NORTH-HOLLAND

Determining the Handicap of a Sufficient Matrix

H. Väliaho
Department of Mathematics
University of Helsinki
Helsinki, Finland

Submitted by Richard W. Cottle

Abstract

Any linear complementarity problem with a sufficient matrix can be solved by means of the unified interior point method. The complexity bound of the method is the better the smaller the so-called handicap of the matrix is. We propose a method for determining the handicap of a sufficient matrix and show that a sufficient matrix and its transpose have the same handicap. © Elsevier Science Inc., 1997

1. INTRODUCTION

The class $\mathbf{S U}$ of sufficient matrices was recently identified by Cottle, Pang, and Venkateswaran [4] in connection with the linear complementarity problem. A matrix $A \in \mathbb{R}^{n \times n}$ is column sufficient if for all $x \in \mathbb{R}^{n}$

$$
x_{i}(A x)_{i} \leqslant 0, \quad i=1, \ldots, n \Rightarrow x_{i}(A x)_{i}=0, \quad i=1, \ldots, n
$$

and row sufficient if A^{T} is column sufficient. A is sufficient if it is both row and column sufficient. It is well known that $\mathbf{P} \subset \mathbf{S U} \subset \mathbf{P}_{0}$, where $\mathbf{P}_{0}(\mathbf{P})$ is the class of matrices with nonnegative (positive) principal minors.

LINEAR ALGEBRA AND ITS APPLICATIONS 253:279-298 (1997)

It has been shown in $[8,7,9]$ that $A \in \mathbb{R}^{n \times n}$ is sufficient if and only if there is a $\kappa \geqslant 0$ such that

$$
\begin{equation*}
(1+4 \kappa) \sum_{i \in I_{+}(x)} x_{i} y_{i}+\sum_{i \in I_{-}(x)} x_{i} y_{i} \geqslant 0 \quad \text { for all } \quad x \in \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

where $y=A x$ and

$$
I_{+}(x)=\left\{i \mid x_{i} y_{i}>0\right\} \quad \text { and } \quad I_{-}(x)=\left\{i \mid x_{i} y_{i}<0\right\}
$$

For a fixed κ, the class of all matrices satisfying (1.1) will be denoted by $\mathbf{S U}(\kappa)$; this class is the same as the class $\mathbf{P}_{*}(\kappa)$ in [8]. Note that $\mathbf{S U}(0)=$ PSD, the class of positive semidefinite (psd) matrices.

Any sufficient linear complementarity problem can be solved by means of the unified interior point method [8]. The smaller κ in (1.1) can be chosen, the better the complexity bound of the method is. Therefore the smallest κ for which (1.1) holds is of importance. This value is called the handicap of the sufficient matrix A and denoted by $\hat{\kappa}(A)$. If $x \in \mathbb{R}^{n}$ and $I_{-}(x) \neq \varnothing$, then $I_{+}(x) \neq \varnothing$, and the ratio

$$
\begin{equation*}
F_{A}(x):=\frac{-x^{T} A x}{\sum_{i \in I_{+}(x)} x_{i}(A x)_{i}} \tag{1.2}
\end{equation*}
$$

is well defined. We have

$$
\hat{\kappa}(A):= \begin{cases}0 & \text { if } A \in \mathbf{P S D} \\ \frac{1}{4} \sup \left\{F_{A}(x) \mid x^{T} A x<0\right\} & \text { otherwise }\end{cases}
$$

Note that $F_{A}(\lambda x)=F_{A}(x)$ for any $\lambda \neq 0$.
The organization of the paper is as follows. After some preliminaries we shall, in Section 3, recall and supplement the basic theory of the classes $\mathbf{S U}$ and SU(κ). Then, in Section 4, we derive a general expression for the handicap of a sufficient indefinite matrix of order two (for the part of non-P-matrices, this result has earlier been established by Guu and Cottle [7]). Section 5 is devoted to determining the handicaps of \mathbf{P}-matrices. We give a numerical example to illustrate the method. In Section 6 we show that, for $n \geqslant 3$, determining the handicap of a sufficient matrix $A \in \mathbb{R}^{n \times n}$, not in \mathbf{P}, can be reduced to determining handicaps of \mathbf{P}-matrices of order less than
n and those of sufficient matrices of order two. Finally, in Section 7, we show that the handicaps of a sufficient matrix and its transpose are equal.

2. PRELIMINARIES

If $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$ (A is a real $m \times n$ matrix), we write A^{T} for its transpose. If $R \subset\{1, \ldots, m\}$ and $S \subset\{1, \ldots, n\}$, we denote the submatrix of A induced by rows $i \in R$ and columns $j \in S$ by $A_{R S}$. We let A_{i}. stand for the i th row of A, and $A_{\cdot j}$ for the j th column of A. A diagonal matrix $D \in \mathbb{R}^{n \times n}$ with the diagonal elements d_{1}, \ldots, d_{n} is denoted by $D=$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. This convention generalizes to block diagonal matrices; then the diagonal elements d_{i} are replaced by diagonal blocks D_{i}. The class of positive definite (pd) matrices will be denoted by PD. By a principal permutation of a square matrix we mean simultaneous permutation of the rows and the columns. In particular, we write $\mathscr{C}_{r s}$ for the principal permutation interchanging rows and columns r and s. Any vector $x \in \mathbb{R}^{n}$ is interpreted as an $n \times 1$ matrix and denoted by $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ or, for simplicity, by $x=\left(x_{1}, \ldots, x_{n}\right)$. We write x_{R} for the subvector of x consisting of components $i \in R$ and let e_{i} stand for the i th coordinate vector. For vectors we shall use the Euclidean norm $\|\cdot\|$. If $x, y \in \mathbb{R}^{n}$, their Hadamard product $x * y \in \mathbb{R}^{n}$ is defined by $(x * y)_{i}=x_{i} y_{i}, i=1, \ldots, n$. Moreover, we define $N=\{1, \ldots, n\}$, denote the empty set by \varnothing and the cardinality of a set R by $|R|$, and abbreviate $R-r=R \backslash\{r\}$. The symbol $:=$ will be used for definition.

If $A \in \mathbb{R}^{n \times n}, R \subset N$, and $A_{R R}$ is nonsingular, the principal pivotal operation \mathscr{P}_{R} transforms the equation $y=A x$ into an equivalent equation in which the variables y_{R} and x_{R} have been exchanged; see e.g. [3, pp. 68-78]. If the matrix of the latter equation is $\hat{A,}$ we write $\hat{A}=\mathscr{P}_{R} A$ (in the case $R=\varnothing$ we have $\hat{A}=\mathscr{P}_{\varnothing} A=A$). We call \hat{A} a principal pivotal transform of A, and any principal permutation of \hat{A} a principal transform of A. The single principal pivotal operation $\mathscr{P}_{\{r\}}$ will simply be denoted by \mathscr{P}_{r}. We shall need the following result.

