## SOLUTIONS OF DIFFERENTIAL GEOMETRY 1 MID-TERM 2, MAY 21ST, 2024

(1) Let us consider the parameterized surface

$$
\vec{r}(\theta, \varphi)=\left(\begin{array}{c}
\cos ^{3} \theta \cos ^{3} \varphi \\
\cos ^{3} \theta \sin ^{3} \varphi \\
\sin ^{3} \theta
\end{array}\right)
$$

Show that $\vec{r}$ is regular over $(\theta, \varphi) \in(0, \pi / 2)^{2}$. For any $(\theta, \varphi) \in(0, \pi / 2)^{2}$, let the affine tangent space of $\vec{r}$ at $(\theta, \varphi)$ intersect the axes in points

$$
\left(\begin{array}{c}
x(\theta, \varphi) \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
y(\theta, \varphi) \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
z(\theta, \varphi)
\end{array}\right)
$$

Show that then one has

$$
x(\theta, \varphi)^{2}+y(\theta, \varphi)^{2}+z(\theta, \varphi)^{2}=1 .
$$

## Solution:

We have

$$
\partial_{\theta} \vec{r}=\left(\begin{array}{c}
-3 \cos ^{2} \theta \sin \theta \cos ^{3} \varphi \\
-3 \cos ^{2} \theta \sin \theta \sin ^{3} \varphi \\
3 \sin ^{2} \theta \cos \theta
\end{array}\right), \quad \partial_{\varphi} \vec{r}=\left(\begin{array}{c}
-3 \cos ^{3} \theta \cos ^{2} \varphi \sin \varphi \\
3 \cos ^{3} \theta \sin ^{2} \varphi \cos \varphi \\
0
\end{array}\right)
$$

These vectors are linearly independent if and only if their cross product vanishes. To compute their cross product, we may replace them by parallel vectors

$$
\left(\begin{array}{c}
-\cos \theta \cos ^{3} \varphi \\
-\cos \theta \sin ^{3} \varphi \\
\sin \theta
\end{array}\right), \quad\left(\begin{array}{c}
-\cos \varphi \\
\sin \varphi \\
0
\end{array}\right)
$$

as long as the parallelism ratios

$$
3 \cos \theta \sin \theta, \quad 3 \cos ^{3} \theta \cos \varphi \sin \varphi
$$

are nonzero, which is the case over the domain in question. Now, we have

$$
\left(\begin{array}{c}
-\cos \theta \cos ^{3} \varphi \\
-\cos \theta \sin ^{3} \varphi \\
\sin \theta
\end{array}\right) \times\left(\begin{array}{c}
-\cos \varphi \\
\sin \varphi \\
0
\end{array}\right)=-\left(\begin{array}{c}
\sin \theta \sin \varphi \\
\sin \theta \cos \varphi \\
\cos \theta \cos \varphi \sin \varphi
\end{array}\right)
$$

This vector is nonzero on the domain in question, so $\vec{r}$ is regular there. Moreover, an equation of the affine tangent space at $(\theta, \varphi)$ reads as

$$
\left(x-\cos ^{3} \theta \cos ^{3} \varphi\right) \sin \theta \sin \varphi+\left(y-\cos ^{3} \theta \sin ^{3} \varphi\right) \sin \theta \cos \varphi+\left(z-\sin ^{3} \theta\right) \cos \theta \cos \varphi \sin \varphi=0
$$

Plugging $y=0=z$ into this equation yields

$$
\begin{aligned}
x(\theta, \varphi) & =\cos ^{3} \theta \cos ^{3} \varphi+\cos ^{3} \theta \sin ^{2} \varphi \cos \varphi+\sin ^{2} \theta \cos \theta \cos \varphi \\
& =\cos ^{3} \theta\left(\cos ^{3} \varphi+\sin ^{2} \varphi \cos \varphi\right)+\sin ^{2} \theta \cos \theta \cos \varphi \\
& =\cos ^{3} \theta \cos \varphi+\sin ^{2} \theta \cos \theta \cos \varphi \\
& =\cos \theta \cos \varphi
\end{aligned}
$$

Similarly, plugging $x=0=z$ into the equation of the affine tangent space gives after algebraic manipulations

$$
y(\theta, \varphi)=\cos \theta \sin \varphi,
$$

and plugging $x=0=y$ gives

$$
z(\theta, \varphi)=\sin \theta
$$

The desired identity now follows trivially.
(2) Consider the surface

$$
z=x^{2}+4 y^{2} .
$$

Using Meusnier's theorem, find its normal curvature at the point $\left(x_{0}, y_{0}, z_{0}\right)=$ $(1,0,1)$ in the direction of the tangent vector $(0,1,0)$.

