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Abstract. The class of sufficient matrices (SU) are important in the
theory and solvability of the linear complementarity problems (LCP)
as it was proven that SU-LCPs can be solved in polynomial number of
iterations using interior point algorithms (IPA) that depends on the size
of problem n, bit length L and the value κ ≥ 0 that characterise the
matrix property. Furthermore, the SU-matrices are the wider class of
matrices for which criss-cross algorithms (CCA) solves the problem in
finite number of iterations. Important deficiency of the published IPAs for
SU-LCPs is that in most publications there are no numerical examination
at all. Main reason for this might lie in the fact that only few SU matrices
are known that does not fall into the classes of PSD and P matrices.
Our goal is to generate different SU (but not PSD or P) matrices and
test problems on which the different IPAs can be tested and the results
can be compared.
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1 Introduction

The class of P0 matrices and its subclasses play an important role in the theory of
the LCP. We say that a matrix is in P0 if all the principal minors are nonnegative.
Couple of decades ago two subclass were defined: the class of SU matrices in
1989 by Cottle et al. [2] and the class of P∗(κ) matrices in 1991 by Kojima,
et al. [1]. Kojima, et al. [1], Guu and Cottle [3] and Valiaho [4] in a series of
publication proved that these matrix classes are equivalent, i.e. P∗ = SU.

For different variants of CCAs and IPAs for SU-LCPs good survey can be
found in Csizmadia [7] and M. Nagy [8], respectively.

Our goal is to generate sufficient matrices, therefore we need to find different
ways to construct SU-matrices. By building a set of SU-matrices, test set prob-
lems for SU-LCPs can be defined, thus practical, computational performance of
the IPAs can be tested. Important definitions, some lemmas and some construc-
tions for SU-matrices are summarized. Finally, we illustrate a way we generated
SU-matrices using the discussed lemmas and constructions.

In this paper we omit the proofs of the known lemmas and Construction 1,
because those can be found in the literature. For our own, new results, sketch of
the proofs are included for most of the cases.

We distinguish between the scalar product (xTy ∈ R), and the Hadamard
(coordinate-wise) product (x y ∈ Rn) of two vectors x,y ∈ Rn.



2 Definitions, lemmas, constructions

Definition 1. A matrix A ∈ Rn×n is called a PSD-matrix if for every vector
x ∈ Rn

xTAx ≥ 0. (1)

Now, we are ready to introduce the classes P∗(κ) and P∗ as a generalization of
PSD-matrices (for details see Kojima et al. [1]).

Definition 2. A matrix A ∈ Rn×n is called a P∗(κ)-matrix (for some κ ≥ 0)
if for every vector x ∈ Rn

(1 + 4κ)
∑

i∈I+(x)

xi yi +
∑

i∈I−(x)

xi yi ≥ 0 (2)

where y = Ax, I+(x) = {i : xi yi > 0} and I−(x) = {i : xi yi < 0}.

If κ = 0 we get back the definition of PSD-matrices. Now, we can introduce

P∗ = ∪κ≥0P∗(κ). (3)

The classes CSU, RSU and SU were defined by Cottle et al. [2].

Definition 3. A matrix A ∈ Rn×n is called column sufficient matrix (or belongs
to the CSU class of matrices) if for every vector x ∈ Rn it satisfies the following
condition

xy ≤ 0 ⇒ xy = 0, (4)

where y = Ax.

It is easy to see that a matrix is a sufficient matrix, if I+(x) = ∅ implies that
I−(x) = ∅. Furthermore, any sufficient matrix has the property that if ∃i ∈ I−(x)
then there should be another index j ∈ I+(x).

Definition 4. A matrix A ∈ Rn×n is called row sufficient matrix (or belongs to
the RSU class of matrices) if AT ∈ CSU.

A matrix A ∈ Rn×n is called sufficient matrix (or belongs to the SU class of
matrices) if A ∈ CSU ∩RSU.