Theorem 2.1 [1]. Let $A \in \mathbb{R}^{n \times n}$ have the nonsingular principal submatrix $A_{R R}$. Then

$$
\mathscr{P}_{R} A^{T}=D\left(\mathscr{P}_{R} A\right)^{T} D
$$

where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that for all $i \in N$,

$$
d_{i}=\left\{\begin{align*}
1, & i \in R, \tag{2.1}\\
-1, & i \notin R .
\end{align*}\right.
$$

As an application of principal pivoting we determine the unique global minimum of a strictly convex quadratic function $q(x)=q_{0}+c^{T} x+\frac{1}{2} x^{T} D x^{T}$ where $D=D^{T} \in \mathbb{R}^{n \times n}$:

$$
\begin{align*}
& \begin{aligned}
0 & \left.=\begin{array}{cc}
x & 1 \\
2 q & =\begin{array}{cc}
D & c \\
c^{T} & 2 q_{0}
\end{array} \\
\xrightarrow{\mathscr{P}_{N-n}}
\end{array}\right]
\end{aligned} \tag{2.2}\\
& \begin{aligned}
x & \left.=\begin{array}{cc}
0 & 1 \\
2 q & =\begin{array}{cc}
D^{-1} & -D^{-1} c \\
c^{T} D^{-1} & 2 q_{0}-c^{T} D^{-1} c
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right]
\end{aligned}
\end{align*}
$$

Here $-D^{-1} c$ is the unique global minimum \hat{x}, and $2 q_{0}-c^{T} D^{-1} c$ is double the optimal value \hat{q} of q.

Next we recall a well-known result on \mathbf{P}-matrices.

Theorem 2.2 [6]. $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if for every $x \in \mathbb{R}^{n} \backslash\{0\}$ there exists an index k such that $x_{k}(A x)_{k}>0$.

From this theorem we deduce that if $A \in \mathbf{P} \cap \mathbb{R}^{n \times n}$, then the F_{A} of (1.2) is defined for all $x \in \mathbb{R}^{n} \backslash\{0\}$. We have the following.

Theorem 2.3. If $A \in \mathbf{P} \cap \mathbb{R}^{n \times n}$ is not $p d$, then there exists an $\hat{x} \in \mathbb{R}^{n}$ $\backslash\{0\}$ such that $\hat{\kappa}(A)=\frac{1}{4} F_{A}(\hat{x})$.

Proof. In case $A \in \mathbf{P S D}$ the result is obvious. Assume then that $A \notin$ PSD. Defining $G=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$, we have that

$$
\hat{\kappa}(A)=\frac{1}{4} \sup \left\{F_{A}(x) \mid x \in G\right\} .
$$

The denominator of F_{A} is positive and continuous in the compact set G and hence attains its smallest value in G. It follows that F_{A} is continuous in G and attains its largest value in G.

Remark 2.1. Note that $\hat{\kappa}(A)$ for $A \in \mathbf{P}$ is a continuous function of the elements of A. This is because a function which is continuous in a compact set is uniformly continuous in this set.

3. BASIC THEORY

In this section we review and supplement the basic theory of the classes $\mathbf{S U}$ and $\mathbf{S U}(\kappa)$; cf. [1, 2, 7, 8].

Theorem 3.1 [1]. If $A \in \mathbb{R}^{n \times n}$ is sufficient and $a_{k k}=0$, then $a_{i k}=a_{k i}$ $=0$ or $a_{i k} a_{k i}<0$ for all $i \neq k$.

Theorem 3.2. If $A \in \mathbb{R}^{n \times n}$ belongs to $\mathbf{S U}(\kappa)$, then so does (i) any principal submatrix of A, (ii) any principal permutation of A, and (iii) any principal pivotal transform of A.

Theorem 3.3. Let $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$. Then:
(i) The handicaps of A and all its principal transforms are the same.
(ii) The handicap of A is at least as large as that of any of its proper principal submatrices.

Theorem 3.4 (Cf. [8]). Let $A \in \mathbf{S U}(\kappa) \cap \mathbb{R}^{n \times n}, P=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)$, $Q=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right)$, where $\kappa \geqslant 0$ and $p_{i} q_{i}>0$ for all $i \in N$. Then $B:=$ $P A Q \in \mathbf{S U}\left(\kappa^{\prime}\right)$, where $\kappa^{\prime} \geqslant \kappa$ is such that

$$
\frac{1+4 \kappa^{\prime}}{1+4 \kappa}=\frac{\max _{i \in N}\left(p_{i} / q_{i}\right)}{\min _{i \in N}\left(p_{i} / q_{i}\right)}
$$

In particular, if the diagonal elements of a diagonal matrix D are nonzero, then $\hat{\kappa}(D A D)=\hat{\kappa}(A)$.

Theorem 3.5. Let $A=\operatorname{diag}\left(A_{1}, A_{2}\right)$. Then $\hat{\kappa}(A)=\max \left\{\hat{\kappa}\left(A_{1}\right)\right.$, $\hat{\kappa}\left(A_{2}\right)$].

Proof. Omitted.

Theorem 3.6. Let $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$, and let $D \in \mathbb{R}^{n \times n}$ be a nonnegative diagonal matrix. Then $\hat{\kappa}(A+D) \leqslant \hat{\kappa}(A)$.

Proof. Let $\hat{\kappa}=\hat{\kappa}(A), D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, and define

$$
\begin{aligned}
& I_{+}^{\prime}(x)=\left\{i \in N \mid x_{i}[(A+D) x]_{i}>0\right\}=\left\{i \in N \mid x_{i}[A x]_{i}+d_{i} x_{i}^{2}>0\right\} \\
& I_{+}(x)=\left\{i \in N \mid x_{i}[A x]_{i}>0\right\} .
\end{aligned}
$$

Then, because $I_{+}(x) \subset I_{+}^{\prime}(x)$,

$$
\begin{gathered}
x^{T}(A+D) x+4 \hat{\kappa} \sum_{i \in I_{+}^{\prime}(x)}\left(x_{i}[A x]_{i}+d_{i} x_{i}^{2}\right) \\
\geqslant x^{T} A x+4 \hat{\kappa} \sum_{i \in I_{+}(x)} x_{i}[A x]_{i} \geqslant 0
\end{gathered}
$$

The following theorem is a consequence of [8, Lemma 5.3], Theorem 3.6, and Theorem 3.3(ii).

Theorem 3.7. Let $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$, let $D \in \mathbb{R}^{n \times n}$ be a nonnegative diagonal matrix, and let

$$
A^{\prime}=\left[\begin{array}{cc}
A & I \\
-I & D
\end{array}\right]
$$

Then $\hat{\kappa}\left(A^{\prime}\right)=\hat{\kappa}(A)$.
Corollary 3.1. Let $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$, let $d \geqslant 0$, and let

$$
A^{\prime}=\left[\begin{array}{cc}
A & -e_{1} \\
e_{1}^{T} & d
\end{array}\right]
$$

Then $\hat{\kappa}\left(A^{\prime}\right)=\hat{\kappa}(A)$.

Theorem 3.8. Assume that $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$ and that $a_{i k}=a_{i h}, a_{k i}=$ $a_{h i}$ for all $i \in N-k$ and $a_{k k} \geqslant a_{h h}$. Then $\hat{\kappa}(A)=\hat{\kappa}\left(A_{N-k, N-k}\right)$.

Proof. Assume without loss of generality that $h=1, k=n$. If $A_{1}=0$, then $A_{\cdot 1}=0$, and Theorem 3.5 applies. Then assume that $A_{1} \neq 0$. If $a_{11}>0$, set $R=\{1\}$. If $a_{11}=0$, then there is a $p \in\{2, \ldots, n-1\}$ such that $a_{1 p} a_{p 1}<0$; then define $R=\{1, p\}$. In both cases let $B=\mathscr{P}_{R} A$, having $b_{1 n}=-1, b_{n 1}=1, b_{n n} \geqslant 0$, and $b_{i n}=b_{n i}=0, i=2, \ldots, n-1$. Finally, by Theorem 3.3(i) and Corollary 3.1,

$$
\hat{\kappa}(A)=\hat{\kappa}(B)=\hat{\kappa}\left(B_{N-n, N-n}\right)=\hat{\kappa}\left(A_{N-n, N-n}\right) .
$$

4. HANDICAPS OF SUFFICIENT MATRICES OF ORDER TWO

The following theorem contains complete information about the handicap of a sufficient indefinite matrix of order two.

