NORTH- HOLLAND

Determining the Handicap of a Sufficient Matrix
H. Viliaho

Department of Mathematics

University of Helsinki
Helsinki, Finland

Submitted by Richard W. Cottle

ABSTRACT

Any linear complementarity problem with a sufficient matrix can be solved by
means of the unified interior point method. The complexity bound of the method is
the better the smaller the so-called handicap of the matrix is. We propose a method
for determining the handicap of a sufficient matrix and show that a sufficient matrix
and its transpose have the same handicap. © Elsevier Science Inc., 1997

1. INTRODUCTION

The class SU of sufficient matrices was recently identified by Cottle,
Pang, and Venkateswaran [4] in connection with the linear complementarity
problem. A matrix A € R**" is column sufficient if for all x € R"

x,(Ax); <0, i=1,....,n=x,(Ax);=0, i=1,...,n,

and row sufficient if AT is column sufficient. A is sufficient if it is both row
and column sufficient. It is well known that P € SU C P,, where P, (P) is
the class of matrices with nonnegative (positive) principal minors.
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It has been shown in [8, 7, 9] that A € R**" is sufficient if and only if
there is a k > 0 such that

(1+4k) Y xy+ Y xy,>0 foral xR, (1.1)
iel (x) iel_(x)

where y = Ax and
I,(x)={ilx;y,>0} and I_(x) = {ilx;y, <0}.

For a fixed «, the class of all matrices satisfying (1.1) will be denoted by
SU(«); this class is the same as the class P, (k) in [8]. Note that SU(0) =
PSD, the class of positive semidefinite (psd) matrices.

Any sufficient linear complementarity problem can be solved by means of
the unified interior point method [8]. The smaller « in (1.1) can be chosen,
the better the complexity bound of the method is. Therefore the smallest «
for which (1.1) holds is of importance. This value is called the handicap of
the sufficient matrix A and denoted by K(A). If x € R* and I (x) #
then I, (x) # J, and the ratio

—xTAx
ie I+(x)xi( Ax)i

F(x) = 5 (1.2)

is well defined. We have

. _ 0 if A € PSD,
k(A) = L sup{F,(x) | x"Ax < 0) otherwise.

Note that F,(Ax) = F,(x) for any A # 0.

The organization of the paper is as follows. After some preliminaries we
shall, in Section 3, recall and supplement the basic theory of the classes SU
and SU(k). Then, in Section 4, we derive a general expression for the
handicap of a sufficient indefinite matrix of order two (for the part of
non-P-matrices, this result has earlier been established by Guu and Cottle
[7D. Section 5 is devoted to determining the handicaps of P-matrices. We
give a numerical example to illustrate the method. In Section 6 we show that,
for n > 3, determining the handicap of a sufficient matrix A € R"*", not in
P, can be reduced to determining handicaps of P-matrices of order less than



HANDICAPS OF SUFFICIENT MATRICES 281

n and those of sufficient matrices of order two. Finally, in Section 7, we show
that the handicaps of a sufficient matrix and its transpose are equal.

2. PRELIMINARIES

If A=[a;]€R™" (A is areal m X n matrix), we write AT for its
transpose. If R € {1,..., m} and S c{1,..., n}, we denote the submatrix of
A induced by rows i € R and columns j € S by Ap. We let A, stand for
the ith row of A, and A,j for the jth column of A. A diagonal matrix
D € R**" with the diagonal elements d,,...,d, is denoted by D =
diag(d,, ..., d,). This convention generalizes to block diagonal matrices; then
the diagonal elements d, are replaced by diagonal blocks D,. The class of
positive definite (pd) matrices will be denoted by PD. By a principal
permutation of a square matrix we mean simultaneous permutation of the
rows and the columns. In particular, we write &, for the principal permuta-
tion interchanging rows and columns r and s. Any vector x € R" is
interpreted as an n X 1 matrix and denoted by x = [x,,..., x,I" or, for
simplicity, by x = (x,,..., x,). We write xy for the subvector of x consist-
ing of components i € R and let e, stand for the ith coordinate vector. For
vectors we shall use the Euclidean norm |- ||. If x, y € R", their Hadamard
product x * y € R" is defined by (x * y), = x,y,, i = 1,..., n. Moreover,
we define N = {1,..., n}, denote the empty set by & and the cardinality of a
set R by |R|, and abbreviate R — r = R\ {r}. The symbol := will be used
for definition.

