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ABSTRACT 

Any linear complementarity problem with a sufficient matrix can be solved by 
means of the unified interior point method. The complexity bound of the method is 
the better the smaller the so-called handicap of the matrix is. We propose a method 
for determining the handicap of a sufficient matrix and show that a sufficient matrix 
and its transpose have the same handicap. 0 Ehmier Science Inc., 1997 

1. INTRODUCTION 

The class SU of sufficient matrices was recently identified by Cottle, 
Pang, and Venkateswaran [4] in connection with the linear complementarity 
problem. A matrix A E [WnXn is column su.cient if for all x E [w” 

xi(Ax)iGO, i=l,..., n*xi(Ax)i=O, i=l,..., n, 

and row sufficient if AT is column sufficient. A is su&ient if it is both row 
and column sufficient. It is well known that P c SU c PO, where PO (P) is 
the class of matrices with nonnegative (positive) principal minors. 
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It has been shown in [8, 7, 91 that A E R”‘” is sufficient if and only if 
there is a K > 0 such that 

(1+4K) c Xiyi+ C xi yi > 0 for all x E R”, (1.1) 
iEZ+(X) iElm 

where y = Ax and 

Z+(x) = {i I xiyi > 0) and Z_(x) = {i Ixiyi < 0). 

For a fixed K, the class of all matrices satisfying (1.1) will be denoted by 
SU( K); this class is the same as the class P*(K) in [S]. Note that SU(0) = 
PSD, the class of positive semidefinite (psd) matrices. 

Any sufficient linear complementarity problem can be solved by means of 
the unified interior point method [S]. Th e smaller K in (1.1) can be chosen, 
the better the complexity bound of the method is. Therefore the smallest K 

for which (1.1) holds is of importance. This value is called the handicap of 
the sufficient matrix A and denoted by Z?(A). If x E R” and Z_(x) + 0, 
then Z+(x) z 0, and the ratio 

-rTAx 
FA(x) := xi, I+(*)xi( Ax), 

is well defined. We have 

(l-2) 

0 
;(A) := 

if AEPSD, 

f sup{F,( x) I xTAx < o} otherwise. 

Note that F,(k) = F,(x) for any A # 0. 
The organization of the paper is as follows. After some preliminaries we 

shall, in Section 3, recall and supplement the basic theory of the classes SU 
and SU( K). Then, in Section 4, we derive a general expression for the 
handicap of a sufficient indefinite matrix of order two (for the part of 
non-P-matrices, this result has earlier been established by Guu and Cottle 
[7]). Section 5 is devoted to determining the handicaps of P-matrices. We 
give a numerical example to illustrate the method. In Section 6 we show that, 
for n > 3, determining the handicap of a sufficient matrix A E RnXn, not in 
P, can be reduced to determining handicaps of P-matrices of order less than 
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n and those of sufficient matrices of order two. Finally, in Section 7, we show 
that the handicaps of a sufficient matrix and its transpose are equal. 

2. PRELIMINARIES 

If A = [aij] E [wmx” (A is a real m X n matrix), we write AT for its 
transpose. If R c {l, . . . , m} and S c (1, . . . , n}, we denote the submatrix of 
A induced by rows i E R and columns j E S by A,,. We let Ai. stand for 
the ith row of A, and A, for the jth column of A. A diagonal matrix 
D E [WnXn with the diagonal elements d,, . . . , d, is denoted by D = 
diagfd,, . . . , d,). This convention generalizes to block diagonal matrices; then 
the diagonal elements di are replaced by diagonal blocks Di. The class of 
positive definite (pd) matrices will be denoted by PD. By a principal 
permutation of a square matrix we mean simultaneous permutation of the 
rows and the columns. In particular, we write gr’,, for the principal permuta- 
tion interchanging rows and columns r and s. Any vector x E [w” is 
interpreted as an n X 1 matrix and denoted by x = [x1,. . . , x,,]~ or, for 
simplicity, by x = (xi,. . . , x,>. We write rR for the subvector of x consist- 
ing of components i E R and let ei stand for the ith coordinate vector. For 
vectors we shall use the Euclidean norm [[*II. If x, y E [w”, their Hudamurd 
product x * y E [w ” is defined by (X * Y>~ = xi yi, i = 1, . . . , n. Moreover, 
we define N = (1,. . . , n), denote the empty set by 0 and the cardinality of a 
set R by 1 RI, and abbreviate R - r = R \ {r}. The symbol := will be used 
for definition. 

