same port, we can assume
that the two records belong to the same session and it is unnecessary to treat
them separately. In the first step flow regrouping can be done by putting flow
records with the similar connection parameters to the same group to represent
each group by a single flow.

Note that if it is true for two flows A and B that srcIPA = destIPB ,
destIPA = srcIPB , srcPortA = destPortB OR destPortA = srcPortB , then
these flows can be aggregated, because these flows represents the different direc-
tion of the same connection. The up and down direction can be chosen arbitrary.

First, outlier filtering is applied for both directions to exclude anomalies
and irrelevant data. This filtering due to all dimensions respectively is done
by computing the m mean and the ς variance of the values. If the variance is
relatively high (if ς

m is grater than a fixed ε0), then the flow with the most
outlying value will be discarded. This step is iterated until there will be no more
outliers. The last step is the aggregation of the remaining flows in each group
to obtain a representant. The values for packets, octets and active time will be
added up, the earliest start time and the latest end time will be selected, and
5 more values will be computed: number of flows aggregated, mean packet size,
mean active time, duration (the time elapsed between the earliest start time and
the latest end time), up/down+down/up (up stands for the sum of octets in the
flows with direction up and down). This 5-tuple will represent a group. The IP
addresses, port numbers and the transport protocol are omitted to get a kind of
anonymity.

4.3 Flow Processing and Sample Generation

The incoming aggregated NetFlow logs have to be classified to obtain flow sam-
ples belonging to the botnet traffic we want to detect. Logs are sent by agents
which detected an attack. If this agent is a honeypot, the traffic logs will contain
botnet traffic related flows (C&C channel communication and attack). These
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flows are trusted in the sense that these are originated from a trusted entity
and can be used as a sample of the botnet traffic. For this reason these flows
are referred as labelled flows. The flows captured by honeypots that do not be-
long to the C&C channel can be labelled differently or simply omitted. The
classifier should handle the huge dataset size and the consequences of multiple
botnet activities. To address these challenges a semi-supervised learning tech-
nique is applied, which is a modified version of the general method discussed in
[1]. Clustering [2] is applied to partition the data set that consists of labelled and
unlabelled flows. Several previous works [3] [4] [5] demonstrated that clustering
of Internet traffic using flow statistics has the ability to group together flows
according to the same traffic. In this paper we applied the K-Means algorithm
[2], since it is simple, easy to implement, offers fast computation, demonstrated
good results in previous works e.g. [3] and converges in a few number of iter-
ations. After clustering the supervised learning is applied to label the clusters
using the labelled flows. Unlabelled flows are used to improve the precision of
the classifier.

It is not our purpose to identify all of the clusters, our aim is just to select
those, which belong to botnet communication. Now we will discuss the details
of the classification method.

Cluster Identification and Sample Generation The output of K-Means is
a set of vectors, which are the centers of the clusters. If a vector x is given, it is
assigned to the cluster with the nearest center. Next step is the identification of
the botnet traffic related cluster(s). We use a probabilistic method, similar to the
one described in [1]. Let pi be the probability of the event that the ith cluster,
Ci, i = 1, 2, . . . ,K is the cluster belonging to the botnet communication. These
pi probabilities are estimated with the maximum likelihood estimate ni

n , where
ni is the number of labelled vectors in the ith cluster and n is the total number
of labelled vectors. According to these estimated probabilities the cluster with
the highest probability is considered to belong to the botnet communication.
For the sample we consider the cluster center and calculate an ε threshold value.
This value has the largest radius such that the sphere around the center of this
cluster with such radius is disjoint from all of the spheres around the other
cluster centers with the same radius. So the sample will be the (C, ε) pair.

Multiple Sources If the NetFlow log contains only one botnet trace, it can be
assumed that the same cluster will contain the most of the labelled flows with
high probability. If it is not the case, then several clusters according to each
source with relatively high estimated probability will be available. In that case
all clusters over a p0 (a priori chosen) probability can be selected, and a sample
can be constructed for all of them. Each of them will belong to a different botnet.

4.4 Sample Redistribution

Sample redistribution can be performed via distributors in the way that agents
connect periodically to make regular updates or distributors can push new sam-
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ples to the agents. Distributors could share the samples via HTTP protocol using
e.g. a web service or any standardized way. However, sample distribution is an
important part of the system, there are standardized ways to perform this op-
eration. This is the reason why it is not the key issue of the paper. In addition,
we note that further investigation is needed to find the best solution for the
problem.

4.5 C&C Channel Recognition

After agents have downloaded the samples they can apply the C&C channel
recognition procedure. First of all, all agents have to aggregate their flows to
present a similar data structure to the aggregated sample. It not just decreases
the size of the data set, but offers relatively fast search and preserves anonymity
as well.