Theorem 4.1. Assume that $A \in \mathbb{R}^{2 \times 2}$ is sufficient but not $p s d$. Then

$$
\begin{equation*}
1+4 \hat{\kappa}(A)=\frac{\max \left\{a_{12}^{2}, a_{21}^{2}\right\}}{\left(\sqrt{a_{11} a_{22}}+\sqrt{\operatorname{det} A}\right)^{2}} \tag{4.1}
\end{equation*}
$$

If $A \notin \mathbf{P}$, then, more simply,

$$
\begin{equation*}
1+4 \hat{\kappa}(A)=\max \left\{\left|\frac{a_{12}}{a_{21}}\right|,\left|\frac{a_{21}}{a_{12}}\right|\right\} \tag{4.2}
\end{equation*}
$$

If $a_{11}=a_{22}=0$, then the supremum of $F(x):=F_{A}(x)$ is reached for any vector $x=\left(x_{1}, x_{2}\right)$ with $\operatorname{sgn} x_{1} x_{2}=-\operatorname{sgn}\left(a_{12}+a_{21}\right)$.

If $A \notin \mathbf{P}$ and $a_{11}+a_{22}>0$, then the supremum of $F(x)$ cannot be reached. A value of $F(x)$ arbitrarily close to the supremum can be obtained for the following choices where $\epsilon>0$ is arbitrarily small:

Case	x_{1}	x_{2}
$a_{11}>0=a_{22}$	$-\epsilon \operatorname{sgn}\left(a_{12}+a_{21}\right)$	1
$a_{11}=0<a_{22}$	1	$-\epsilon \operatorname{sgn}\left(a_{12}+a_{21}\right)$
$a_{11} a_{22}=a_{12} a_{21}>0$	$-a_{12}+\epsilon \operatorname{sgn}\left(a_{12}-a_{21}\right)$	a_{11}

If $A \in \mathbf{P}$, then the supremum of $F(x)$ is reached at the following points:

Case	x_{1}	x_{2}
$\left\|a_{12}\right\|>\left\|a_{21}\right\|$	$-a_{12} \sqrt{a_{22}}$	$\sqrt{a_{11}}\left(\sqrt{a_{11} a_{22}}+\sqrt{\operatorname{det} A}\right)$
$\left\|a_{12}\right\|<\left\|a_{21}\right\|$	$\sqrt{a_{22}}\left(\sqrt{a_{11} a_{22}}+\sqrt{\operatorname{det} \Lambda}\right)$	$-a_{21} \sqrt{a_{11}}$

Proof. Assume first that $A \notin \mathbf{P}$.

Case 1. $a_{11} \geqslant 0=a_{22}$. Taking $x_{2}=1$, we have that $x^{T} A x<0 \Rightarrow$ $\left(a_{12}+a_{21}\right) x_{1}<0$. There are two subcases.
(i) $\left|a_{12}\right|>\left|a_{21}\right|$. Then

$$
\begin{aligned}
\left(a_{12}+a_{21}\right) x_{1}<0 & \Rightarrow 0<a_{21} x_{1}<-a_{12} x_{1} \\
& \Rightarrow x_{2} y_{2}=a_{21} x_{1}>0 \Rightarrow x_{1} y_{1}<0
\end{aligned}
$$

So

$$
\bar{F}\left(x_{1}\right)=-1+\frac{-a_{11} x_{1}^{2}-a_{12} x_{1}}{a_{21} x_{1}} \leqslant-1+\frac{-a_{12}}{a_{21}} .
$$

We see that $\sup F(x)=-1-a_{12} / a_{21}$. If $a_{11}=0$, then the supremum is reached for all vectors with $\operatorname{sgn} x_{1}=\operatorname{sgn} a_{21}$. If $a_{11}>0$, then the supremum cannot be reached; a value of $F(x)$ arbitrarily close to the supremum is obtained by taking $x=\left(\epsilon \operatorname{sgn} a_{21}, 1\right)$, where $\epsilon>0$ is arbitrarily small.
(ii) $\left|a_{12}\right|<\left|a_{21}\right|$. Now $0<a_{12} x_{1}<-a_{21} x_{1}, x_{2} y_{2}>0, x_{1} y_{1}>0$, whence

$$
\bar{F}\left(x_{1}\right)=-1+\frac{-a_{21} x_{1}}{a_{11} x_{1}^{2}+a_{12} x_{1}} \leqslant-1+\frac{-a_{21}}{a_{12}}
$$

We note that $\sup F(x)=-1-a_{21} / a_{12}$. If $a_{11}=0$, then the supremum is reached for all vectors with $\operatorname{sgn} x_{1}=\operatorname{sgn} a_{12}$. If $a_{11}>0$, then the supremum cannot be reached; a value of $F(x)$ arbitrarily close to the supremum is obtained by taking $x=\left(\epsilon \operatorname{sgn} a_{12}, 1\right)$, where $\epsilon>0$ is arbitrarily small.

Case II. $a_{11}=0 \leqslant a_{22}$. This case is reduced to case I by defining $u=\left(x_{2}, x_{1}\right), v=\left(y_{2}, y_{1}\right), B=\mathscr{E}_{12} A$.

Case III. $a_{11} a_{22}=a_{12} a_{21}>0$. We reduce this case to case I by defining $u=\left(y_{1}, x_{2}\right), v=\left(x_{1}, y_{2}\right), B=\mathscr{P}_{1} A$. We note that (4.2) holds. A value of $F(x)$ arbitrarily close to the supremum is obtained by taking $u=$ $\left(-\epsilon \operatorname{sgn}\left(b_{12}+b_{21}\right), 1\right)$, where $\epsilon>0$ is arbitrarily small; then $x_{2}=u_{2}=1$ and

$$
x_{1}=v_{1}=b_{11} u_{1}+b_{12} u_{2}=\epsilon a_{11}^{-1} \operatorname{sgn}\left(a_{12}-a_{21}\right)-a_{11}^{-1} a_{12} .
$$

Then assume that $A \in \mathbf{P}$.
Case I. $\left|a_{12}\right|>\left|a_{21}\right|$. There are three subcases.
(i) $a_{12}>0 \geqslant a_{21}, a_{12}+a_{21}>0$. Taking $x_{2}=1$, we obtain

$$
\begin{aligned}
x^{T} A x<0 & \Rightarrow x_{1}<0 \Rightarrow x_{2} y_{2}=a_{21} x_{1}+a_{22}>0 \\
& \Rightarrow x_{1} y_{1}<0 \Rightarrow y_{1}>0 \Rightarrow-a_{12} / a_{11}<x_{1}<0 .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \bar{F}\left(x_{1}\right)=-1+\frac{-a_{11} x_{1}^{2}-a_{12} x_{1}}{a_{21} x_{1}+a_{22}}, \\
& \bar{F}^{\prime}\left(x_{1}\right)=\frac{-a_{11} a_{21} x_{1}^{2}-2 a_{11} a_{22} x_{1}-a_{12} a_{22}}{\left(a_{21} x_{1}+a_{22}\right)^{2}} .
\end{aligned}
$$

It is easy to show that the global maximum of $\bar{F}\left(x_{1}\right)$ in the interval $x_{1} \in\left(-a_{12} / a_{11}, 0\right)$ is

$$
\hat{x}_{1}=\frac{-a_{12} \sqrt{a_{22}}}{\sqrt{a_{11}}\left(\sqrt{a_{11} a_{22}}+\sqrt{\operatorname{det} A}\right)}
$$