If A€ R*™", RCN, and Agy is nonsingular, the principal pivotal
operation Py transforms the equation y = Ax into an equivalent equation in
which the variables y; and x; have been exchanged; see e.g. [3, pp. 68-78].
If the matrix of the latter equation is A, we write A =P, A (in the case

= J we have A =F,A = A). We call A a principal pivotal transform of
A and any principal permutation of A a principal transform of A. The
single principal pivotal operation %, will simply be denoted by &#,. We shall
need the following result.

THEOREM 2.1 [1]. Let A € R"™" have the nonsingular principal subma-
trix Agg. Then

Py AT = D(2, A)'D
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where D = diag(d,, ..., d,) such that for alli € N,

_ 1, i €R,
di = {—1, i & R. (2.1)

As an application of principal pivoting we determine the unique global
minimum of a strictly convex quadratic function g(x) = g, + ¢"x + $x"Dx”
where D = DT € R**™,

x 1 0 1
0= D c x = D! —-D7 ¢

9g = T g T gy = D! 94, — "D}
q ¢ 9o q ¢ o — ¢ ¢

(2.2)

Here —D™!c is the unique global minimum £, and 2¢g, — ¢"D "¢ is double
the optimal value § of q.
Next we recall a well-known result on P-matrices.

THEOREM 2.2 [6]. A € R"*" is a P-matrix if and only if for every
x € R™\ {0} there exists an index k such that x,( Ax), > 0.

From this theorem we deduce that if A € P N R"*", then the F, of
(1.2) is defined for all x € R\ {0}. We have the following.

THEOREM 2.3. IfA € P N R"™" is not pd, then there exists an £ € R"
\ {0} such that R(A) = 1F,(%).

Proof. In case A € PSD the result is obvious. Assume then that A &
PSD. Defining G = {x € R” | [[x|| = 1}, we have that

k(A) = ;sup{F,(x) |x € G}.

The denominator of F, is positive and continuous in the compact set G and
hence attains its smallest value in G. It follows that F, is continuous in G and
attains its largest value in G. |
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REMARK 2.1. Note that #(A) for A € P is a continuous function of the
elements of A. This is because a function which is continuous in a compact
set is uniformly continuous in this set.

3. BASIC THEORY

In this section we review and supplement the basic theory of the classes
SU and SU(k); cf. [1, 2, 7, 8].

THEOREM 3.1 [1]. If A € R™*" is sufficient and a,; = 0, then a; = ay,
=0ora,ay, <0 forall i # k.

THEOREM 3.2. If A € R**" belongs to SU(k), then so does (i) any
principal submatrix of A, (ii) any principal permutation of A, and (iii) any
principal pivotal transform of A.

THEOREM 3.3. Let A € SU N R**". Then:

(i) The handicaps of A and all its principal transforms are the same.
(ii) The handicap of A is at least as large as that of any of its proper
principal submatrices.

THEOREM 3.4 (Cf. [8]). Let A € SU(x) N R***, P = diag(p,,..., p,),
Q = diag(q,,...,q,), where k > 0 and p,q, > 0 for all i € N. Then B :=
PAQ € SU(k'), where k' > « is such that

1+ 4k’ _ max, ¢ y ( i/ q:)
1+ 4k min, ¢ v (pi/q:)

In particular, if the diagonal elements of a diagonal matrix D are nonzero,
then K(DAD) = k(A).

THEOREM 3.5. Let A = diag(A,, A,). Then &(A) = max{k(A)),
k(A,)

Proof. Onmitted. [ |
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THEOREM 3.6. Let A € SUN R"*", and let D € R™*" be a nonnega-
tive diagonal matrix. Then k(A + D) < k(A).

Proof. Let & = R(A), D = diag(d,, ..., d,), and definc
I'(x) ={ieNIx[(A+D)x],>0} = {i € NIx[ Ax], + d;x? > 0},
1,(x) ={i e Nlx[Ax], > 0}.