Solution: A parameterization is

$$
\vec{r}(x, y)=\left(\begin{array}{c}
x \\
y \\
x^{2}+4 y^{2}
\end{array}\right)
$$

and the partial differentials are

$$
\partial_{x} \vec{r}=\left(\begin{array}{c}
1 \\
0 \\
2 x
\end{array}\right), \quad \partial_{y} \vec{r}=\left(\begin{array}{c}
0 \\
1 \\
8 y
\end{array}\right)
$$

Plugging $x=x_{0}, y=y_{0}$ gives

$$
\partial_{x} \vec{r}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad \partial_{y} \vec{r}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Their cross product is

$$
\partial_{x} \vec{r} \times \partial_{y} \vec{r}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

so the unit normal vector at the given point is

$$
\vec{N}=\frac{1}{\sqrt{5}}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

## SOLUTIONS OF DIFFERENTIAL GEOMETRY 1 MID-TERM 2, MAY 21ST, 2024

The intersection of the surface with the plane $z=1$ is an ellipse whose axes are the coordinate axes. The second Frenet vector of this ellipse at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\vec{t}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)
$$

We get

$$
\left\langle\overrightarrow{t_{2}}, \vec{N}\right\rangle=\frac{2}{\sqrt{5}}
$$

We now compute the curvature of the ellipse with parameterization

$$
\gamma(t)=\binom{\cos t}{\frac{1}{2} \sin t}
$$

at $t=0$. We find

$$
\dot{\gamma}(t)=\binom{-\sin t}{\frac{1}{2} \cos t}, \quad \ddot{\gamma}(t)=\binom{-\cos t}{-\frac{1}{2} \sin t}
$$

so

$$
|\dot{\gamma}(0)|=\frac{1}{2}
$$

and

$$
\operatorname{det}(\dot{\gamma}(0), \ddot{\gamma}(0))=\operatorname{det}\left(\begin{array}{cc}
0 & -1 \\
\frac{1}{2} & 0
\end{array}\right)=\frac{1}{2}
$$

For the curvature of the ellipse we find

$$
\kappa=\frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^{3}}=4
$$

For the given normal curvature we get

$$
k=\kappa\left\langle\overrightarrow{t_{2}}, \vec{N}\right\rangle=\frac{8}{\sqrt{5}}
$$

(3) Let

$$
\vec{r}: \Omega \rightarrow \mathbb{R}^{n}
$$

be a regular parameterized hypersurface, $\vec{N}$ its unit normal vector field and $\mathcal{G}=\left(g_{i j}\right)_{i, j=1}^{n-1}$ the Gram matrix of its first fundamental form written in Gauss frame. For fixed $\varepsilon>0$ consider the surface

$$
\vec{r}(\varepsilon): \vec{u} \mapsto \vec{r}(\vec{u})+\varepsilon \vec{N}(\vec{u}) .
$$

Let $\mathcal{G}(\varepsilon)=\left(g_{i j}(\varepsilon)\right)_{i, j=1}^{n-1}$ be the Gram matrix of the first fundamental form of $\vec{r}(\varepsilon)$. Show that we have

$$
\operatorname{det}(\mathcal{G}(\varepsilon))=\left(1-2 \varepsilon(n-1) H+O\left(\varepsilon^{2}\right)\right) \operatorname{det}(\mathcal{G})
$$

where $H$ is the mean curvature of $\vec{r}$ and $O\left(\varepsilon^{2}\right)$ stands for terms of higher degree in $\varepsilon$.

Solution: We have

$$
\vec{r}(\varepsilon)_{i}=\vec{r}_{i}+\varepsilon \vec{N}_{i}=\vec{r}_{i}-\varepsilon L_{\vec{p}}\left(\vec{r}_{i}\right),
$$

therefore

$$
\begin{aligned}
g_{i j}(\varepsilon) & =\left\langle\vec{r}(\varepsilon)_{i}, \vec{r}(\varepsilon)_{j}\right\rangle \\
& =\left\langle\vec{r}_{i}, \vec{r}_{j}\right\rangle-\varepsilon\left\langle L_{\vec{p}}\left(\vec{r}_{i}\right), \vec{r}_{j}\right\rangle-\varepsilon\left\langle\vec{r}_{i}, L_{\vec{p}}\left(\vec{r}_{j}\right)\right\rangle+O\left(\varepsilon^{2}\right) \\
& =\left\langle\vec{r}_{i}, \vec{r}_{j}\right\rangle-2 \varepsilon\left\langle L_{\vec{p}}\left(\vec{r}_{i}\right), \vec{r}_{j}\right\rangle+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

where the last line follows because $L_{\vec{p}}$ is self-adjoint. This shows that

$$
\mathcal{G}(\varepsilon)=\mathcal{G}-2 \varepsilon \mathcal{B}+O\left(\varepsilon^{2}\right)=\left(1-2 \varepsilon \mathcal{L}+O\left(\varepsilon^{2}\right)\right) \mathcal{G} .
$$

Taking determinant, we find

$$
\begin{aligned}
\operatorname{det}(\mathcal{G}(\varepsilon)) & =\operatorname{det}\left(1-2 \varepsilon \mathcal{L}+O\left(\varepsilon^{2}\right)\right) \operatorname{det}(\mathcal{G}) \\
& =\left(1-2 \varepsilon \operatorname{tr} \mathcal{L}+O\left(\varepsilon^{2}\right)\right) \operatorname{det}(\mathcal{G}) \\
& =\left(1-2 \varepsilon(n-1) H+O\left(\varepsilon^{2}\right)\right) \operatorname{det}(\mathcal{G}) .
\end{aligned}
$$