(this expression is valid in the case $a_{21}=0$ too). Simple calculations lead to (4.1).
(ii) $a_{12}<0 \leqslant a_{21}, a_{12}+a_{21}<0$. We reduce this case to (i) by defining $u=\left(-x_{1}, x_{2}\right), v=\left(-y_{1}, y_{2}\right), B=D A D$, where $D=\operatorname{diag}(-1,1)$.
(iii) $a_{12} a_{21}>0,\left|a_{12}\right|>\left|a_{21}\right|$. This case is reduced to (i)-(ii) above by defining $u=\left(y_{1}, x_{2}\right), v=\left(x_{1}, y_{2}\right), B=\mathscr{P}_{1} A$. The supremum of $F(x)$ is
reached by taking

$$
\begin{aligned}
u & =\left(-b_{12} \sqrt{b_{22}}, \sqrt{b_{11}}\left(\sqrt{b_{11} b_{22}}+\sqrt{\operatorname{det} B}\right)\right) \\
& =a_{11}^{-3 / 2}\left(a_{12} \sqrt{\operatorname{det} A}, \sqrt{a_{11} a_{22}}+\sqrt{\operatorname{det} A}\right)
\end{aligned}
$$

i.e., $x_{2}=u_{2}$ and

$$
x_{1}=v_{1}=b_{11} u_{1}+b_{12} u_{2}=-a_{11}^{-2} a_{12} \sqrt{a_{22}}
$$

Case II. $a_{12} a_{21}>0,\left|a_{12}\right|<\left|a_{21}\right|$. We reduce this case to case I by defining $u=\left(x_{2}, x_{1}\right), v=\left(y_{2}, y_{1}\right), B=\mathscr{C}_{12} A$.

Remark 4.1. Equation (4.2) is essentially due to Guu and Cottle [7]. Their proof differs somewhat from ours.

Remark 4.2. It follows from Theorem 4.1 that, for $A \in \mathbf{S U} \cap \mathbb{R}^{2 \times 2}$,
(i) $\hat{\kappa}(A)=\hat{\kappa}\left(A^{T}\right)$;
(ii) $\hat{\kappa}(A)$ is a continuous function of the elements of A.

Remark 4.3. If $A \in \mathbf{P} \cap \mathbb{R}^{2 \times 2}$, then $F_{A}(x)$ is not necessarily concave in the set $\left\{x \in \mathbb{R}^{2} \mid x^{T} A x<0\right\}$. To see this, let $a_{11}=a_{22}=1, a_{12}=8$, $a_{21}=-1$; then $\partial^{2} F_{A}(1,-1) / \partial x_{2}^{2}>0$.

5. HANDICAPS OF P-MATRICES

Let $A \in \mathbb{R}^{n \times n}$ be a \mathbf{P}-matrix but not psd. We shall determine the handicap of A by calculating the handicaps of all principal submatrices of order k of all principal pivotal transforms of A sequentially for $k=2, \ldots, n$.

Assume that

$$
\begin{equation*}
\hat{\kappa}_{n-1}:=\max \left\{\hat{\kappa}\left(B_{N-i}\right) \mid B \text { is a principal pivotal transform of } A \text { and } i \in N\right\} \tag{5.1}
\end{equation*}
$$

is known. We shall derive a necessary condition for $\hat{\kappa}(A)>\hat{\kappa}_{n-1}$ to hold. So
assume that

$$
\begin{equation*}
\hat{\kappa}(A)=\frac{1}{4} F_{A}(\hat{x})>\hat{\kappa}_{n-1}, \tag{5.2}
\end{equation*}
$$

see Theorem 2.3. Here $\hat{x}_{i} \neq 0$ for all $i \in N$, because otherwise we would have $\hat{\kappa}(A)=\hat{\kappa}_{n-1}$. We show that also $\hat{y}_{i}:=A_{i} \hat{x} \neq 0$ for all $i \in N$. Assume, on the contrary, that $\hat{y}_{k}=0$ for some $k \in N$. Then $\hat{\kappa}\left(\mathscr{P}_{k} A\right)$ is attained at a point whose k th component equals zero. But then $\hat{\kappa}(A)=\hat{\kappa}\left(\mathscr{P}_{k} A\right)=\hat{\kappa}_{n-1}$, a contradiction. Because $\hat{x}_{i} \neq 0$ for all $i \in N$, we may assume without loss of generality tht $\hat{x}_{n}=1$; so $\hat{x}=\left(\hat{x}^{1}, 1\right)$ with $\hat{x}^{1} \in \mathbb{R}^{n-1}$. There are two cases.

Case I. $n \in I_{+}(\hat{x})$. We define

$$
\begin{align*}
R & =I_{-}(\hat{x}), \quad S=I_{+}(\hat{x})-n, \\
G_{1} & =\left\{x^{1} \in \mathbb{R}^{n-1} \mid x_{R} * y_{R}<0, x_{S} * y_{S}>0\right\}, \tag{5.3}
\end{align*}
$$

where $y=A x$. We have that

$$
\begin{equation*}
\hat{t}:=4 \hat{\kappa}(A)+1=-\frac{f\left(\hat{x}^{1}\right)}{g\left(\hat{x}^{1}\right)}, \tag{5.4}
\end{equation*}
$$

where

$$
\begin{align*}
f\left(x^{1}\right)= & \frac{1}{2} x_{R}^{T}\left(A_{R R}+A_{R R}^{T}\right) x_{R}+x_{R}^{T} A_{R S} x_{S}+x_{R}^{T} A_{R n}, \tag{5.5}\\
g\left(x^{1}\right)= & x_{R}^{T} A_{S R}^{T} x_{S}+\frac{1}{2} x_{S}^{T}\left(A_{S S}+A_{S S}^{T}\right) x_{S}+x_{S}^{T} A_{S n} \\
& +A_{n R} x_{R}+A_{n S} x_{S}+a_{n n} . \tag{5.6}
\end{align*}
$$

Clearly, $\hat{t}>1$. By [5], the nonlinear program

$$
\begin{equation*}
\min \left\{h\left(x^{1}, t\right):=\operatorname{tg}\left(x^{1}\right)+f\left(x^{1}\right) \mid x^{1} \in G_{1}\right\} \tag{5.7}
\end{equation*}
$$

with $t=\hat{t}$ has the minimum value zero. This minimum value is attained in the interior of G_{1} but not on its boundary. We show that the quadratic function $h\left(x^{1}, \hat{t}\right)$ is by necessity strictly convex. First, if $h\left(x^{1}, \hat{t}\right)$ is indefinite, it cannot have a minimum in the interior of G_{1}. Second, if $h\left(x^{1}, \hat{t}\right)$ is convex but not strictly, it has the value zero on a whole line in \mathbb{R}^{n-1}. But any line in \mathbb{R}^{n-1} intersects the boundary of G_{1}. So also this case is impossible.

We have shown that solving (5.7) with $t=\hat{t}$ amounts to finding the unique global minimum of the strictly convex quadratic function $h\left(x^{1}, \hat{t}\right)$ in \mathbb{R}^{n-1}. Recalling (2.2), this can be accomplished by performing \mathscr{P}_{N-n} to the table

$$
\begin{aligned}
& \\
& 0
\end{aligned}=\begin{array}{ccc}
x_{R} & x_{S} & 1 \\
B(t): & 0 & = \\
& 2 h & = \\
A_{R R}+A_{R R}^{T} & A_{R S}+t A_{S R}^{T} & A_{R n}+t A_{n R}^{T} \\
A_{R S}^{T}+t A_{S R} & t\left(A_{S S}+A_{S S}^{T}\right) & t\left(A_{n S}^{T}+A_{S n}\right) \\
A_{R n}^{T}+t A_{n R} & t\left(A_{n S}+A_{S n}^{T}\right) & 2 t a_{n n} \\
\hline
\end{array}
$$

where $t=\hat{t}$. Equivalently, one can perform the sequence $\mathscr{P}_{1}, \ldots, \mathscr{P}_{n-1}$ of single principal pivots to the table (5.8); the pivots in this sequence are positive. In the resulting table, \hat{x}_{R} and \hat{x}_{S} are in positions (i, n), $i=1, \ldots$, $n-1$, and the element (n, n), containing twice the optimal value of h, is zero. Denote the matrix contained in the table (5.8) by $B(t)$; then $B(\hat{t})$ is singular, because the product of it and a nonzero vector equals zero.