If A E [WnX”, R c N, and A,, is nonsingular, the principal pivotal 
operation Pfi transforms the equation y = Ax into an equivalent equation in 
which the variables ys and xs have beet exchanged; s,ee e.g. [3, pp. 68-781. 
If the matrix of the latter equation is A, ,we write A = 9s A (in the case 
R = 0 we have A = 9@A = A). We cali A a principal pivotal transform of 
A, and any principal permutation of A a principal transform of A. The 
single principal pivotal operation 9{,, will simply be denoted by gr. We shall 
need the following result. 

THEOREM 2.1 [l]. Let A E lQnx” have the nonsingular principal submu- 
trix A,,. Then 

PEAT = D(Z@RA)TD 
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where D = diag(d,, . . . , d,) such that for all i E N, 

As an application of principal pivoting we determine the unique global 
minimum of a strictlv convex quadratic function q(x) = q0 + cTx + $xTDxT 
where D = DT E lF4/“‘“: 

x 1 0 1 

iER, 
i GE R. 

H. VALIAHO 

(2.1) 

Here -D- ‘c is the unique 
the optimal value 4 of q. 

X= D-’ -D-k 
LY4V_” 

-3 2q = cTD-l 29, - cTD-lc 

(2.2) 

global minimum g, and 29, - cTD-‘C is double 

Next we recall a well-known result on P-matrices. 

THEOREM 2.2 [6]. A E R”‘” is a P-matrix if and only if for every 
x E [w” \ {0} there exists an index k such that xk(Axlk > 0. 

From this theorem we deduce that if A E P n RnX", then the F_,, of 
(1.2) is defined for all x E R” \ (0). We have the following. 

THEOREM 2.3. Zf A E P n R”‘” is not pd, then there exists an 2 E R” 
\ 10) such that i(A) = aF,(x^). 

Proof. In case A E PSD the result is obvious. Assume then that A 4 
PSD. Defining G = {x E [w” I llxll = l), we have that 

;(A) = + sup{F,( X) 1 x E G}. 

The denominator of FA is positive and continuous in the compact set G and 
hence attains its smallest value in G. It follows that FA is continuous in G and 
attains its largest value in G. ??
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REMARK 2.1. Note that i?(A) for A E P is a continuous function of the 
elements of A. This is because a function which is continuous in a compact 
set is uniformly continuous in this set. 

3. BASIC THEORY 

In this section we review and supplement the basic theory of the classes 
SU and !W(K); cf. [l, 2, 7, 81. 

THEOREM 3.1 [ll. IfA E RnXn is suficient and akk = 0, then aik = ski 
= 0 or aikaki < 0 for all i # k. 

THEOREM 3.2. Zf A E RnXn belongs to SU( K), then so does (i> any 
principal submatrix of A, (ii) any principal permutation of A, and (iii) any 
principal pivotal transform of A. 

THEOREM 3.3. Let A E SU n R”‘“. Then: 

(i) The handicaps of A and a21 its principal transforms are the same. 
(ii) The hundicup of A is at least as large as that of any of its proper 

principal submatrices. 

THEOREM 3.4 (Cf. [8]). Let A E SUCK) n [WnXn, P = diag(p,, . . . , p,>, 
Q = diag(q,, . . . , qJ where K > 0 and piqi > 0 for all i E N. Then B := 
PAQ E SU( K ‘>, where K ’ > K is such that 

1 +4K’ maXieN( Pi/qi) 

1+4K = mini, NC Pi/qi) . 

In particular, if the diagonal elements of a diagonal matrix D are nonzero, 
then 2(DAD) = S(A). 

THEOREM 3.5. Let A = diag( A,, A,). Then k(A) = max{g(Al), 
&( A,)). 

Proof. Omitted. W 
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THEOREM 3.6. Let A E SU fl Rnx”, and let 
tive diagonal matrix. Then ;(A + D) < g(A). 

D E R”‘” be a nonnega- 

Proof. Let 2 = 2(A), D = diagcd,, . . . , d,), and define 

H. ViiLIAHO 

Z>(X) = (i E N I ~i[( A + D)x]~ > 0) = {i E N I Xi[ h]i + dixf > O}, 

Z+(x) = {i E N I xi[ Ax]~ > 0). 