Then, because I_(x) C I',(x),

xT(A+D)x +4r ), (x,'[Ax]i +d;x})

iel’,(x)

>x"Ax + 4k Y, x[Ax], > 0. ]

iel (x)

The following theorem is a consequence of [8, Lemma 5.3], Theorem 3.6,
and Theorem 3.3(ii).

THEOREM 3.7. Let A € SUN R"*", let D € R"*" be a nonnegative
diagonal matrix, and let

Then k(A') = R(A).

COROLLARY 3.1. Let A€ SUNR" " letd > 0, and let

W A —e
Tler 4|

Then k(A') = R(A).

THEOREM 3.8. Assume that A € SU N R"*" and that a,, = ay,, a;; =
ay,; foralli € N — k and a; > ay,,. Then k(A) = R(Ay_; y_3)-
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Proof. Assume without loss of generality that h =1, k =n. If A =0,
then A, =0, and Theorem 3.5 applies. Then assume that A, # 0. If
ay > 0,set R={1}.If a;; = 0, then thereisa p € {2,..., n — 1} such that
a,,a, <0 then define R = {1, p}. In both cases let B =%; A, having
b,=-1.,b,=10b,>0 and b, =b,;,=0,i=2,...,n— 1. Finally,
by Theorem 3.3(i) and Corollary 3.1,

k(A) = k(B) = ;e(BN—n,N—n) = R(AN—n,N—n)' .

4. HANDICAPS OF SUFFICIENT MATRICES OF ORDER TWO

The following theorem contains complete information about the handicap
of a sufficient indefinite matrix of order two.

THEOREM 4.1. Assume that A € R?*? is sufficient but not psd. Then

2 2
max{a12 , ‘121}

(‘/a11a22 + Vdet A )2 .

1+ 4R(A) = (4.1)

If A & P, then, more simply,

41

as

as)

1+ 4k(A) = max{
Q9

}. (4.2)

If a;; = ayy = 0, then the supremum of F(x) = F,(x) is reached for any
vector x = (x,, x,) with sgn x;x, = —sgn(a;, + ay)).

If AP and a), + ay, > 0, then the supremum of F(x) cannot be
reached. A value of F(x) arbitrarily close to the supremum can be obtained
for the following choices where € > 0 is arbitrarily small:

Case x, Xg
a;; >0 =a, —esgn(a, + ay) 1
a; =0 <ay, 1 —e€ sgnla,, + a,,)

a8y = 1389, > 0 —ay, + € sgn(ay, — ay)) ap
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If A € P, then the supremum of F(x) is reached at the following points:

Case x, X,
lael > lay| —ayag Ve (Yaya + Vdet A)
laye] < lag| V@z2 (\/011022 + Vdet A) —aayan

Proof. Assume first that A & P.

Case I. a;; >0 =ay. Taking x, =1, we have that x'Ax <0 =
(@), + a4y)x; < 0. There are two subcases.

@ lap| > lagl. Then

(a +a5)x,<0=0<ayx, < —ap,x;

=K,y =ag %, > 0=>x,y4, <O.

So
= —ay X} ~ apx, 9
F(x;) =14 ————— < -1+
2% ag1
We see that sup F(x) = —1 — aj,/a,,. If a;, = 0, then the supremum is

reached for all vectors with sgn x, = sgn a,). If a;; > 0, then the supremum
cannot be reached; a value of F(x) arbitrarily close to the supremum is
obtained by taking x = (€ sgn a,,, 1), where € > 0 is arbitrarily small.

(i) lajyl < lagl Now 0 < ajpx, < —ag %, 234, > 0, x,y, > 0, whence

— —agx —ay,
F(x))= 1+ ———— < —1+ —.
anxy + apx, ayp
We note that sup F(x) = —1 — a,,/a;,. If a;, = 0, then the supremum is

reached for all vectors with sgn x, = sgn a,,. If a;; > 0, then the supremum
cannot be reached; a value of F(x) arbitrarily close to the supremum is
obtained by taking x = (e sgn a,,, 1), where € > 0 is arbitrarily small.