We continue by showing that all proper principal submatrices of $B(\hat{t})$ are pd. Assume, on the contrary, that $B_{H H}(\hat{t})$ with $H \subset N, H \ni n,|H| \leqslant n-1$ is singular. Then the element (n, n) of $\mathscr{P}_{H-n} B(\hat{t})$ is zero. Because $\mathscr{P}_{N-n} B(\hat{t})=\mathscr{P}_{N \backslash H} \mathscr{P}_{H-n} B(\hat{t})$, this implies that either the minimum value of the problem (5.7) with $t=\hat{t}$ is negative or that $\hat{x}_{i}=0$ for all $i \in N \backslash H$, a contradiction.

Case II: $n \in I_{-}(\hat{x})$. We define

$$
\begin{align*}
R & =I_{+}(\hat{x}), \quad S=I_{-}(\hat{x})-n \\
G_{2} & =\left\{x^{1} \in \mathbb{R}^{n-1} \mid x_{R} * y_{R}>0, x_{S} * y_{S}<0\right\} . \tag{5.9}
\end{align*}
$$

We have that

$$
\begin{equation*}
\hat{t}:=4 \hat{\kappa}(A)+1=-\frac{g\left(\hat{x}^{1}\right)}{f\left(\hat{x}^{1}\right)} \tag{5.10}
\end{equation*}
$$

or, equivalently,

$$
\hat{t}^{-1}=-\frac{f\left(\hat{x}^{1}\right)}{g\left(\hat{x}^{1}\right)},
$$

where $f\left(x^{1}\right)$ and $g\left(x^{1}\right)$ are as in (5.5)-(5.6). We see that the developments in case I are now valid when replacing \hat{t} by \hat{t}^{-1} and G_{1} by G_{2}. So, for example, $h\left(x^{1}, \hat{t}^{-1}\right)$ is a strictly convex quadratic function.

We have attained the following. For $\hat{x} \in \mathbb{R}^{n}$ with $\hat{x}_{n}=1$ to satisfy (5.2) it is necessary that there is $\varnothing \neq R \subset N-n$ such that, with $\hat{t}=4 \hat{\kappa}(A)+1$ and $S=(N-n) \backslash R$, either
(i) $n \in I_{+}(\hat{x})$, all proper principal submatrices of $B(\hat{t})$ are pd , $\operatorname{det} B(\hat{t})=0$, and

$$
\left[\begin{array}{c}
\hat{x}_{R} \tag{5.11}\\
\hat{x}_{S}
\end{array}\right]=-B_{N-n, N-n}^{-1}(\hat{t}) B_{N-n, n}(\hat{t})
$$

so that $\hat{x}^{1} \in G_{1}$, or
(ii) $n \in I_{-}(\hat{x})$, all proper principal submatrices of $B\left(\hat{t}^{-1}\right)$ are pd , $\operatorname{det} B\left(\hat{t}^{-1}\right)=0$, and the point \hat{x}^{1} obtained from (5.11) with \hat{t} replaced by \hat{t}^{-1} belongs to G_{2}.

Based on the above developments, we now construct a recursive procedure for determining $\hat{\kappa}(A)$. Assume that the $\hat{\kappa}_{n-1}$ of (5.1) has already been calculated. Select $t_{0}:=4 \hat{\kappa}_{n-1}+1$ as the first candidate of \hat{t}. We go through all the nonempty sets $R \subset N-n$ as follows. For a selected R construct the matrix $B(t)$ of (5.8). If $A_{R R}$ or $A_{S S}$ is not pd, select a new set R. Otherwise determine all the roots of the equation det $B(t)=0$ which lie in the intervals $\left(0, t_{0}^{-1}\right)$ and $\left(t_{0}, \infty\right)$ (an algebraic equation of degree $\leqslant n$ has to be solved by means of some numerical method). If some root $t>t_{0}$ yields a pd $B_{N-n, N-n}(t)$ and $\hat{x}^{1} \in G_{1}$, set $t_{0} \leftarrow t$. Likewise, if some positive root $t<t_{0}^{-1}$ yields a pd $B_{N-n, N-n}(t)$ and $\hat{x}^{1} \in G_{2}$, set $t_{0} \leftarrow t^{-1}$. [In both cases, \hat{x}^{1} is obtained from (5.11) with \hat{t} replaced by t. Note that for a given G_{1} or G_{2} there cannot be more than one candidate of \hat{t}.] Then select a new set R, etc. After going through all the sets R we have $\hat{\kappa}(A)=\frac{1}{4}\left(t_{0}-1\right)$ (in fact, this holds only approximatively, because the candidates are determined numerically).

The method is very laborious, so it is practicable for small \mathbf{P}-matrices only. Below we illustrate the method in the case of a \mathbf{P}-matrix of order three.

Example 5.1. We determine the handicap of the \mathbf{P}-matrix

$$
A=\left[\begin{array}{rrr}
4 & 1 & 1 \\
2 & 1 & -2 \\
-4 & 3 & 1
\end{array}\right]
$$

All the proper principal submatrices of all principal pivotal transforms of A are psd, whence $\hat{\kappa}_{2}=0$. There are three cases. We give the equation det $B(t)=0$ in each case below and summarize the solution of the example in Table 1. From this table it appears that $\hat{t}=0.862468^{-1}=1.159464$, implying $\hat{\kappa}(A)=\frac{1}{4}(\hat{t}-1)=0.0398659$.

Case I. $R=\{1\}, S=\{2\}\left(x_{1} * y_{1}<0, x_{2} * y_{2}>0, x_{3} * y_{3}>0\right.$, or these inequalities reversed):
$\operatorname{det} B(t)=\left|\begin{array}{ccc}8 & 1+2 t & 2-4 t \\ 1+2 t & 2 t & t \\ 2-4 t & t & 2 t\end{array}\right|=0 \Leftrightarrow t\left(28 t^{2}-24 t+3\right)=0$.

Case II. $R=\{2\}, S=\{1\}\left(x_{1} * y_{1}>0, x_{2} * y_{2}<0, x_{3} * y_{3}>0\right.$, or these inequalities reversed):
$\operatorname{det} B(t)=\left|\begin{array}{ccc}2 & 2+t & -2+3 t \\ 2+t & 8 t & -2 t \\ -2+3 t & -2 t & 2 t\end{array}\right|=0 \Leftrightarrow t\left(43 t^{2}-48 t+12\right)=0$.