Then, because Z+(x) C Z!+.(x), 

axTAx +  4k c &4x], 2 0. w 
ieZ+(x) 

The following theorem is a consequence of 18, Lemma 5.31, Theorem 3.6, 
and Theorem 3.3(ii). 

THEOREM 3.7. Let A E SU n RnX”, let D E 5Px” be a nonnegative 
diagonal matrix, and let 

A’= -“I :, . [ I 
Then a(A’) = i(A). 

COROLLARY 3.1. bet A E SU n Rnx”, let d > 0, and let 

A 
A’= T 

-e1 

i 1 el d ’ 

Then k(A’) = 2(A). 

THEOREM 3.8. Assume that A E SU fl R”‘” and that aik = al,,, ak* = 
ahi for all i E N - k and a,& B ah,,. Then n(A) = z(AN-k,N-k). 
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Proof. Assume without loss of generality that h = 1, k = n. If A,.= 0, 
then A., = 0, and Theorem 3.5 applies. Then assume that A,.# 0. If 
a,, > 0, set R = (1). If a,, = 0, then there is a p E (2,. . . , n - 1) such that 
ulpapl < 0; then define R = (1, p). In both cases let I3 =9sA, haying 
b,, = - 1, b,, = 1, b,, > 0, and bj, = b,i = 0, i = 2,. . . , n - 1. Finally, 
by Theorem 3.3(i) and Corollary 3.1, 

i?(A) = k(B) = k( BN-n,N-n) = G( A,_,, ,+J. ??

4. HANDICAPS OF SUFFICIENT MATRICES OF ORDER TWO 

The following theorem contains complete information about the handicap 
of a sufficient indefinite matrix of order two. 

THEOREM 4.1. Assume that A E Rzx2 is su.Lient but not psd. Then 

1 +4;(A) = 
m462 ) 41) 

Zf A E P, then, more simply, 

1+42(A) =max 
’ a12 

- 

,I 0 a21 

If%1 = a22 = 0, then the supremum of F(x: ) \ _ 

(4.1) 

a21 
- 

a12 II 
(4.2) 

:= F,(x) is reached for any 
vectorx = (x,, x2) with sgn x1x2 = -sgn(u,, + a,,). 

ZfAePand alI + az2 > 0, then the supremum of F(x) cannot be 
reached. A value of F(x) arbitrarily close to the supremum can be obtained 
for the following choices where E > 0 i.s arbitrarily smull: 

Case Xl x2 

all > 0 = az2 -E sgda,, + azl) 1 

a11 = 0 -C az2 1 --E sgdu,, + 4 

a11a22 = a12a21 > 0 -al2 + E q&al2 - azl) a11 
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Zf A E P, then the supremum of F( x) is reached at the following points: 

Case x1 3c2 

Ial > laell -%2&i &c&g + am 
la,,1 < la,,1 &(\/G + =I -a21& 

Proof. Assume first that A G P. 

Case I. an > 0 = a22. Taking x2 = 1, we have that xTAx < 0 * 
(al2 + a2,>x, < 0. There are two subcases. 

6) laI2l > la,,l. Then 

(a12 + a,,)x,<O * 0 < a21x1 < -a12x1 

* “2Y2 = a21x1 > 0 * x1 y1 < 0. 

so 

F(xl) = _1 + -a11e -%2x1 -a12 
g-l+-. 

a21 Xl a21 

We see that sup F(x) = -1 - a12/a21. If a,, = 0, then the supremum is 
reached for all vectors with sgn xl = sgn a21. If all > 0, then the supremum 
cannot be reached; a value of F(x) arbitrarily close to the supremum is 
obtained by taking x = (E sgn a21, l), where E > 0 is arbitrarily small. 

(ii> la,,1 < la211. Now 0 < a12xl < -a21xl, x2 y2 > 0, xl yl > 0, whence 

F(q) = -1+ -a21 Xl -a21 

al16 + a12rl 
<-1+-. 

a12 

We note that sup F(x) = - 1 - a21/a12. If all = 0, then the supremum is 
reached for all vectors with sgn xl = sgn a12. If a,, > 0, then the supremum 
cannot be reached; a value of F(x) arbitrarily close to the supremum is 
obtained by taking x = (E sgn a12, l), where E > 0 is arbitrarily small. 