Case II. a,, = 0 < ay,. This case is reduced to case I by defining
u = (x5, 1)), v = (y,, y)), B=F) A
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Case III. a, a4 = ayya, > 0. We reduce this case to case I by defin-
ing u = (y,, x,), v = (x, y,), B =2, A. We note that (4.2) holds. A value
of F(x) arbitrarily close to the supremum is obtained by taking u =
(—esgn(by, + by), 1), where € > 0 is arbitrarily small; then x, =u, =1
and

= — -1 _ -1
x, =v) =byu, +bu, = €aj, sgn(a;, — ay) — a;, ay,.

Then assume that A € P.

Case I. lay,} > lay;|l. There are three subcases.

() a), > 0> ay,, ap + a5 > 0. Taking x, = 1, we obtain
xTAx < 0= x, <O = x5y, = ay %, + ay >0
=xy, <0=y, >0= —qy,/a, <x, <O0.
Now,

2
_ —ap X7 — Q19X
11+1 1241
F(xl) =-14+ —FF
Ay X + Ay

— 2 _ —
7 | Taa5 X — 201,855 X) ~ G130y
(xl) - 2 .
(a5%) + ag)

It is easy to show that the global maximum of F(x,) in the interval
x, € (—ay/a,,,0) is

" —apyags

o \/a(\/auazz + Vdet A)

(this expression is valid in the case a, = 0 too). Simple calculations lead to
4.1.

(i) a), <0 < ay), a5 +ay <0. We reduce this case to (i) by defining
u = (—x,, x,), v =(—y,, y,), B=DAD, where D = diag(—1, 1).

(iii) ajyay) > 0, lajy| > lay | This case is reduced to (i)-(ii) above by
defining u = (y,, x,), v = (x,, y,), B =2, A. The supremum of F(x) is
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reached by taking

u= (_blz\/b_zz, \/IZ(‘/bub22 + Vdet B ))

= ‘11—13/2(012‘/det A, ‘/anag2 + Ydet A )

ie., xy = u, and
- — _ -2
X, =0, =byu, +byu, = —a;’ay/a,, .

Case II. apay > 0, la,) <layl. We reduce this case to case I by
defining u = (x,, x,), v = (y,, y;), B = &}, A. [ |

REMARK 4.1. Equation (4.2) is essentially due to Guu and Cottle [7].
Their proof differs somewhat from ours.

REMARK 4.2. It follows from Theorem 4.1 that, for A € SU N R2%2

@) r(A) = k(A7)
(i) ®(A) is a continuous function of the elements of A.

REMARK 4.3. If A € PN R**2, then F,(x) is not necessarily concave
in the set {x € R?|x"Ax < 0}. To see this, let a,, =a,, =1, a,, =8,
ay = —1; then 92F,(1, —1)/dx% > 0.

5. HANDICAPS OF P-MATRICES

Let A € R"*" be a P-matrix but not psd. We shall determine the
handicap of A by calculating the handicaps of all principal submatrices of
order k of all principal pivotal transforms of A sequentially for k = 2,..., n.

Assume that

_, = max{k(By_;) | B is a principal pivotal transform of A and i € N}

(5.1)

Ky

is known. We shall derive a necessary condition for K(A) > k,_, to hold. So
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assume that

R(A4) = 3E,(3) > &,y (5.2)
see Theorem 2.3. Here %, # 0 for all i € N, because otherwise we would
have K(A) = k,_,. We show that also ¢, == A, % # 0 for all i € N. Assume,
on the contrary, that §; = 0 for some k € N. Then k(% A) is attained at a
point whose kth component equals zero. But then K(A) = k(£ A) = k,,_,,
a contradiction. Because £; # 0 for all i € N, we may assume without loss of

generality tht £, = 1; s0 £ = (x1,1) with ! € R*!. There are two cases.
Case I. n € 1,(%). We define

R =1_(%), S=I1,(%)—n
G ={x' €eR" N xg*yy <0, x5%ys > 0}, (5.3)

where y = Ax. We have that

f(&)