TABLE 1
Solving Example 5.1

| \boldsymbol{R} | \boldsymbol{t} | x | | y | Obstacle |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: |
| $\{1\}$ | 0.151930 | $(-0.308,-0.821,1)$ | $(1.590,-1.795,4.694)$ | $x_{3} y_{3}>0$ | |
| | 0.705213 | $(0.522,-1.392,1)$ | $(2.696,-2.348,-5.265)$ | $x_{1} y_{1}>0$ | |
| $\{2\}$ | 0.378001 | $(-1.392,2.088,1)$ | $(-1.481,-2.696,12.834)$ | $x_{3} y_{3}>0$ | |
| | 0.738278 | $(0.821,-1.231,1)$ | $(4.052,-1.590,-5.977)$ | $x_{1} y_{1}>0$ | |
| $\{1,2\}$ | 0.421623 | $(-0.405,0.975,1)$ | $(1.356,-1.835,5.542)$ | $x_{3} y_{3}>0$ | |
| | 0.862468 | $(0.666,-1.293,1)$ | $(3.371,-1.961,-5.542)$ | | |

Case III. $R=\{1,2\}, S=\varnothing\left(x_{1} * y_{1}<0, x_{2} * y_{2}<0, x_{3} * y_{3}>0\right.$, or these inequalities reversed):
$\operatorname{det} B(t)=\left|\begin{array}{ccc}8 & 3 & 2-4 t \\ 3 & 2 & -2+3 t \\ 2-4 t & -2+3 t & 2 t\end{array}\right|=0 \Leftrightarrow 88 t^{2}-113 t+32=0$.

6. HANDICAPS OF SUFFICIENT MATRICES NOT IN \mathbf{P}

In this section we shall show that, for $n \geqslant 3$, the handicap of $A \in \mathbf{S U} \cap$ $\mathbb{R}^{n \times n}$ not in \mathbf{P} is equal to the maximum over the handicaps of the proper principal submatrices of all principal pivotal transforms of A. So determining the handicap of $A \in S U \cap \mathbb{R}^{n \times n}$ not in \mathbf{P} can be reduced to determining handicaps of \mathbf{P}-matrices of order less than n and those of sufficient matrices of order two. We begin with an auxiliary result.

Theorem 6.1. Let $A \in \mathbb{R}^{n \times n}$ with $A_{N-n, N-n}=0$ be sufficient. Then

$$
\begin{equation*}
1+4 \hat{k}(A)=\frac{\max _{i \in N}\left|a_{n i} / a_{i n}\right|}{\min _{i \in N}\left|a_{n i} / a_{i n}\right|} \tag{6.1}
\end{equation*}
$$

where $0 / 0$ is defined to be equal to one.
Proof. In view of Theorem 3.5 we may assume that $a_{i n} a_{n i}<0$ for all $i \in N-n$. Let B be the matrix obtained from A by replacing $a_{i n}$ with $\operatorname{sgn} a_{i n}$ and $a_{n i}$ with $\operatorname{sgn} a_{n i}, i=1, \ldots, n-1$. Then $B \in \mathbf{P S D}$, whence $\hat{\kappa}(B)=0$. By Theorem 3.4 , (6.1) holds with $=$ replaced by \leqslant (take $p_{i}=\left|a_{i n}\right|, q_{i}=\left|a_{n i}\right|$ for all $i \in N-n$ and $p_{n}=q_{n}=1$). We show that the reverse inequality holds too. We let $h, k \in N-n$ be such that

$$
\begin{equation*}
\left|\frac{a_{n h}}{a_{h n}}\right|=\min _{i \in N-n}\left|\frac{a_{n i}}{a_{i n}}\right|, \quad\left|\frac{a_{n k}}{a_{k n}}\right|=\max _{i \in N-n}\left|\frac{a_{n i}}{a_{i n}}\right| . \tag{6.2}
\end{equation*}
$$

There are three cases.
(i) $\left|a_{n h} / a_{h n}\right| \geqslant 1$. Letting $R=\{k, n\}$, we have

$$
1+4 \hat{\kappa}(A) \geqslant 1+4 \hat{\kappa}\left(A_{R R}\right)=\left|a_{n k} / a_{k n}\right|
$$

(ii) $\left|a_{n k} / a_{k n}\right| \leqslant 1$. Letting $R=\{h, n\}$, we have

$$
1+4 \hat{\kappa}(A) \geqslant 1+4 \hat{\kappa}\left(A_{R R}\right)=\left|a_{h n} / a_{n h}\right|=1 \div\left|a_{n h} / a_{h n}\right| .
$$

(iii) $\left|a_{n k} / a_{k n}\right|>1>\left|a_{n h} / a_{h n}\right|$ Letting $C=\mathscr{P}_{(h, n)} A$ and $R=\{h, k\}$, we have

$$
1+4 \hat{\kappa}(A) \geqslant 1+4 \hat{\kappa}\left(C_{R R}\right)=\left|a_{n k} / a_{k n}\right| \div\left|a_{n h} / a_{h n}\right|
$$

The following theorem is an extension of [9, Theorem 3.1].

Theorem 6.2. Assume that $A \in \mathbb{R}^{n \times n}$ with $n \geqslant 3$ is sufficient but not a P-matrix. Then

$$
\hat{\kappa}(A)=\max \left\{\hat{\kappa}\left(B_{N-i, N-i}\right) \mid\right.
$$

B is a principal pivotal transform of A and $i \in N\}$.

Proof. It follows from Theorem 3.3 that \geqslant holds in (6.3). We show that the reverse inequality holds too. There is a principal transform of A whose trailing diagonal element is zero. Hence we may assume without loss of generality that $a_{n n}=0$. If $A_{\cdot h}=0\left(A_{h}=0\right)$ for some $h \in N$, then $A_{h}=0$ ($A_{\cdot h}=0$) too, and the result follows from Theorem 3.5. So we assume in the sequel that all rows and columns of A are nonzero. For simplicity, we denote $F_{A}(x)$ by $F(x)$. Consider any $x^{0} \in \mathbb{R}^{n}$ such that $x^{0 T} A x^{0}<0$ and let $y^{0}=$ $A x^{0}$. If $x_{h}^{0}=0$ for some $h \in N$, then $F\left(x^{0}\right) \leqslant 4 \hat{\kappa}\left(A_{N-h, N-h}\right)$. In what follows we assume that $x_{i}^{0} \neq 0$ for all $i \in N$.

If $y_{h}^{0}=0$ for some $h \in N$, then there are two possibilities. First, if $a_{h h}>0$, then $F\left(x^{0}\right) \leqslant 4 \hat{\kappa}\left(B_{N-h, N-h}\right)$, where $B=\mathscr{P}_{h} A$. Second, if $a_{h h}=0$, then $a_{h k} a_{k h}<0$ for some $k \in N$; see Theorem 3.1. So $F\left(x^{0}\right) \leqslant$ $4 \hat{\kappa}\left(B_{N-h, N-h}\right)$, where $B=\mathscr{P}_{\{h, k\}} A$.

Finally, assume that $y_{i}^{0} \neq 0$ for all $i \in N$. Without loss of generality we may assume that $x_{n}^{0}=1$. In the sequel Σ will mean summing over the set $N-n, \Sigma_{+}$over the set $I_{+}\left(x^{0}\right)-n$, and Σ_{-}over the set $I_{-}\left(x^{0}\right)-n$. In addition, we let $\delta=0$ or 1 according as $x_{n}^{0} y_{n}^{0}=y_{n}^{0}=\sum a_{n \mathrm{i}} x_{i}^{0}$ is negative or positive. Defining $\hat{A}=A_{N-n, N-n}, \hat{x}^{0}=\left(x_{1}^{0}, \ldots, x_{n-1}^{0}\right), \hat{y}^{0}=\hat{A} \hat{x}^{0}$, we eval-
uate $F(x)$ at the point $x(t)=\left(x_{1}^{0}, \ldots, x_{n-1}^{0}, t\right)$:

$$
\begin{equation*}
\bar{F}(t)=\frac{-\hat{x}^{0 T} \hat{A}^{0} \hat{x}^{0}-t \sum\left(a_{i n}+a_{n i}\right) x_{i}^{0}}{\sum_{+} x_{i}^{0}\left(\hat{y}_{i}^{0}+a_{i n} t\right)+\delta t y_{n}^{0}} . \tag{6.4}
\end{equation*}
$$

This function and its derivative

$$
\bar{F}^{\prime}(t)=\frac{\left(\hat{x}^{0 T} \hat{A}^{0} \hat{x}^{0}\right)\left[\Sigma_{+} a_{i n} x_{i}^{0}+\delta y_{n}^{0}\right]-\left(\Sigma_{+} x_{i}^{0} \hat{y}_{i}^{0}\right) \Sigma\left(a_{i n}+a_{n i}\right) x_{i}^{0}}{\left[\Sigma_{+} x_{i}^{0}\left(\hat{y}_{i}^{0}+a_{i n} t\right)+\delta t y_{n}^{0}\right]^{2}}
$$

are defined for all values of t for which the denominator in (6.4) is nonzero. Note that for such values of t the sign of $\bar{F}^{\prime}(t)$ is independent of t. We have two cases.