Case II. a,, = 0 Q a22. This case is reduced to case I by defining 
u = (x2. xi>, o = ( yz, yl>, B = g12 A. 
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Case ZZZ. ul1u22 = a12u21 > 0. We reduce this case to case I by defin- 
ing u = (yi, x,), u = (xi, ys), B =9,A. We note that (4.2) holds. A value 
of F(x) arbitrarily close to the supremum is obtained by taking u = 
C-E sgn(b,, + b,,), 0, w h ere E > 0 is arbitrarily small; then x2 = u2 = 1 
and 

Then assume that A E P. 

Case I. la,,l > la,,l. There are three subcases. 

6) al2 > 0 > $1, ai2 + u2i > 0. Taking x2 = 1, we obtain 

- xlyl < 0 - y1 > 0 =a -a12/u11 < Xl < 0. 

Now, 

F(xl) = _1 + -wf - %2X1, 

a21 Xl + a22 

F’( Xl) = 
-Qlla2le - 2a11a22x1 - a12a22 

(U2Pl + a22)” 

It is easy to show that the global maximum of F(x,) in the interval 
x1 E ( --ui2/u1i, 0) is 

,. -a12+22 

x1 = Jq&ig + \/det) 

(this expression is valid in the case u2i = 0 too). Simple calculations lead to 
(4.1). 

(ii) al2 < 0 < u21, aI2 + a21 < 0. We reduce this case to 6) by defining 
u = (-xi, x2>, u = (-yi, y2), Z3 = DAD, where D = diag(-1, 1). 

(iii) u12u21 > 0, lq,l > la,,l. Th’ is case is reduced to @-(ii) above by 
defining u = (yi, x2), u = (xi, y2), Z3 =9iA. The supremum of F(x) is 
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reached by taking 

i.e., x2 = us and 

x1 = Ul = b,,u, + b12u2 = -G”q24G* 

Case ZZ. ai2 u21 > 0, la,,1 < lu,,l. We reduce this case to case I by 
defining u = (x2, xi), o = ( y2, yl>, B = ‘Z12 A. ??

REMARK 4.1. Equation (4.2) is essentially due to Guu and Cottle 171. 
Their proof differs somewhat from ours. 

REMARK 4.2. It follows from Theorem 4.1 that, for A E SU 17 [w2’ 2, 

(i) k(A) = g(AT); 
(ii) i(A) is a continuous function of the elements of A. 

REMARK 4.3. If A E P n [w2x2, then F,(x) is not necessarily concave 
in the set {x E [w2 I x%x < 0). To see this, let a,, = u22 = 1, aI2 = 8, 
a21 = -1; then a2F,(1, -l>/Jxi > 0. 

5. HANDICAPS OF P-MATRICES 

Let A E [w”‘” be a P-matrix but not psd. We shall determine the 
handicap of A by calculating the handicaps of all principal submatrices of 
order k of all principal pivotal transforms of A sequentially for k = 2,. . . , n. 

Assume that 

c-1 := max{ i ( B,_i) I B is a principal pivotal transform of A and i E N} 

(5-I) 

is known. We shall derive a necessary condition for k(A) > c,_ 1 to hold. So 
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i?(A) = +F,( g) > in_,, (5.2) 

see Theorem 2.3. Here ii # 0 for all i E N, because otherwise we would 
have k(A) = ri,_ 1. We show that also ci := Ai.? # 0 for all i E N. Assume, 
on the contrary, that ijk = 0 for some k E N. Then g(Pk A) is attained at a 
point whose k th component equals zero. But then k(A) = g(Pk A) = i,_ 1, 
a contradiction. Because gi # 0 for all i E N, we may assume without loss of 
generality tht XA” = 1; so if = (if’, 1) with x^’ E OX”-‘. There are two cases. 