£==4k(A)+1=—-é(—£-17, (5.4)
where
f(xl) = %xg(ARR + A’fiﬂ)xﬁ + xsz Apsxg + xtTlARn’ (5-5)
g(x') =xf Afpxg + 5x5( Ags + Afg)xg + ngs"‘
+ A gxp t A, 5x5 T a,,. (5.6)
Clearly, f > 1. By [5], the nonlinear program
min{h(x',t) = tg(x') + f(x') Ix' € Gy} (5.7)

with ¢ = f has the minimum value zero. This minimum value is attained in
the interior of G, but not on its boundary. We show that the quadratic
function h(x!, ) is by necessity strictly convex. First, if h(x', 1) is indefinite,
it cannot have a minimum in the interior of G,. Second, if h(x t) is convex
but not strictly, it has the value zero on a whole line in R"~ 1. But any line in
R"~! intersects the boundary of G,. So also this case is impossible.
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We have shown that solving (5.7) with ¢t ={ amounts to finding the
unique global minimum of the strictly convex quadratic function h(x',f) in
R"~ 1. Recalling (2.2), this can be accomplished by performing £, _, to the
table

X g Xg 1
0= | Azgp + A% Ags + tAgﬂ AR? + AT,
B(t): 0= Al +tAgy  t(Agg + AL) (AT + Ag)
2h= | AL, +tA,; t(A,s+AL) 2ta,,

(5.8

where t = {. Equivalently, one can perform the sequence #,,..., &, _, of
single principal pivots to the table (5.8); the pivots in this sequence are
positive. In the resulting table, £ and i are in positions (i, n), i = 1,...,
n — 1, and the element (n, n), containing twice the optimal value of h, is
zero. Denote the matrix contained in the table (5.8) by B(t); then B(®) is
singular, because the product of it and a nonzero vector equals zero.

We continue by showing that all proper principal submatrices of B(%) are
pd. Assume, on the contrary, that B, ,(t) with HC N, H>n, |H|<n -1
is singular. Then the element (n,n) of ?H_"B(f) is zero. Because
Py_ o B(E) =Py, y Py, B(), this implies that either the minimum value of
the problem (5.7) with ¢ = fis negative or that £, =0 forall i e N\ H, a
contradiction.

Case II: n € I_(%). We define

R=1,(3), S=I_(%)-n,
Gy ={x' € R xg*yg >0, x5%ys <0} (5.9)
We have that

f=4R(A) +1= —5(—’21)— (5.10)

f(&h
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or, equivalently,

where f(x') and g(x') are as in (5.5)—(5.6). We see that the developments in
case I are now valid when replacing £ by ! and G, by G,. So, for example,
h(x!,£71) is a strictly convex quadratic function.

We have attained the following. For £ € R" with £, = 1 to satisfy (5.2) it
is necessary that there is & # R € N — n such that, with f=4R(A) + 1
and S = (N — n) \ R, either

() n € I,(£), all proper principal submatrices of B(f) are pd,
det B(f) = 0, and

[iﬁ] = =Byl v-u() By_, (D), (5.11)

so that £! € G, or

(i) n € I_(£), all proper principal submatrices of B({™!) are pd,
det B(f™!) = 0, and the point %' obtained from (5.11) with { replaced by
7! belongs to G,.

Based on the above developments, we now construct a recursive proce-
dure for determining k(A). Assume that the 8, _, of (5.1) has already been
calculated. Select t, == 4k,_, + 1 as the first candidate of . We go through
all the nonempty sets R C N — n as follows. For a selected R construct the
matrix B(t) of (5.8). If Agzg or Agg is not pd, select a new set R. Otherwise
determine all the roots of the equation det B(t) = 0 which lie in the intervals
(0, t5') and (¢,, ©) (an algebraic equation of degree < n has to be solved by
means of some numerical method). If some root ¢t >t, yields a pd
By . n-a()and £ € G|, set t, « t. Likewise, if some positive root t < ¢,
yields a pd By_, y_.(t) and &' € G,, set t, < t~'. [In both cases, &' is
obtained from (5.11) with # replaced by ¢. Note that for a given G, or G,
there cannot be more than one candidate of £.] Then select a new set R, etc.
After going through all the sets R we have &(A) = {(t, — 1) (in fact, this
holds only approximatively, because the candidates are determined numeri-
cally).