Case I. $\bar{F}^{\prime}(1) \leqslant 0$. Diminish t from one until (i) for the first time $y_{h}(t):=\hat{y}_{h}^{0}+a_{h n} t$ for some $h \in N-n$ becomes zero at $t=t_{0}>0$ (say), or (ii) t tends to zero. We consider (i) and (ii) separately.
(i) $\bar{F}(t)$ and $\bar{F}^{\prime}(t)$ are defined for all $t \in\left[t_{0}, 1\right]$. This is seen as follows. Assume, on the contrary, that at t_{0} the denominator in (6.4) equals zero. This can occur only if $x_{i}^{0} y_{i}\left(t_{0}\right) \leqslant 0$ for all $i \in N-n$ and $\delta=0$ (implying $t_{0} y_{n}^{0}<0$). This is, however, impossible, because A is sufficient. Because $\bar{F}^{\prime}(t) \leqslant 0$ for all $t \in\left[t_{0}, 1\right]$, the present case reduces to the case $y_{h}^{0}=0$ above.
(ii) We have $x_{i}^{0} \hat{y}_{i}^{0} \geqslant 0$ for all $i \in I_{+}\left(x^{0}\right)-n$ and $x_{i}^{0} \hat{y}_{i}^{0} \leqslant 0$ for all $i \in$ $I_{-}\left(x^{0}\right)-n$. If $x_{i}^{0} \hat{y}_{i}^{0}>0$ for some $i \in I_{+}\left(x^{0}\right)-n$, then the denominator in (6.4) is positive for $t=0$, and the present case is reduced to the case $x_{n}^{0}=0$. Otherwise we have $x_{i}^{0} \hat{y}_{i}^{0} \leqslant 0$ for all $i \in N-n$, implying $x_{i}^{0} \hat{y}_{i}^{0}=0$ for all $i \in N-n$ and $\hat{x}^{0 T} \hat{A} \hat{x}^{0}=0$ (because \hat{A} is sufficient). So, for all $t>0, \bar{F}(t)$ equals

$$
\begin{equation*}
\frac{-\Sigma\left(a_{i n}+a_{n i}\right) x_{i}^{0}}{\sum_{+} a_{i n} x_{i}^{0}+\delta y_{n}^{0}} . \tag{6.5}
\end{equation*}
$$

Because $a_{i n} x_{i}^{0}=x_{i}^{0}\left(\hat{y}_{i}^{0}+a_{i n}\right)=x_{i}^{0} y_{i}^{0}$ for all $i \in N-n$, the ratio (6.5)
equals the ratio $F_{B}\left(x^{0}\right)$ where

$$
B=\left[\begin{array}{cccc}
0 & \cdots & 0 & a_{1 n} \tag{6.6}\\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & a_{n-1, n} \\
a_{n 1} & \cdots & a_{n, n-1} & 0
\end{array}\right]
$$

So $F\left(x^{0}\right) \leqslant \hat{\kappa}(B)$. But, defining h and k as in (6.2), $\hat{\kappa}(B)$ equals $\hat{\kappa}\left(A_{R R}\right)$ where $R=\{k, n\}$ or $\{h, n\}$, or $\hat{\kappa}\left(C_{R R}\right)$ where $C=\mathscr{P}_{\{h, n\}} A$ and $R=\{h, k\}$.

Case II. $\quad F^{\prime}(1)>0$. We increase t from one until (i) for the first time $y_{h}(t)$ for some $h \in N-n$ becomes zero at some point $t=t_{0}$ (say), or (ii) t tends to ∞. We consider (i) and (ii) separately.
(i) $\bar{F}(t)$ and $\bar{F}^{\prime}(t)$ are defined for all $t \in\left[1, t_{0}\right]$. This is shown in the same way as in case $\mathrm{I}(\mathrm{i})$ above. So the present case reduces to the case $y_{h}^{0}=0$.
(ii) Now, $a_{i n} x_{i}^{0} \geqslant 0$ for all $i \in I_{+}\left(x^{0}\right)-n$ and $a_{i n} x_{i}^{0} \leqslant 0$ for all $i \in I_{-}\left(x^{0}\right)$ $-n$. We show that the denominator in (6.5) is positive. Assume, on the contrary, that the denominator is zero. Then $a_{i n} x_{i}^{0} \leqslant 0$ for all $i \in N-n$ and $\delta=0$, i.e., $\sum a_{n i} x_{i}^{0}=y_{n}^{0}=x_{n}^{0} y_{n}^{0}<0$. This is, however, impossible because the B of (6.6) is sufficient. It follows that $\lim _{t \rightarrow \infty} \bar{F}(t)$ exists and is given by (6.5). Because $\bar{F}^{\prime}(t)>0$ for all $t \geqslant 1$, we have $F\left(x^{0}\right) \leqslant \hat{\kappa}(B)$ where B is taken from (6.6). The rest is as in case I(ii) above.

Remark 6.1. It may be conjectured that $\hat{\kappa}(A)$ for $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$ is a continuous function of the elements of A; cf. Remarks 2.1 and 4.2.

7. INVARIANCE OF THE HANDICAP UNDER TRANSPOSITION

By Remark 4.2, $\hat{\kappa}(A)=\hat{\kappa}\left(A^{T}\right)$ for any two by two sufficient matrix A. This result generalizes to the whole class SU.

Theorem 7.1. If $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$, then $\hat{\kappa}(A)=\hat{\kappa}\left(A^{T}\right)$.
Proof. By induction on n. The case $n=1$ is trivial; for the case $n=2$ refer to Remark 4.2. Then assume that the theorem is true for the order $n-1$, and consider any $A \in \mathbf{S U} \cap \mathbb{R}^{n \times n}$ where $n \geqslant 3$. We show first that the $\hat{\kappa}_{n-1}$ of (5.1) equals the corresponding quantity $\hat{\kappa}_{n-1}^{\prime}$ for A^{T}. There are an $R \subset N$ and a $k \in N$ such that $\hat{\kappa}_{n-1}=\hat{\kappa}\left(B_{N-k, N-k}\right)$ with $B=\mathscr{P}_{R} A$. By

Theorem 2.1, $C:=\mathscr{P}_{R} A^{T}=D B^{T} D$, where D is as in (2.1). It follows that $C_{N-k, N-k}=D_{N-k, N-k} B_{N-k, N-k}^{T} D_{N-k, N-k}$, whence, using Theorem 3.4 and the induction hypothesis,

$$
\hat{\kappa}_{n-1}^{\prime} \geqslant \hat{\kappa}\left(C_{N-k, N-k}\right)=\hat{\kappa}\left(B_{N-k, N-k}^{T}\right)=\hat{\kappa}\left(B_{N-k, N-k}\right)=\hat{\kappa}_{n-1} .
$$

The reverse inequality $\hat{\kappa}_{n-1} \geqslant \hat{\kappa}_{n-1}^{\prime}$ can be established by interchanging the roles of A and A^{T} above. So $\hat{\kappa}_{n-1}=\hat{\kappa}_{n-1}^{\prime}$.