Case 1. n E Z+(G). We define 

R = I_( q, S=Z+(x^) -n, 

Gl = { x1 E [w”_’ I XR * yR < 0, xs * ys > o}, (5.3) 

where y = Ax. We have that 

fV’> f:=4i(A) + 1 = -- 
I@> ’ (5.4) 

where 

f( ix’) = +x;( A,, + AT,& + x;A,,xs + “;A,,, (5.5) 

g( x1) = x;A;,x, + +x;( Ass + A+ + x;A,, 

+ &RXR + 4~~s + an”. (5.6) 

Clearly, t^ > 1. By [S], the nonlinear program 

min{h( x1, t) := tg( r’) + f( x’) I x1 E G,} (5.7) 

with t = t^ has the minimum value zero. This minimum value is attained in 
the interior of G, but not on its boundary. We show that the quadratic 
function h( x1, t^) is by necessity strictly convex. First, if h( x1, t^) is indefinite, 
it cannot have a minimum in the interior of G,. Second, if h( x1, t^> is convex 
but not strictly, it has the value zero on a whole line in [w”- ‘. But any line in 
R”-’ intersects the boundary of G,. So also this case is impossible. 
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We have shown that solving (5.7) with t = t^ amounts to finding the 
unique global minimum of the strictly convex quadratic function h(x’, t^) in 
Iw”- ‘. Recalling (2.2) this can be accomplished by performing .PN_ n to the 
table 

XR xs 1 

o= A,, + ATRR A,, + t&t AR” + 63 
B(t): 0= A;s + t4, t(A,, + A;,) t< A:, + A,,) 

2h = ATA” + t4, t( A,, + A:,,) 2ta,7l 

(5.8) 

where t = t^. Equivalently, one can perform the sequence ~3’~) . . . ,9” _ 1 of 
single principal pivots to the table (5.8); the pivots in this sequence are 
positive. In the resulting table, ;a and x^s are in positions (i, n), i = 1,. . . , 
n - 1, and the element (n, n), containing twice the optimal value of h, is 
zero. Denote the matrix contained in the table (5.8) by B(t); then B(z) is 
singular, because the product of it and a nonzero vector equals zero. 

We continue by showing that all proper principal submatrices of B(t^) are 
pd. Assume, on the contrary, that BHH(t) with H C N, H 3 n, 1 H 1 d n - 1 
is singular. Then the element (n, n) of PH_,, B(i) is zero. Because 
9 ._.B@ =L@N\H9H_n B(z), this implies that either the minimum value of 
the problem (5.7) with t = t^ is negative or that fi =. 0 for all i E N \ H, a 
contradiction. 

Case ZZ: n E Z_(2). We define 

R = I+( q, S=Z_(;) - 12, 

G2 = I ~‘~[W”-‘IxR*~R>O’XS*~s < 0). (5.9) 

We have that 

g( 2’) &4;(A) + 1 = __ 
f(Z’) 

(5.10) 
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or, equivalently, 
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where f(x’) and g(xl) are as in (5.5)-(5.6). We see that the developments in 
case I are now valid when replacing t^ by t^-’ and G, by G,. So, for example, 
h( x ‘, t^- ‘) is a strictly convex quadratic function. 

We have attained the following. For x^ E R” with 13, = 1 to satisfir (5.2) it 
is necessary that there is 0 # R C N - n such that, with t^ = 44(A) + 1 
and S = (N - n) \ R, either 

(i) n E I+(?), all proper principal submatrices of B(t^) are pd, 
det B(t^) = 0, and 

A 

XR 

[ 1 L1 

xs 
= -B,‘.,._,(t^)B,_,,.(t^), (5.11) 

so that x^’ E G,, or 
(ii) n E Z-(1;>, all proper principal submatrices of B(?-‘) are pd, 

det B(?‘) = 0, and the point x^’ obtained from (5.11) with t^ replaced by 
t^? ’ belongs to G,. 

Based on the above developments, we now construct a recursive proce- 
dure for determining s(A). Assume that the i,_ 1 of (5.1) has already been 
calculated. Select t, := 4ri, _ i + 1 as the first candidate of ?. We go through 
all the nonempty sets R c N - n as follows. For a selected R construct the 
matrix B(t) of (5.8). If A,, or A,, is not pd, select a new set R. Otherwise 
determine all the roots of the equation det B(t) = 0 which lie in the intervals 
(0, to’) and (t,, m) (an algebraic equation of degree < n has to be solved by 
means of some numerical method). If some root t > t, yields a pd 
BN-n,N-n (t) and x^’ E G,, set t, + t. Likewise, if some positive root t < to1 
yields a pd BN_n,N_n(t) and x^’ E G,, set t, +- t-‘. [In both cases, g1 is 
obtained from (5.11) with t^ replaced by t. Note that for a given G, or G, 
there cannot be more than one candidate of t^.] Then select a new set R, etc. 
After going through all the sets R we have i(A) = act,, - 1) (in fact, this 
holds only approximatively, because the candidates are determined numeri- 
cally). 