To select all botnet related flows from the agent’s flow set the clustering
method discussed in Section 4.3. can be applied. Let x be a vector from the
agents aggregated flow set. Then the following steps are required:

1. Calculate the distances of the feature vector x from the centers in the sam-
ples: d1 = d(x, C1), . . . , dr = d(x, Cr)

2. Select an index i, if there exists such that di < εi (Note that if such an index
exists, then it will be unique.)

We can assume that this vector belongs to the corresponding cluster and so to
the botnet communication. It’s because if this vector is added to the training
data set, then after the next iteration of K-Means the vector will be an element
of this cluster.

5 Experimental Evaluation

We have implemented the aggregation algorithm in native C (a code of 4000 lines
in total). We tested it on NetFlow logs collected from the network of the Depart-
ment of Telecommunications and Media Informatics at the Budapest University
of Technology and Economics (BME). The logs each 10 minutes long were col-
lected in the time period 17-19. April 2008. The total size of the data was 5.059
GB, about 100 million flows.

First, the aggregation was made for each log separately. For all the 387 of
10-minute logs the compression ratio of the algorithm was between 0.3 and 0.35.
So we can say that it reduced the size of the data set by it’s 2/3. The average
single-threaded running time for one 10-minute log was about 10 seconds. Figure
2 shows the size of the original and the aggregated data sets in the time period
of one day.

Next, we did the aggregation for longer time intervals. Clearly, it improved
the compression ratio, because in a longer time interval more flows were grouped
together. Figure 3. a. shows, how this ratio is improved by increasing the length
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Fig. 2. Sizes of the original and the aggregated data sets over one day

of the time interval observed. In contrary to the compression ratio, when the
length of the observed time interval was increased, the running time increased
as well. Figure 3. b. shows this phenomenon.

Fig. 3. The compression ratio over different time intervals

According to the results we can state that the compression ratio will be grow-
ing if longer time interval is selected. When the compression ratio increases, the
processing time increases as well. Beyond a certain point this kind of delay can
not be tolerated any longer and at this point a threshold can be stated. This
threshold takes place, where the growing of the processing time turns from linear
to exponential. In addition, it depends on the resources of the running environ-
ment. Our results was generated by a desktop computer with a Pentium Core2
3.0 GHz processor and 2 GB of RAM and the threshold was at approximately
7 hours. However, recent study of the Storm botnet [16] evinced that bots are
short-lived: it takes them just over 4 minutes after boot-up until receiving a
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control message, most of them remain in operation only for a little under 4
hours. Thus, approximately seven-hour aggregation interval is sufficient for the
detection.

Further, we implemented a test version of the algorithm for the C&C chan-
nel recognition in Matlab. The data set came from a laboratory simulation. We
simulated two virtual LAN networks, installed with Windows XP operating sys-
tems, and we infected with a botnet client. The two subnets were connected
to a gateway, that was in connection with an IRC server, a botnet controller
and a victim as well. Besides the legal traffic generated by the computers of
the subnets, such as FTP, HTTP and e-mail, we simulated an attack against
the victim directed by the botnet controller. The sample for the C&C channel
was generated from the NetFlow log of the first network. With this sample we
could achieve a 100% result in the second network that is we have found all flows
belonging to the C&C channel communication. (The verification was due to a
port analysis, the botnets C&C channel communication was done on port 6667)

However, this result is quite promising, more testing on more realistic data
sets are required.

6 Conclusion and Future Work

In this paper, we have shown an architecture for distributed malware detection.
After the base system we presented solution proposals on all emerging piece of
the problem. In addition, we proposed two algorithms: one for the reduction of
the huge amount of network statistical data and another for the detection with
the help of samples which was generated from the attacks. We demonstrated
the strength of the algorithms: i) the aggregation method reduced the NetFlow
entries to one third in practice ii) the detection algorithm was able to find bot-
net clients using the aggregated samples. We note that these samples provide
anonymity in that sense they do not contain any kind of valid IP information.
Consequently, each and every user can be sure that their network traffic is not
revealed totally. Hereby, spying usage of the system is not possible. As a result,
there is no need to establish mutual and unconditional trust among all partici-
pants. This property of the architecture can facilitate to make extensive use of
the system.

Our future work includes adding a more sophisticated algorithm for the bot-
net C&C channel recognition and improving further the speed of the algorithms.
Although, gathering of NetFlow data from real networks, where the traffics were
reliably identified, is a quite complicated task, it is necessary to validate the
results of the detection and prevention.
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