SOLUTION SHEET OF DIFFERENTIAL GEOMETRY 1, RE-TAKE OF 2'ND MID-TERM , MAY 27, 2022

(1) Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a regular curve. Suppose that the origin is incident to all normal planes of γ. Show that then γ lies on a sphere centered at the origin.

Solution: The equation of the normal plane of γ at $\gamma\left(t_{0}\right)$ is

$$
\left\langle\dot{\gamma}\left(t_{0}\right), \vec{x}-\gamma\left(t_{0}\right)\right\rangle=0 .
$$

If $\vec{x}=\overrightarrow{0}$ satisfies this equation for every value of t_{0}, then

$$
\langle\dot{\gamma}, \gamma\rangle \equiv 0,
$$

i.e.

$$
\frac{1}{2} \frac{d}{d t}\langle\gamma, \gamma\rangle \equiv 0
$$

By the Fundamental Theorem of Calculus, we then have

$$
|\gamma|^{2}=\langle\gamma, \gamma\rangle \equiv c
$$

for some constant $c \in \mathbb{R}$. The possibility $c<0$ is clearly excluded. The regularity assumption rules out $c=0$. Hence, γ takes values in the sphere of radius \sqrt{c} centered at $\overrightarrow{0}$.
(2) Using Meusnier's theorem, compute the normal curvature of the surface defined by $z=e^{-\left(x^{2}+y^{2}\right)}$ at the point $x_{0}=1, y_{0}=0, z_{0}=e^{-1}$, in the direction $\vec{v}=(0,1,0)^{T}$.

Solution: A possible parameterization of the surface is

$$
\vec{r}(x, y)=\left(\begin{array}{c}
x \\
y \\
e^{-\left(x^{2}+y^{2}\right)}
\end{array}\right)
$$

with $x, y \in \mathbb{R}$. We then have

$$
\vec{r}_{x}=\left(\begin{array}{c}
1 \\
0 \\
-2 x e^{-\left(x^{2}+y^{2}\right)}
\end{array}\right) \quad \vec{r}_{y}=\left(\begin{array}{c}
0 \\
1 \\
2 y e^{-\left(x^{2}+y^{2}\right)}
\end{array}\right)
$$

Their evaluations are

$$
\vec{r}_{x}\left(x_{0}, y_{0}, z_{0}\right)=\left(\begin{array}{c}
1 \\
0 \\
-2 e^{-1}
\end{array}\right) \quad \vec{r}_{y}\left(x_{0}, y_{0}, z_{0}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

The normal vector \vec{N} is parallel to

$$
\vec{r}_{x}\left(x_{0}, y_{0}, z_{0}\right) \times \vec{r}_{y}\left(x_{0}, y_{0}, z_{0}\right)=\left(\begin{array}{c}
2 e^{-1} \\
0 \\
1
\end{array}\right) .
$$

It is therefore given by

$$
\vec{N}=\frac{1}{\sqrt{4 e^{-2}+1}}\left(\begin{array}{c}
2 e^{-1} \\
0 \\
1
\end{array}\right) .
$$

The intersection of the surface with the plane $z=z_{0}$ is a circle of radius 1 (and thus, of curvature $\kappa=1$), and it has tangent vector \vec{v} at $\left(x_{0}, y_{0}, z_{0}\right)^{T}$, and second Frenet vector $\overrightarrow{t_{2}}=(-1,0,0)^{T}$. By Meusnier's theorem, for the normal curvature we find

$$
k(\vec{v})=\left\langle\overrightarrow{t_{2}}, \vec{N}\right\rangle \kappa=-\frac{2 e^{-1}}{\sqrt{4 e^{-2}+1}}=-\frac{1}{\sqrt{1+\frac{e^{2}}{4}}}
$$

(3) Determine all spherical umbilical points of the surface of revolution obtained by rotating the curve $y(x)=\sin x$ around the x-axis.

Solution: The domain of definition of the surface of revolution is the set where the values of \sin are positive, i.e. the union of intervals $(2 k \pi,(2 k+1) \pi)$ for all $k \in \mathbb{Z}$. By the formulas for the principal curvatures of a surface of revolution, the umbilical points are the solutions of the equation

$$
-y^{\prime \prime}(x) y(x)=1+\left(y^{\prime}(x)\right)^{2},
$$

i.e.

$$
-\sin ^{2}(x)=1+\cos ^{2}(x)
$$

Rearranging terms, we are lead to

$$
\cos (2 x)=-1
$$

whose solutions are $x=\frac{\pi}{2}+2 k \pi$, where $k \in \mathbb{Z}$ (the same expression with $2 k$ replaced by $2 k+1$ would give points that do not belong to the domain of definition.) Plugging these values into the formulas, one sees that both curvatures are then equal to 1 , so all the umbilical points that we have found are spherical.
(4) Let $p, q>0$ be fixed. Compute the Gaussian curvature at an arbitrary point of the surface defined by $z=\frac{x^{2}}{2 p}+\frac{y^{2}}{2 q}$.

Solution: A parameterization of the surface is given by

$$
\vec{r}(x, y)=\left(\begin{array}{c}
x \\
y \\
\frac{x^{2}}{2 p}+\frac{y^{2}}{2 q}
\end{array}\right)
$$

with $x, y \in \mathbb{R}$. We then have

$$
\vec{r}_{x}=\left(\begin{array}{c}
1 \\
0 \\
\frac{x}{p}
\end{array}\right) \quad \vec{r}_{y}=\left(\begin{array}{c}
0 \\
1 \\
\frac{y}{q}
\end{array}\right) .
$$

We deduce that

$$
\mathcal{G}=\left(\begin{array}{cc}
1+\frac{x^{2}}{p^{2}} & \frac{x y}{p q} \\
\frac{x y}{p q} & 1+\frac{y^{2}}{q^{2}}
\end{array}\right) .
$$

The normal vector \vec{N} is parallel to

$$
\vec{r}_{x} \times \vec{r}_{y}=\left(\begin{array}{c}
-\frac{x}{p} \\
-\frac{y}{q} \\
1
\end{array}\right)
$$

thus it is given by

$$
\vec{N}=\frac{1}{\sqrt{\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}+1}}\left(\begin{array}{c}
-\frac{x}{p} \\
-\frac{y}{q} \\
1
\end{array}\right) .
$$

We further have

$$
\vec{r}_{x x}=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{p}
\end{array}\right) \quad \vec{r}_{x y}=\overrightarrow{0} \quad \vec{r}_{y y}=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{q}
\end{array}\right) .
$$

We find

$$
\mathcal{B}=\frac{1}{\sqrt{\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}+1}}\left(\begin{array}{cc}
\frac{1}{p} & 0 \\
0 & \frac{1}{q}
\end{array}\right) .
$$

To sum up, we get

$$
K=\frac{\operatorname{det}(\mathcal{B})}{\operatorname{det}(\mathcal{G})}=\frac{1}{p q\left(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{q^{2}}+1\right)^{2}}
$$