The method is very laborious, so it is practicable for small P-matrices 
only. Below we illustrate the method in the case of a P-matrix of order three. 
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EXAMPLE 5.1. We determine the handicap of the P-matrix 

41 1 

A= [ 2 1 -43 -2. 1 1 

All the proper principal submatrices of all principal pivotal transforms of A 
are psd, whence is = 0. There are three cases. We give the equation 
det B(t) = 0 in each case below and summarize the solution of the example 
in Table 1. From this table it appears that t^ = 0.862468-l = 1.159464, 
implying k(A) = f<t^ - 1) = 0.0398659. 

Case 1. R = {l), S = {2) (x1 * yr < 0, xs * y2 > 0, xs * ys > 0, or 
these inequalities reversed): 

8 1+ 2t 2 -4t 
det B(t) = 1 + 2t 2t t = 0 e t(28t2 - 24t + 3) = 0. 

2-4t t 2t 

Case II. R = {Z}, S = (1) (x1 * yr > 0, x2 * y2 < 0, xs * ys > 0, or 
these inequalities reversed): 

2 2+t -2 + 3t 
det B(t) = 2 + t 8t -2t = 0 e t(43t2 - 48t + 12) = 0. 

-2 + 3t -2t 2t 

TABLE 1 
SOLVING EXAMPLE 5.1 

R t x Y Obstacle 

(1) 0.151930 (-0.308, 0.821,l) ( 1.590, -1.795, 4.694) x3y3 > 0 
0.705213 ( 0.522, -1.392,1) ( 2.696, -2.348, -5.265) xlyl > 0 

(21 0.378001 (- 1.392, 2.088,l) (- 1.481, -2.696, 12.834) x3y3 > 0 
0.738278 ( 0.821, - 1.231,l) ( 4.052, - 1.590, -5.977) xIyl > o 

(1,2) 0.421623 (-0.405, 0.975,l) ( 1.356, - 1.835, 5.542) r3y3 > 0 
0.862468 ( 0.666, -1.293,l) ( 3.371, -1.961, -5.542) 
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Case ZZZ. R = {1,2), S = 0 (x, * y1 < 0, x2 * yz < 0, xg * y3 > 0, or 
these inequalities reversed): 

8 3 2 - 4t 
det B(t) = 3 2 -2 + 3t = 0 @ 88t2 - 113t + 32 = 0. 

2 - 4t -2+3t 2t 

6. HANDICAPS OF SUFFICIENT MATRICES NOT IN P 

In this section we shall show that, for n > 3, the handicap of A E SU CI 
Rnx n not in P is equal to the maximum over the handicaps of the proper 
principal submatrices of all principal pivotal transforms of A. So determining 
the handicap of A E SU CI R”‘” not in P can be reduced to determining 
handicaps of P-matrices of order less than n and those of sufficient matrices 
of order two. We begin with an auxiliary result. 

THEOREM 6.1. Let A E [w”’ ’ with A,_ fl, N_ n = 0 be suficient. Then 

1 +4/%(A) = 
mai E Nlani/ainl 

mini, Nlani/ainl ’ 
(6-l) 

where O/O is defined to be equal to one. 

Proof. In view of Theorem 3.5 we may assume that ainani < 0 for all 
i E N - n. Let B be the matrix obtained from A by replacing ain with 
sgn a,, and a,, with sgn u,,~, i = 1,. . . , n - 1. Then B E PSD, whence 
k(B) = 0. By Theorem 3.4, (6.1) holds with = replaced by < (take 
pi = (a,,,(, q1 = Iani for all i E N - n and p, = qn = 1). We show that the 
reverse inequality holds too. We let h, k E N - n be such that 

There are three cases. 

(i) lanh/ahn( > 1. Letting R = {k, n), we have 

1 + 4i( A) > 1 + 4i( A,,) = hznk/uk~~. 



294 H. V;iLIAHO 

(ii) Junk/uknl Q 1. Letting R = {h, n), we have 

1 + 4i( A) 2 1 + 4;( A,,) = luhn/unhl = 1 + bnh/ahn!. 