If $A \in \operatorname{PSD}$, then $\hat{\kappa}(A)=\hat{\kappa}\left(A^{T}\right)=0$. In the case $A \notin \mathbf{P}$ we have by Theorem 6.2 that $\hat{\kappa}(A)=\hat{\kappa}_{n-1}=\hat{\kappa}_{n-1}^{\prime}=\hat{\kappa}\left(A^{T}\right)$. Then let $A \in \mathbf{P} \backslash \mathbf{P S D}$. We show first that $\hat{\kappa}\left(A^{T}\right) \geqslant \hat{\kappa}(A)$. If $\hat{\kappa}(A)=\hat{\kappa}_{n-1}$, then $\hat{\kappa}(A)=\hat{\kappa}_{n-1}=$ $\hat{\kappa}_{n-1}^{\prime} \leqslant \hat{\kappa}\left(A^{T}\right)$. Then assume that (5.2) holds. Consider first the case $n \in$ $I_{+}(\hat{x})$ (case I in Section 5). We adopt the notation in (5.3)-(5.6) and construct the table (5.8) with $t=\hat{t}$. We show that the point \hat{x}^{\prime} with $\hat{x}_{R}^{\prime}=\hat{t}^{-1} \hat{x}_{R}, \hat{x}_{S}^{\prime}=\hat{x}_{S}, \hat{x}_{n}^{\prime}=1$ yields $\hat{\kappa}(A)$ as a candidate of $\hat{\kappa}\left(A^{T}\right)$. Now $\hat{y}=A \hat{x}, \hat{y}^{\prime}=A^{T} \hat{x}^{\prime}$ whence

$$
\begin{align*}
& {\left[\begin{array}{c}
\hat{y}_{R} \\
\hat{y}_{S} \\
\hat{y}_{n}
\end{array}\right]=\left[\begin{array}{lll}
A_{R R} & A_{R S} & A_{R n} \\
A_{S R} & A_{S S} & A_{S n} \\
A_{n R} & A_{n S} & a_{n n}
\end{array}\right]\left[\begin{array}{c}
\hat{x}_{R} \\
\hat{x}_{S} \\
1
\end{array}\right],} \tag{7.1}\\
& {\left[\begin{array}{c}
\hat{y}_{R}^{\prime} \\
\hat{y}_{S}^{\prime} \\
\hat{y}_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
A_{R R}^{T} & A_{S R}^{T} & A_{n R}^{T} \\
A_{R S}^{T} & A_{S S}^{T} & A_{n S}^{T} \\
A_{R n}^{T} & A_{S n}^{T} & a_{n n}
\end{array}\right]\left[\begin{array}{c}
\hat{t}^{-1} \hat{x}_{R} \\
\hat{x}_{S} \\
1
\end{array}\right],} \tag{7.2}
\end{align*}
$$

implying

$$
\left[\begin{array}{c}
\hat{y}_{R}+\hat{t} \hat{y}_{R}^{\prime} \tag{7.3}\\
\hat{t}\left(\hat{y}_{S}+\hat{y}_{S}^{\prime}\right) \\
\hat{t}\left(\hat{y}_{n}+\hat{y}_{n}^{\prime}\right)
\end{array}\right]=B(\hat{t})\left[\begin{array}{c}
\hat{x}_{R} \\
\hat{x}_{S} \\
1
\end{array}\right]=0
$$

[see (5.8)] and further $\hat{y}_{R}^{\prime}=-\hat{t}^{-1} \hat{y}_{R}, \hat{y}_{S}^{\prime}=-\hat{y}_{S}, \hat{y}_{n}^{\prime}=-\hat{y}_{n}$. So

$$
\hat{t}^{\prime}:=-\frac{\left(\hat{x}_{S}^{\prime}\right)^{T} \hat{y}_{S}^{\prime}+\hat{y}_{n}^{\prime}}{\left(\hat{x}_{R}^{\prime}\right)^{T} \hat{y}_{R}^{\prime}}=-\frac{\hat{x}_{S}^{T} \hat{y}_{S}+\hat{y}_{n}}{\hat{t}^{-2}\left(\hat{x}_{R}\right)^{T} \hat{y}_{R}}=\hat{t}
$$

is a candidate of $4 \hat{\kappa}\left(A^{T}\right)+1$ or, equivalently, $\hat{\kappa}(A)$ is a candidate of $\hat{\kappa}\left(A^{T}\right)$.

The case $n \in I_{-}(\hat{x})$ (case II in Section 5) is analogous. Adopt the notation in (5.9)-(5.10) and (5.5)-(5.6), and construct the table (5.8) with $t=\hat{t}^{-1}$. Then the point \hat{x}^{\prime} with $\hat{x}_{R}^{\prime}=\hat{t}_{x_{R}}, \hat{x}_{S}^{\prime}=\hat{x}_{s}, \hat{x}_{n}^{\prime}=1$ yields \hat{y}^{\prime} with $\hat{y}_{R}^{\prime}=-\hat{t} \hat{y}_{R}, \hat{y}_{S}^{\prime}=-\hat{y}_{S}, \hat{y}_{n}^{\prime}=-\hat{y}_{n}$ [now (7.1)-(7.3) hold with \hat{t} replaced by \hat{t}^{-1}]. So

$$
\hat{t}^{\prime}:=-\frac{\left(\hat{x}_{R}^{\prime}\right)^{T} \hat{y}_{R}^{\prime}}{\left(\hat{x}_{s}^{\prime}\right)^{T} \hat{y}_{S}^{\prime}+\hat{y}_{n}^{\prime}}=-\frac{\hat{t}^{2} \hat{x}_{R}^{T} \hat{y}_{R}}{\hat{x}_{s}^{T} \hat{y}_{S}+\hat{y}_{n}}=\hat{t}
$$

is a candidate of $4 \hat{\kappa}\left(A^{T}\right)+1$ or, equivalently, $\hat{\kappa}(A)$ is a candidate of $\hat{\kappa}\left(A^{T}\right)$.
We have shown that $\hat{\kappa}\left(A^{T}\right) \geqslant \hat{\kappa}(A)$. The reverse inequality can be established by interchanging the roles of A and A^{T}.

REFERENCES

1 R. W. Cottle, The principal pivoting method revisited, Math. Programming 48:369-385 (1990).
2 R. W. Cottle and S.-M. Guu, Are \mathbf{P}_{*}-matrices just sufficient? Presented at 36th Joint National Meeting of Operations Research Society of America and The Institute of Management Science, Phoenix, Ariz., 1 Nov. 1993.
3 R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic, Boston, 1992.
4 R. W. Cottle, J.-S. Pang, and V. Venkateswaran, Sufficient matrices and the linear complementarity problem, Linear Algebra Appl. 114/115:231-249 (1989).
5 W. Dinkelbach, On nonlinear fractional programming, Management Sci. 13:492-498 (1967).
6 M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. (88) 13:574-586 (1963).
7 S.-M. Guu and K. W. Cottle, Un a subclass of \mathbf{F}_{0}, Linear Algebra Appl. 223/224:325-335 (1995).
8 M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Springer-Verlag, Berlin, 1991.

9 H. Väliaho, \mathbf{P}_{*}-matrices are just sufficient, Linear Algebra Appl., 239:103-108 (1996).