The method is very laborious, so it is practicable for small P-matrices
only. Below we illustrate the method in the case of a P-matrix of order three.
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ExaMPLE 5.1. We determine the handicap of the P-matrix

All the proper principal submatrices of all principal pivotal transforms of A
are psd, whence k, = 0. There are three cases. We give the equation
det B(¢) = 0 in each case below and summarize the solution of the example
in Table 1. From this table it appears that f = 0.8624687! = 1.159464,
implying k(A) = 3(f — 1) = 0.0398659.

Case I. R={1}, S=1{2} (x;*%y, <0, x,*y, >0, x3%y, >0, or
these inequalities reversed):

8 1+2¢t 2—4¢
1+ 2¢ 2t t
2 —4¢ t 2t

det B(t) = =0 < t(28t* — 24t + 3) = 0.

Case II. R=1{2}, S={1} (x;*y, >0, x,%y, <0, x3%y; >0, or
these inequalities reversed):

2 24+t -2+ 3t
det B(t) =| 2+1¢ 8t ~92t | =0« t(43t% — 48t + 12) = 0.
-2+ 3t =2t 2t
TABLE 1
SOLVING EXAMPLE 5.1
R t x y Obstacle

{1} 0151930 (-0.308, 0.821,1) ( 1590, —1.795, 4.694) =x3y;>0
0.705213 ( 0.522, —1.392,1) ( 2.696, —2.348, ~5265) =x,4,>0

{2} 0378001 (-1.392, 2.088,1) (—1.481, —2.696, 12.834) x,y,> 0
0.738278 ( 0.821, —1.231,1) ( 4.052, —1.590, —5.977) x,y, > 0

{1,2} 0421623 (~0.405, 0975,1) ( 1.356, —1.835, 5.542) =x,y,>0
0.862468 ( 0.666, —1.293,1) ( 3.371, —1.961, —5.542)
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Case III. R=1{1,2}, S=T (x;*y, <0, xy*y, <0, x3%y; >0, or
these inequalities reversed):

8 3 2 — 4t
det B(t) =| 3 2 -2+ 3t =0« 88t — 113t + 32 = 0.
2—4t -2+ 3¢ 2t

6. HANDICAPS OF SUFFICIENT MATRICES NOT IN P

In this section we shall show that, for n > 3, the handicap of A € SU N
R"*** not in P is equal to the maximum over the handicaps of the proper
principal submatrices of all principal pivotal transforms of A. So determining
the handicap of A € SU N R"*" not in P can be reduced to determining
handicaps of P-matrices of order less than n and those of sufficient matrices
of order two. We begin with an auxiliary result.

THEOREM 6.1. Let A € R"*" with Ay_, y_, = 0 be sufficient. Then

maxieNlani/ainl

1+ 4k(A) = —_—
( ) miniENlani/aml

(6.1)

where 0/0 is defined to be equal to one.

Proof. In view of Theorem 3.5 we may assume that a,,a,; < 0 for all
i € N —n. Let B be the matrix obtained from A by replacing a,, with
sgn a,, and a,, with sgn a,,, i =1,...,n — 1. Then B € PSD, whence
k(B) = 0. By Theorem 3.4, (6.1) holds with = replaced by < (take
p; =la,l g, =la,lforal i € N —n and p, = g, = 1). We show that the
reverse inequality holds too. We let h, k € N — n be such that

app p; A

= min
ieEN—-n

(6.2)

3

Ky
S

Chn 4y Cin

There are three cases.

() la,;/a4,! > 1. Letting R = {k, n}, we have

1+ 4R(A) > 1+ 4R(ARR) = ‘a"k/akn‘.
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(i) la,,/a;,| < 1. Letting R = {h, n}, we have
1+ 4k(A) > 1 + 4k(Agg) =lay,/aul =1+ lay,/ay,).

(iii) la,z/ay,| > 1> la,,/a,l Letting C =%, A and R = {h, k}, we
have

1+ 4k(A) = 1+ 4R(CRR) = |ank/akn| =~ |a"h/ah"|. |

The following theorem is an extension of [9, Theorem 3.1].

