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ABSTRACT 

The classes of sufficient matrices and of P * -matrices have recently arisen in 
connection with the linear complementarity problem. It is known that P * -matrices 
are sufficient. We show that, conversely, every sufficient matrix is a P * -matrix. 

1. INTRODUCTION 

The classes of sufficient matrices and of P * -matrices have recently arisen 
in connection with the linear complementarity problem (LCP). The class SU 
of sufficient matrices was defined by Cottle, Pang, and Venkateswaran [6], 
and the class P, by Kojima, Megiddo, Noma, and Yoshise [S]. These classes 
are defined as follows. 

A matrix A E [w”“’ is column sufficient if for all x 6 [w” 

x~(AX)~=GO, i=l,..., ~*x~(A~C)~=O, i=l,..., n, 

and row sufficient if A“ is column sufficient. A is suficient if it is both row 
and column sufficient. Row sufficient matrices are linked to the existence of 
solutions to the LCP, and column sufficient matrices are associated with the 
convexity of the solution set. 

For K > 0, the class P(K) consists of all matrices A E [wnx” satisfying 

(1+4K) c Xiyi+ c Xiyi>o for all x E aB”, 
iEZ+(x) iGZ_(X) 
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where y = Ax and 

Z+(X) = {iIxiyi > 0} and I_(X) = (i[Xiy, CO}. 

The class P * is now defined by P * = iJ K >/ ,P * ( K). In [8] it is shown that 
any feasible LCP with a P, -matrix can be solved by means of the unified 
interior point method. 

It is known that P, c SU (see [8] for column sufficiency and [7] for row 
sufficiency). Guu and Cottle [7] have shown that, for 2 X 2 matrices, these 
classes are identical. On the basis of this result and some computational 
evidence with matrices of order greater than two they conjectured that 
SU = P * . In this paper we show that this really is the case. As a conse- 
quence, all that has been proved about P, in [8] holds for SU also, and all 
results on SU in [l-3, 6, 91 are valid for P, too. For example, the existing 
finite tests for sufficient matrices can be used as criteria for membership in 
P, (up to now, no finite criteria for membership in P, have been known). 

2. PRELIMINARIES 

If A = [u,~] E IWmX” (A is a real m X n matrix), we write AT for its 
transpose. If R c 11, . . . , m} and S c { 1, . . . , n}, we denote the submatrix of 
A induced by rows i E R and columns j E S by A,,. A diagonal matrix 
D E lFt”x” with the diagonal elements d,, . . . , d, is denoted by D = 
diag(d,, . . . , d,). By a principal permutation of a square matrix we mean 
simultaneous permutation of the rows and the columns. Any vector x E [w” is 
interpreted as an n X I matrix and denoted by x = [xi, . . . , x,lT or, for 
simplicity, by x = ( xi, . . . , x,). We write xs for the subvector of x consist- 
ing of components i E R. Moreover, we define N = {I,. . . , n}, denote the 
empty set by 0, and abbreviate R - r = R \ {r}. The symbol := will be 
used for definition. 

If A E [WnX”, R C {l, , . . , n}, and A,, is nonsingular, the principal 
pivotal operation YE transforms the equation y = Ax into an equivalent 
equation in which the variables yR and xs have bee? exchanged; %ee e.g. [5, 
pp. 68-781. If th e matrix of the latter equation is A, we write A =9’s A. 
Moreover, we define gBA = A. The single principal pivotal operation 9tY, 
will simply be denoted by 9,. Any matrix obtained from A by means of a 
principal pivotal operation followed by a principal permutation is called a 
principal transform of A. 
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The classes SU, P.+.(K), and P * have much in common (see [l, 6, 81): 

(1) Each of these classes is contained in P,,, the class of matrices with 
nonnegative principal minors. (So all matrices in these classes have nonnega- 
tive diagonal elements.) 

(2) Each of these classes contains PSD, the class of positive semidefinite 
matrices; SU and P, contain P, the class of matrices with positive principal 
minors. 

(3) If a matrix A is in one of these classes, then so is any principal 
permutation of A, any principal submatrix of A, and any principal transform 
of A. 

It should be noted that P*(O) = PSD. The following two theorems 
contain some additional facts about sufficient and P * -matrices. 

THEOREM 2.1 [l]. lf A E [wnx” is .su.cient and akk = 0, then aik = ski 
= 0 or aikaki < 0 j& all i # k. 

THEOREM 2.2 (cf. [S]). Let A E Rnxn; let P = diag(p, ,..., p,), Q = 
diag(q,, . . . , q”>, where piqi > 0 for all i E N; and let B = PAQ. Then: 

(i) Zf A is suflicient, then so is B. 
(ii) IfA E P*(K) f or some K > 0, then B E P,(K’), where K’ > K is 

such that 

1 +4K’ maxi E NC Pi/qi) 

1 + 4~ = mini,.( pi/qi) ’ 

In what follows, the concept of the handicap of a sufficient matrix 
A E Rnx” [4] will be of crucial importance. If x E R” and xrAx < 0, then 
necessarily Z+(r) # 0, and the ratio 

-xT;lx 
F(x) := c, 

I E I+(x)"i( h>i 

is well defined. The handicap i2( A) of A is now defined by 

0 
i(A) := 

if AEPSD, 
i sup{F( x)) X*AX < 0} otherwise. 
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If ri(A)<w, then iZ is the smallest nonnegative number K such that 
A E P * (K). So A E P * if and only if k( A) < ~0. Finally we state two facts 
about handicaps: 

(1) Th h di p f e an ca s o a sufficient matrix and all its principal transforms 
are the same. 