In most cases the complexity of the IPAs depends on the handicap of the matrix,
therefore testing the algorithm on a matrix with zero handicap is not appropriate,
thus our goal is to generate sufficient matrices with positive handicap.

Definition 5. A ∈ Rn×n, x ∈ Rn where xTAx < 0 and let us define the follow-
ing function

FA(x) = − xTAx∑
i∈I+(x) xi(Ax)i

. (5)



The handicap of a SU matrix A is denoted by κ(A), and

κ(A) =

{
0 if A ∈ PSD
1
4 sup{FA(x)|xTAx < 0} otherwise

(6)

If A /∈ PSD then there exists a vector x for which xTAx < 0 therefore κ(A)
is well defined. The handicap of a SU matrix A is basically the smallest κ for
which A ∈ P∗(κ).

Definition 6. The principal pivot operation (PPO) transforms the equation
system y = Ax (A ∈ Rn×n, x,y ∈ Rn) into an equivalent one, where the variables
xi and yi are exchanged for certain indices i ∈ R.

If R = {1, 2, ..., j} for some j ∈ {1, 2, ..., n}, then the coefficient matrix of the
new equation system is:

PRA =

(
A−1RR −A−1RRARR

ARRA
−1
RR ARR −ARRA

−1
RRARR

)
. (7)

The Lemmas 1-5 and Construction 1 can be found in Cottle, Pang and Stone
[5].

Lemma 1. Every principal submatrix of a sufficient matrix is also sufficient.

Lemma 2. If A ∈ Rn×n, P = diag(p1, ..., pn), Q = diag(q1, ..., qn), where
piqi > 0 for all i, and B = PAQ, then

1. If A ∈ SU then so is B.
2. If A ∈ P∗(κ) for some κ ≥ 0, then B ∈ P∗(κ

′), where κ′ ≥ κ is such that

1 + 4κ′

1 + 4κ
=

maxi(pi/qi)

mini(pi/qi)
. (8)

Lemma 3. The matrix classes CSU, RSU, SU, P∗(κ), P∗ are closed under
the PPO and the principal permutations of rows and columns.

Lemma 4. The handicap of a sufficient matrix is at least as large as the hand-
icap of any of its principal submatrix.

Lemma 5. The handicap is invariant under the PPO.

Lemma 6 (Construction 1). If A ∈ Rn×n is in SU then so is the following
matrix (

A I
−I D

)
, (9)

where I,D ∈ Rn×n, and I is the identity matrix and D is a diagonal matrix with
nonnegative elements.

Now, we summarize two of our constructions which were used during the suf-
ficient matrix generation process. From now on let I = {1, 2, . . . , n} and Jk =
{n+ 1, n+ 2, . . . , n+ k} be set of indices.



Lemma 7 (Construction 2). Let a sufficient matrix A ∈ Rn×n be given. Let
us define the matrix C ∈ R(n+k)×(n+k) in the following way

cij =


aij if 1 ≤ i, j ≤ n

1 if i = 1 and j ∈ Jk
−1 if j = 1 and i ∈ Jk

0 otherwise

(10)

where k ∈ N is arbitrary. Then the matrix C is sufficient.

Proof. First we prove the column sufficiency using the definition. Let x ∈ Rn+k,
x̃ = xI , y = Cx and ỹ = Ax̃. The Hadamard product

xy =



x1ỹ1 + x1
∑
i∈Jk

xi
x2ỹ2

...
xnỹn
−xn+1 x1

...
−xn+k x1


. (11)

If −xi x1 > 0 for some i ∈ Jk then I+(x) 6= ∅. Otherwise −xi x1 ≤ 0 for all
i ∈ Jk so

∑
i∈Jk

xix1 = x1
∑
i∈Jk

xi ≥ 0. In this case (as A ∈ SU) we know
that among the first n coordinate of the vector xy there must be at least one
positive, or every coordinate is zero. This proves the column sufficiency, and the
row sufficiency can be proved exactly in the same way. �

Note, that if A /∈ PSD then C /∈ PSD.