THEOREM 6.2. Assume that A € R"*" with n > 3 is sufficient but not a
P-matrix. Then

k(A) = max{k(BN—i,N—i) |

B is a principal pivotal transform of Aand i € N}. (6.3)

Proof. 1t follows from Theorem 3.3 that > holds in (6.3). We show that
the reverse inequality holds too. There is a principal transform of A whose
trailing diagonal element is zero. Hence we may assume without loss of
generality that a,, = 0. If A, = 0 (A, = 0) for some h €N, then A, =0
(A.;, = 0) too, and the result follows from Theorem 3.5. So we assume in the
sequel that all rows and columns of A are nonzero. For simplicity, we denote
F,(x) by F(x). Consider any x° € R" such that x°TAx® < 0 and let y° =
Ax®. If x) =0 for some h €N, then F(x°) < 4k(Ay_; y_;). In what
follows We assume that x) # 0 for all i € N.

If y, =0 for some h €N, then there are two possibilities. First, if
ayy, > 0, then F(x°) < 4k(By_,, y_3), where B =, A. Second, if a,;, = 0,
then a,.a,, <0 for some k € N; see Theorem 3.1. So F(z°) <
4R(By_} y_4), where B = 33,, KA.

Finally, assume that y? # 0 for all i € N. Without loss of generality we
may assume that xJ = 1. In the sequel L will mean summing over the set
N —n, X, over the set 1,(x% —n, and ¥ _ over the set I (") —n. In
addition, we let & = 0 or 1 according as x,y) =y, = L amx, is negative or
positive. Defining A = Ay_, y_,, £° = (x0,..., x%_)), §° = A%°, we eval-
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uate F(x) at the point x(¢) = (x{,..., xJ_,, t)

_AOTAi\O - tz(ain + am’)x?
X, x?(?? + aint) + Sty,?

F(t) = (6.4)

This function and its derivative

(:’foquxo)[2 a;,X; + 8%?] - (Z xOAO)Z(am +a’m)x
[Z+xi yi + aint) t+ 51‘!/3]

F'(t) =

are defined for all values of # for which th_e denominator in (6.4) is nonzero.
Note that for such values of ¢ the sign of F'(¢) is independent of ¢. We have
two cases.

Case I. F'(1) < 0. Diminish ¢ from one until () for the first time
y,(t) = § + a,,t for some h € N — n becomes zero at t = ¢, > 0 (say), or
(i) ¢ tends to zero. We consider (i) and (ii) separately.

() F(t) and F'(t) are defined for all ¢ € [t,, 1]. This is seen as follows.
Assume, on the contrary, that at ¢, the denominator in (6.4) equals zero. This
can occur only if x]y,(t,) <0 for all i€ N—n and & =0 (implying
to yn < 0). This is, however impossible, because A is sufficient. Because
F'(t) <0 for all t e [#,. 1], the present case reduces to the case yh =0
above.

(ii) We have xog},o >0forall iel (x°)—n and 2§ <0 forall i€
I_(x®) —n.Ifx2§? > 0for some i € I,(x°) —n, then the denominator in
(6.4) is positive for t = 0 and the present case is reduced to the case 2 =0.
Otherwise we have x)§ <0 for all i € N — n, implying x4 = 0 for all
i €N —nand 27420 = 0 (because A is sufficient). So, for all t >0, F(t)
equals

_z(am +am)x0
r,a,x?+ 6y

(6.5)

Because a,,x{ =xX(§) + a,,)) =x'y? for all i € N —n, the ratio (6.5)
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equals the ratio Fz(x°) where

0 0 a,

B=| - : - . 6.6
0 0 e, (6.6)
anl an,n—l O

So F(x°) < k(B). But, defining h and k as in (6.2), K(B) equals K(Azy)
where R = {k, n} or {h, n}, or R(Cyp) where C =%, , A and R = {h, k}.

Case II. F'(1) > 0. We increase ¢ from one until (i) for the first time
y,(t) for some h € N — n becomes zero at some point t = t, (say), or (ii) ¢
tends to . We consider (i) and (ii) separately.