(2) The handicap of a sufficient matrix is at least as large as the handicap 
of any of its proper principal submatrices. 

3. RESULTS 

Now we proceed to establish SU c P * . The proof consists in showing 
that every sufficient matrix has a finite handicap. 

THEOREM 3.1. SU c P, . 

I+oaf. By induction on the order n of the matrix. The case n = 1 is 
trivial. Then assume that the theorem holds for matrices of order rr - 1, and 
consider a sufficient matrix A E lQnXn where n > 2. If A E P, then it is a 
P, -matrix. Otherwise there is a principal transform of A whose trailing 
diagonal element is zero. So, without loss of generality, we may assume that 
a 11” = 0. Note that a,, = a,,i = 0 or ainani < 0 for all i # n by Theorem 2.1. 
In view of Theorem 2.2 it suffices to consider a matrix A of the form ,. 

A= A ’ 
[ 1 -aT 0 

(3.1) 

where 8 = (a,, . . . , S,_ 1) with Si = 0 or 1 for any i. We shall show that any 
sufficient matrix of the form (3.1) has a finite handicap. 

If A E PSD, then k(A) = 0. Otherwise we show that F(X) is uniformly 
bounded by a finite number in the set {x E rW”lxrA$x < 0). Let x0 E [w” 
be such that xoTAro = foTAGO < 0, where x^’ = (x:, . . . , xz_,). It will turn 
out that the cases where r” or y O = AX’ has a zero component or A has a 
zero column are almost immediately covered by the induction hypothesis. If 
xyyo # 0 for all i E N and all columns of A are nonzero, then a more 
elaborate treatment is needed. 

If X: = 0 for some h E N, then F(x’) < 4ri(A,_h,N_h). If xf # 0 for 
all i E N and column h E N of A is zero, then row h of A is zero also (see 
Theorem 2.1) and xi may be set to zero without affecting F(x’); so we have 
the preceding case. In the sequel we assume that ~0 # 0 for all i E N and 
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that all columns of A are nonzero. Then, by Theorem 2.1, all rows of A are 
nonzero, too. 

If yi = 0 for some h E N, there are two possibilities. First, if uhl, > 0, 
then F(r”) < 4?(B,Y_,, &j-h ) where B =9,, A. Second, if a,,,, = 0, then 
nhkukh < 0 for some k E N, see Theorem 2.1. So F(s”) < 4G(B,,_,,,,-,,) 
where B =9th kJ A. 

Finally assume that yp # 0 for all i E N. Because F(hx) = F(x) for any 
A # 0, we may assume without loss of generality that xi! = 1. In what 
follows, C shall mean summing over the set N - II, C, over the set 
Z+(x’) - II, and C_ over the set ZZ(r”) - n. In addition, we let y = 0 or 1 
according as xi yij = y,r’ = -C6,x: is negative or positive. We evaluate 
F(r) at the point r(t) = (NY,.. ., x11-,, t): 

F(t) = 
_,oQ ;o 

c+q $0 + tsJ - ytmix; 
(3.2) 

where ij” = A x^O. This function and its derivative 

F’(t) = 
(2°7LiP)(~+6ix]’ - yC8pI’) 

[c+q $I” + tq) - ymix;]’ 

are defined for all values of t for which the denominator in (3.2) differs from 
zero. We have four cases. 

Case I: y = 0, C, airy < 0. Then ai = 1, xp < 0, yo < 0 for some 
i E Z+(X”) - n. Note that y,(t) := Q,q + t changes sign in the interval (1, m). 
We increase t from 1 until, for the first time, yh(t) for some h E N - n 
becomes zero at t,,, say. For all t E [l, to], F(t) and F’(t) are defined and 
F'(t) > 0. Therefore F(x”) < F(t,), and the present case reduces to the 
case yi = 0 above. 

Case ZZ: y = 0, C, ai x0 > 0. We diminish t from 1 until, for the first 
time, it or y,(t) for some h E N - n becomes zero at f = t,, say. All the 
time, F(t) and F’(t) are defined, and F'(t) < 0. So F(r”) < F(t,), and the 
present case reduces to the case xf = 0 or to the case y;,’ = 0 according as 
t, = 0 or to > 0. 

Case ZZZ: y = 1, C+ 6,~: - rx8, x)’ = -C_ &rj’ < 0. Then ai = 1, x: 
> 0, yo < 0 for some i E Z_(x") - n. Continue as in case I. 

Cuse IV: y = 1, C+Sixp - yC6,x,O = -Cp6ixo > 0. Continue as in 
case II. 
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Summarizing the above discussion, we have shown that if the sufficient 
matrix A of (3.1) does not belong to PSD, then 2(A) Q c, where 

c := max{ri(BN_i,Il,_i)(B is a principal transform of A and i E N}, 

which is finite by the induction hypothesis. [In fact, k(A) = c must hold, 
because otherwise we would have k(B) = k(A) < k(BNPi, NPi) for some 
principal transform B of A and for some i E N, which is impossible.] w 

The author is indebted to Professor Richard W. Cottle for proposing this 
research problem to him and for giving constructive comments on a prelimi- 
nay version of the paper. 
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