(iii) lunk/aknl > 1 > lunh/uhnI. Letting C =S@th, .)A and R = {h, k), we 
have 

1 + 4k( A) > 1 + 4i(CRR) = lu,,Juknl f lunh/uhnl. ??

The following theorem is an extension of 19, Theorem 3.11. 

THEOREM 6.2. Assume that A E RnXn with n a 3 is suficient but not a 
P-matrix. Then 

C(A) = mX{i( BN_i,+i) I 

B is a principal pivotal transform of A and i E N} . (6.3) 

Proof It follows from Theorem 3.3 that > holds in (6.3). We show that 
the reverse inequality holds too. There is a principal transform of A whose 
trailing diagonal element is zero. Hence we may assume without loss of 
generality that unn = 0. If A.,, = 0 (A,,.= 0) for some h E N, then A,.= 0 
(A.,, = 0) too, and the result follows from Theorem 3.5. So we assume in the 
sequel that all rows and columns of A are nonzero. For simplicity, we denote 
FA( x) by F(x). Consider any x0 E R” such that xoTAxo < 0 and let y” = 
Ax’. If xfl = 0 for some h EN, then F(x”) < 4G(A,_h,N_h). In what 
follows we assume that x0 + 0 for all i E N. 

If y: = 0 for some h E N, then there are two possibilities. First, if 
uhh > 0, then F(x”) < 4ri(B,_,,N_h), where B =p,,A. Second, if a,,h = 0, 
then ahkakh < 0 for some k E N; see Theorem 3.1. So P(x’> < 
4iZ(BN_,,+,, ), where B = Ych klA. 

Finally, assume that yo # d for all i E N. Without loss of generality we 
may assume that x, ’ = 1 In the sequel C will mean summing over the set . 
N - n, C+ over the set Z+(x’) - n, and C_ over the set Z-(x’) - n. In 
addition, we let 6 =,O or 1 according as x,” y,” = y,” = C u,,~ x0 is negative or 
positive. Defining A = AN_n,N_nr 3’ = <xy,. . . , xi_,), ij” = A”, we eval- 
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uate F(x) at the point x(t) = (xy, . . . , x:_~, t>: 

A 

F(t) = 
_x^OTAx^O 

- tq ai, + a,,) Lx; 
c, “p( $0 + a,,t) + sty,” * 
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(6.4) 

This function and its derivative 

F’(t) = 
(3;oTL&o)[~+ui”x~ + 6y,o] - (C+r;ij~)c(ui” + u,,)xP 

[x+x:( $0 + QJ) + sty:]2 

are defined for all values of t for which the denominator in (6.4) is nonzero. 
Note that for such values of t the sign of F’(t) is independent of t. We have 
two cases. 

Case 1. F’(1) Q 0. Diminish t from one until (i) for the first time 
y,,(t) := fji + uhnt for some h E N - n becomes zero at t = to > 0 (say), or 
(ii) t tends to zero. We consider (i) and (ii) separately. 

(i) F(t) and F’(t) are defined for all t E [to, 11. This is seen as follows. 
Assume, on the contrary, that at to the denominator in (6.4) equals zero. This 
can occur only if xFyi(to) < 0 for all i E N - n and 6 = 0 (implying 
toyi < 0). This is, however, impossible, because A is sufficient. Because 
F’(t) < 0 for all t E [to, 11, the present case reduces to the case yi = 0 
above. 

(ii) We have xpco >, 0 for all i E Z+(x’) - n and x:$0 < 0 for all i E 
Z_(r’> - n. If x9$0 > 0 for some i E Z+(x’) - n, then the denominator in 
(6.4) is positive for t = 0, and the present case is reduced to the case x,” = 0. 
Otherwise we have $‘~~ Q 0 for all i,E N - n, implying xf $0 = 0 for all 
i E N - n and x^‘rA?’ = 0 (because A is sufficient). So, for all t > 0, F(t) 
equals 

-C(u,, + u&p 
c+ui,xp + 6y,o ’ 

Because u~,,x~ = x0< $0 + a,,) = x:yo for all 

(6.5) 

i E N - n, the ratio (6.5) 
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equals the ratio Fs( x0) where . . . 
. . . 

. . . 

(6.6) 

So F(x”> < i(B). But, defining h and k as in (6.21, i(B) equals G(ARR) 
where R = {k, n} or {h, n), or G(C,,) where C =9t,,+)A and R = {h, k}. 

