SOLUTION SHEET OF DIFFERENTIAL GEOMETRY 1, 2'ND MID-TERM, MAY 17TH, 2022

(1) Determine the values $t_{0} \in \mathbb{R}$ such that the normal plane of the curve

$$
\gamma(t)=\left(\begin{array}{c}
\sin ^{2} t \\
\sin t \cos t \\
\cos ^{2} t
\end{array}\right)
$$

at t_{0} passes through the origin.
Solution: A normal vector of the normal plane at t_{0} is given by

$$
\dot{\gamma}\left(t_{0}\right)=\left(\begin{array}{c}
\sin \left(2 t_{0}\right) \\
\cos \left(2 t_{0}\right) \\
-\sin \left(2 t_{0}\right)
\end{array}\right) .
$$

The normal plane at t_{0} has equation

$$
\left\langle\dot{\gamma}\left(t_{0}\right), \vec{x}-\gamma\left(t_{0}\right)\right\rangle=0 .
$$

Therefore, the normal plane at t_{0} contains the origin if and only if

$$
\left\langle\dot{\gamma}\left(t_{0}\right), \gamma\left(t_{0}\right)\right\rangle=0 .
$$

This is the case if and only if the equation

$$
\sin \left(4 t_{0}\right)=0
$$

holds, whose solutions are $t_{0}=\mathbb{Z} \cdot \frac{\pi}{4}$.
(2) Consider the moment curve $u \mapsto\left(u, u^{2}, u^{3}\right)$ defined for $u>0$. Show that the regular part of the tangent surface of the moment curve has empty intersection with the moment curve.

Solution: The parameterization of the regular part of the tangent surface is

$$
\vec{r}(u, v)=\left(\begin{array}{c}
u \\
u^{2} \\
u^{3}
\end{array}\right)+v\left(\begin{array}{c}
1 \\
2 u \\
3 u^{2}
\end{array}\right)
$$

for $v \in \mathbb{R} \backslash\{0\}$. The existence of a value $t \in \mathbb{R}_{+}$such that $\vec{r}(u, v)=\left(t, t^{2}, t^{3}\right)$ is equivalent to the matrix equation

$$
\left(\begin{array}{ccc}
u & 1 & t \\
u^{2} & 2 u & t^{2} \\
u^{3} & 3 u^{2} & t^{3}
\end{array}\right)\left(\begin{array}{c}
1 \\
v \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The determinant of the coefficient matrix of this system is $u^{2} t(u-t)^{2}$, so it vanishes if and only if $t=u$. In this case, the solution of the linear system is $v=0$, which is excluded by the regularity assumption.
(3) Let \vec{r} be the parameterization of a regular surface $M \subset \mathbb{R}^{3}$. Fix a constant $d \in \mathbb{R} \backslash\{0\}$, and let $\vec{\rho}$ be the parameterization of the parallel surface M_{d} of M by distance d. Assume that M_{d} is regular. Show that $\vec{p}=\vec{r}\left(u_{0}, v_{0}\right)$ is an umbilical point of M with mean curvature κ if and only if $\vec{q}=\vec{\rho}\left(u_{0}, v_{0}\right)$ is an umbilical point of M_{d} with mean curvature $\frac{\kappa}{1-d \kappa}$.

Solution: By definition, the point \vec{p} is umbilic for M if the Weingarten map $L_{\vec{p}}$ of M is a constant κ multiple of the identity, and in this case its mean curvature is equal to κ. Assume this is the case. Let \vec{N} denote the unit normal field of M. For M_{d}, we have

$$
\vec{\rho}_{u}=\vec{r}_{u}+d \vec{N}_{u}=(1-d \kappa) \vec{r}_{u}
$$

and similarly

$$
\vec{\rho}_{v}=(1-d \kappa) \vec{r}_{v} .
$$

The regularity assumption on M_{d} then implies that $1-d \kappa \neq 0$. It follows that

$$
\vec{\rho}_{u} \times \vec{\rho}_{v}=(1-d \kappa)^{2} \vec{r}_{u} \times \vec{r}_{v},
$$

so \vec{N} is the unit normal field of M_{d} too. Consider the Weingarten map $L_{\vec{q}}$ of M_{d}. We then find

$$
L_{\vec{q}}\left(\vec{\rho}_{u}\right)=-\vec{N}_{u}=L_{\vec{p}}\left(\vec{r}_{u}\right)=\kappa \vec{r}_{u}=\frac{\kappa}{1-d \kappa} \vec{\rho}_{u},
$$

and similarly

$$
L_{\vec{q}}\left(\vec{\rho}_{v}\right)=\frac{\kappa}{1-d \kappa} \vec{\rho}_{v} .
$$

By the regularity assumption, these two vectors generate $T_{\vec{q}} M_{d}$, therefore

$$
L_{\vec{q}}=\frac{\kappa}{1-d \kappa} \mathrm{I}
$$

so \vec{q} is umbilic for M_{d} with mean curvature $\frac{\kappa}{1-d \kappa}$. For the converse direction, apply the same argument replacing d by $-d$ and exchanging the roles of M and M_{d}, and observing that

$$
\frac{\frac{\kappa}{1-d \kappa}}{1+d \frac{\kappa}{1-d \kappa}}=\kappa .
$$

(4) Let \vec{r} be the parameterization of a regular surface in \mathbb{R}^{3}, and \vec{p} a point on the surface. Assume that the Gaussian curvature of the surface at \vec{p} is nonzero. We say that a non-zero tangent vector \vec{v} at \vec{p} is isotropic if the normal curvature of the surface in direction \vec{v} vanishes. Show that the following conditions are equivalent: (a) any two isotropic tangent vectors at \vec{p} are either parallel or perpendicular to each other, (b) the equality $\kappa_{1}=-\kappa_{2}$ holds.

Solution: According to the Principal Axis Theorem, the tangent space at \vec{p} of the surface admits an orthonormal basis \vec{x}_{1}, \vec{x}_{2} with respect to which the Gram matrix of $I I_{p}$ is diagonal. Said differently, for $\vec{v}=v_{1} \vec{x}_{1}+v_{2} \vec{x}_{2}$ we have

$$
I I_{p}(\vec{v}, \vec{v})=\kappa_{1} v_{1}^{2}+\kappa_{2} v_{2}^{2}
$$

By the assumption on K, we have $\kappa_{1} \neq 0 \neq \kappa_{2}$. Then, \vec{v} is isotropic if and only if

$$
\frac{v_{2}}{v_{1}}= \pm \sqrt{-\frac{\kappa_{1}}{\kappa_{2}}} .
$$

Therefore, a necessary condition of the existence of isotropic vectors is

$$
\kappa_{1}<0<\kappa_{2} .
$$

The two different isotropic directions are spanned by

$$
\sqrt{\kappa_{2}} \vec{x}_{1} \pm \sqrt{-\kappa_{1}} \vec{x}_{2} .
$$

They are perpendicular to each other if and only if

$$
0=\left\langle\sqrt{\kappa_{2}} \vec{x}_{1}+\sqrt{-\kappa_{1}} \vec{x}_{2}, \sqrt{\kappa_{2}} \vec{x}_{1}-\sqrt{-\kappa_{1}} \vec{x}_{2}\right\rangle=\kappa_{2}+\kappa_{1} .
$$

This proves the desired assertion.

