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Show that the orthocenter of any triangle is the incenter of its orthic triangle.

Solution: In an arbitrary triangle ABCA, we denote by D, E,F the
feet of the altitudes through A, B, C, respectively. We will show that then
FDB/ = CDE/. For that purpose, let F’, F” be the images of F' under
reflection about the sides BC' and C' A, respectively. It follows from the prop-
erties of reflection that FDB/Z = BDF'/. It follows from the solution of Fag-
nano’s problem that F’, D, E, F" are aligned. In particular, this shows that
BDF'/ = CDEZ. Combining these equalities, we get the desired equality.
As a consequence, we see that

FDA/ = g _ FDB/ = g —CDE/ = ADE/,

Said differently, the height AD of ABCA is the bisector of the angle at
D of the orthic triangle DEFA. By symmetry of the argument, the other
two heights of ABCA agree with the other two angle bisectors of DEFA.
In particular, the intersection H of the heights of ABCA agrees with the
intersection of the angle bisectors of DEF A, which is just its incenter.

Using the notations introduced in our study of the 9-point circle (but without
using the theorem itself), show directly that B”A'C"/ = FHE /. Use this to
give an alternative proof of the statement that the points A", B, C’, A", B”, C"
lie on the same circle.

Solution: Looking at the triangle BCHA, we see that A'B"||C'H because
A’, B" are mid-points of its sides. Since C, H, F' are aligned, this also shows
that A’B”||HF. Similarly, we find A'C"||HE. Combining these shows that
B'AC"/ =FHE/Z.

Now, AFHLE is a cyclic quadrangle because it admits two opposite right
angles at E, F'. Therefore, we have FHFE/ = m— «. From the first statement
of the exercise, we then deduce that B"A'C"/ = m — a. On the other hand,
using the triangles ABHA, CAHA we see that A"B”||AB and A”"C"||AC.
This gives that B"A”C"/ = «. Since

B"AC"/+ B"A"C"/ = (7t —a)+a=m,

it follows from the cyclic quadrangle theorem that A’ lies on the circumecircle
of A”B"C"”A. By symmetry of the argument, the same holds for B’, C" too.
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Given a regular 17-gon F, ..., Pig, construct a regular 85-gon.

Solution: Construct first a regular pentagon o, ..., Qs with Qg = F,
inscribed in the circumcircle of Fy,..., Pig. We claim that P;(), are two
vertices of a regular 85-gon inscribed in the same circle. Indeed, denoting by
O the center of the circle we have
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For any triangle ABCA, denote by D, E, G the third vertices of regular tri-
angles placed externally on the sides BC,CA, AB respectively. Given only

the points D, E/, G, write down steps of a (ruler and compass) construction of
A B, C.

Solution: We can construct the point F' such that DEF A is isosceles with

angle %” at F', lying on the same side of the line DFE as G. We have seen

in class that then ABFA is similar to DEFA. It follows that AFGA is a
right triangle with angle 7 at F' and a right angle at A. Therefore, we can
construct A by constructing an angle ¥ at F' on one side of the line F'G, and
taking its intersection with the circle having F'G as diameter. Then, we can
construct B by rotating A by angle j:%“ about F'. Finally, rotating A by

angle £% about £, we get C.