Case ZZ. F’(1) > 0. We increase t from one until (i) for the first time 
yh(t) for some h E N - n becomes zero at some point t = to (say), or (ii> t 
tends to m. We consider (9 and (ii) separately. 
(i) F(t) and F’(t) are defined for all t E [l, to]. This is shown in the same 
way as in case I(i) above. So the present case reduces to the case yi = 0. 

(ii> Now, ainxf > 0 for all i E Z+(x’) - n and ai,ro Q 0 for all i E Z_(x’) 
- n. We show that the denominator in (6.5) is positive. Assume, on the 
contrary, that the denominator is zero. Then ai, x0 < 0 for all i E N - n and 
6 = 0, i.e., C a,,xF = yfl” = x,” y,” < 0. This is, however, impossible because 
the B of (6.6) is sufficient. It follows that lim, --) m F(t) exists and is given by 
(6.5). Because F’(t) > 0 for all t > 1, we have F(x’) Q i?(B) where B is 
taken from (6.6). The rest is as in case I(ii) above. ??

REMARK 6.1. It may be conjectured that g(A) for A E SU f~ R”‘” is a 
continuous function of the elements of A; cf. Remarks 2.1 and 4.2. 

7. INVARIANCE OF THE HANDICAP UNDER TRANSPOSITION 

By Remark 4.2, L(A) = R( AT> for any two by two sufficient matrix A. 
This result generalizes to the whole class SU. 

THEOREM 7.1. ZfA E SU n R”‘“, then g(A) = g(Ar>. 

Proof. By induction on n. The case n = 1 is trivial; for the case n = 2 
refer to Remark 4.2. Then assume that the theorem is true for the order 
n - 1, and consider any A E SU n Rnx” where n > 3. We show first that 
the 2, _ 1 of (5.1) equals the corresponding quantity r?L _ 1 for AT. There are 
an R c N and a k E N such that 2,_, = k(BN_k N_k) with B =LF’~A. By 
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Theorem 2.1, C :=PRAT = DBTD, where D is as in (2.1). It follows that 
CN_k,N_k = D _ _ BT_ _ D _ _ N k,N k N k,N k N k,N k> whence, using Theorem 3.4 
and the induction hypothesis, 

“I 
K n- 1 > c(CN-kJ_k) = i+;_k,N_k) = g( f&-k,& = in_,. 

The reverse inequality i,_ 1 > 2: _ 1 can be established by interchanging the 
roles of A and AT above. So i?,_ 1 = 2: _ 1. 

If A E PSD, then Z(A) = k( AT> = 0. In the case A P P we have by 
Theorem 6.2 that i(A) = i,_, = kL_i = G(AT>. Then let A E P\PSD. 
We show first that i(AT> 2 g(A). If s(A) = kn_i, then G(A) = i,_, = 
*, < k( AT>. Then assume that (5.2) holds. Consider first the case n E 
;1111, ( case I in Section 5). We adopt the notation in (5.3)-(5.6) and 
construct the table (5.8) with t = t^. We show that the point 11’ with 
L?‘R = t^-13;,, $$ = ss, ;:, = 1 yields i(A) as a candidate of k( AT>. Now 
,. A y = Ax, $’ = AT;’ whence 

(7.1) 

implying 

[see (5.8)] and further 4; = -t^-‘?a, Q$ = -$s, $, = -Qn. SO 

(7.3) 

t^, := _ (%)‘!z + 4: = _ Qs + !L 
(a’!& t^-“( qTij, 

= t^ 

is a candidate of 4i?(AT> + 1 or, equivalently, G(A) is a candidate of G( AT>. 
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The case n E Z_(G) (case II in Section 5) is analogous. Adopt the 
notation in (5.9)-(5.10) and (5.5)-(5.6), and construct the table (5.8) with 
t = t^- ‘. Then the point x^ ’ with i& 
541; S-$Q 6; = -4s @; = -& [ 

= %a, $k = P,, gk = 1 yields ij’ with 
now (7.1H7.3) hold with t^ replaced by 

is a candidate of 42(AT> + 1 or, equivalently, i(A) is a candidate of SCAT>. 
We have shown that acAT) > i?(A). The reverse inequality can be 

established by interchanging the roles of A and AT. H 
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