Lemma 8. The matrix E ∈ Rn×n of ones is sufficient.

Proof. Let x ∈ Rn, y = Ex and the corresponding Hadamard product

xy =

x1
∑n
i=1 xi
...

xn
∑n
i=1 xi

 . (12)

If
∑n
i=1 xi = 0 then xy = 0. If

∑n
i=1 xi is positive (negative) then ∃i ∈ I for

which xi is positive (negative) so i ∈ I+(x), therefore I+(x) 6= ∅. �

Previous lemma gives us a useful tool in proving the following statement.

Lemma 9 (Construction 3). Let a matrix D ∈ R2n×2n is defined as follows

dij =


1 if (i, j) ∈ I × I ∪ Jn × Jn ∪ (n, n+ 1)

−1 if (i, j) = (n+ 1, n)

0 otherwise.

(13)

Then D is sufficient matrix.



Proof. Let x ∈ R2n, y = Dx and the corresponding Hadamard product

xy =



x1
∑n
i=1 xi
...

xn−1
∑n
i=1 xi

xn
∑n
i=1 xi + xnxn+1

xn+1

∑2n
i=n+1 xi − xnxn+1

xn+2

∑2n
i=n+1 xi
...

x2n
∑2n
i=n+1 xi


. (14)

If xnxn+1 = 0 then D is sufficient because of Lemma 8. Considering Lemma 8 we
can also see that if xnxn+1 is positive (negative) there must be a positive element
among the first (second) n coordinate of the vector xy, and this is exactly what
we needed. Again, the row sufficiency can be proved exactly the same way so we
omit that. �

This construction can be generalized: if A,B ∈ Rn×n are in P0 of rank 1, and
F = diag(A,B), then fn,n+1 and fn+1,n can be chosen such that F is sufficient
(and fn,n+1 fn+1,n < 0).

3 Example: building a sufficient matrix

Matrices of order 1 are sufficient if the (only) element is nonnegative. Sufficient
matrices of order 2 were characterized by Guu and Cottle in [3]. Deciding whether
a matrix of order 3 is in SU can be calculated on paper, or even in head quite
fast, using the lemmas in [6]. (It takes less than a minute after some practice.)
We calculated several sufficient matrices of order 3, and then we applied the
mentioned lemmas and constructions to increase its size and to hide the original
structure.

Let us illustrate the construction of a larger sufficient matrix from smaller
ones using Constructions 1-3. and some of Lemmas 1-5. Let us start with a given
sufficient matrix A. (Sufficiency of A can be checked using the definition.)

A =

 1 2 −2
−1 1 −3

2 1 1

 B =


1 2 −2 1 1
−1 1 −3 0 0

2 1 1 0 0
−1 0 0 0 0
−1 0 0 0 0

 C =



1 2 −2 1 1 1 0
−1 1 −3 0 0 0 1

2 1 1 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 2 0

0 −1 0 0 0 0 3





The sufficient matrix B can be obtained from A by applying Construction 2.
From matrix B, the sufficient matrix C can be built by using Construction 1.

D =



1 −2 −3 −1 1 −1 2
1 1 5 −1 1 −1 −1
3 −3 0 −3 3 −3 3
−1 2 3 1 −1 1 −2

2 −4 −6 −2 2 −2 4
−1 2 3 1 −1 1 −2
−1 −1 −5 1 −1 1 10


Applying PPO (Lemma 3) to matrix C and some scaling (Lemma 2) the resulting
matrixD is sufficient matrix, as well. Due to the scaling, the handicap of matrices
C and D, might be different.

All our sufficient matrix examples can be downloaded from the internet. Cur-
rently there are 10 pieces of matrices of order 10 and 20, and one matrix of order
700. As every principal submatrix of a sufficient matrix is sufficient (Lemma 1),
the 700×700 matrix grants us an immense amount of sufficient matrices. By the
time of the Vocal conference we are going to choose additional test examples, so
the IPAs can be tested uniformly.
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