() F(¢) and F'(t) are defined for all ¢ € [1, t,]. This is shown in the same
way as in case I(i) above. So the present case reduces to the case yj = 0.

(ii) Now, a;,x) > Oforalli € I,(x°) —nand g,,x) < Oforall i € I_(x°)
— n. We show that the denominator in (6.5) is positive. Assume, on the
contrary, that the denominator is zero. Then a,,x) < O foralli € N — n and
§=0,1ie, La,x) =yl =x2y? <0. This is, however, impossible because
the B of (6.6) is sufficient. It follows that lim, _, ., F(t) exists and is given by
(6.5). Because F'(t) > 0 for all ¢ > 1, we have F(x°) < #(B) where B is

taken from (6.6). The rest is as in case I(ii) above. [ ]

REMARK 6.1. It may be conjectured that K(A) for A € SUN R" " isa
continuous function of the elements of A; cf. Remarks 2.1 and 4.2.

7. INVARIANCE OF THE HANDICAP UNDER TRANSPOSITION

By Remark 4.2, R(A) = k(A”) for any two by two sufficient matrix A.
This result generalizes to the whole class SU.

THEOREM 7.1. IfA € SU N R"*", then k(A) = R(AT).

Proof. By induction on n. The case n = 1 is trivial; for the case n = 2
refer to Remark 4.2. Then assume that the theorem is true for the order
n — 1, and consider any A € SU N R"*" where n > 3. We show first that
the k,_, of (5.1) equals the corresponding quantity k,_, for A”. There are
an RC N anda k € N such that K, | = R(By_; y_;) with B =%, A. By
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Theorem 2.1, C =%, AT = DB"D, where D is as in (2.1). It follows that
Cy—inv-x=Dy_i vxBy-x n—xDy_t x_x» wWhence, using Theorem 3.4
and the induction hypothesis,

K12 R(Cy g nog) = R(BI{I—k,va) = K(By_r.n-x) = Ko\

The reverse inequality K, _; > K, _, can be established by interchanging the
roles of A and AT above. So k,_, = kK, _,.

If A € PSD, then l'é(A) = R(A") = 0. In the case A & P we have by
Theorem 6.2 that k(A) = &, _, _1 = R(AT). Then let A € P\PSD.
We show first that k(A7) > K(A) If R(A) = R, ,, then R(A) =&, _, =
K, _, < R(AT). Then assume that (5.2) holds. Consider first the case n €
I.(%) (case I in Section 5). We adopt the notation in (5.3)-(5. 6) and
construct the table (5 8) with ¢ ={. We show that the point £’ with
Rp =118y, £y =1=5 %, =1 yields k(A) as a candidate of &K(AT). Now
§ =A% § =A% whence

T
At

I ~—

Yr Agp  Ags ARn— g
93 =|Asg Ag  Ag, 553 > (7~1)
_gn_ _AnR AnS ann J 1
—g%_ Akr Af Alg f‘lfR
gls = A?s Azs Ais ’?s > (7'2)
Gn] | AR AL e, |l 1
implying
gr + g Xg
t(gs + §s) | = B(f)| &5 | =0 (7.3)
(g, + 4,) 1
[see (5.8)] and further § = —f 1§, G5 = —is, §, = —14,. So
T ny AT A A
f,__(xs y5+yn_ XsYs + Y, _
= TA, - =
(%% t72( %) §a

is a candidate of 4k( A7) + 1 or, equivalently, K(A) is a candidate of K( A”).
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The case n € I (%) (case II in Section 5) is analogous. Adopt the
notation in (5.9)—(5.10) and (5.5)-(5.6), and construct the table (5.8) with
t = £~'. Then the point £’ with £ = &y, &5 = %5, £, = 1 yields §' with
%1—]; —ts, §s = —9s, G, = —17, [now (7.1)~(7.3) hold with  replaced by
t7 ] So

ar \T ny A2 AT A
A (%) §r t"XrYr —
- AarNT Ay ar AT A ~

(%5) g5 + 4. tys ty,

is a candidate of 4k(A”) + 1 or, equivalently, K(A) is a candidate of K(AT).
We have shown that R(AT) > k(A). The reverse inequality can be
established by interchanging the roles of A and A”. |
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