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June 7, 2024

Abstract

We prove the Geometric P=W conjecture in rank three on the
three-punctured sphere. For this purpose, we describe the topology at
infinity of the related character variety and we use asymptotic abelian-
ization of harmonic bundles away from the ramification divisor to give
a complete geometric understanding of the involved maps. A pattern
reminiscent of the Stokes phenomenon emerges in the found behavior.

1 Introduction and statement of the main re-

sult

The principal objects of this paper are, on the one hand, the moduli space
MDol(α) of gauge-equivalence classes of rank 3 Higgs bundles on the com-
plex projective line CP 1 with three logarithmic points (called the Dolbeault
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moduli space) and, on the other hand, the space MB(c) of representations of
the fundamental group of the thrice-punctured CP 1 in SL(3,C) up to over-
all conjugation (called the Betti moduli space or character variety). These
two spaces are diffeomorphic to each other via a composition of the non-
abelian Hodge and Riemann–Hilbert correspondences. Moreover, they are
known to carry natural complex algebraic variety structures of dimension 2,
but the diffeomorphism between them is not compatible with their complex
structures. We investigate the asymptotic behavior of this diffeomorphism ψ
(with specially chosen parameters). Our main result is:

Theorem 1.1. The Geometric P=W conjecture holds for rank 3 tame har-
monic bundles over the three-punctured sphere.

Along the way, we also give a self-contained proof for the following:

Theorem 1.2 (Proposition 3.1). The GL(3,C) character variety of the three-
punctured sphere admits a smooth compactification by a curve of type I1. In
particular, the body of its nerve complex is of homotopy type S1.

We note that P. Etingof, A. Oblomkov, E. Rains have obtained essen-
tially the same result about the compactifying divisor of type I1 using rep-
resentation theoretical techniques [8, Proposition 6.6], including in the cases

corresponding to the affine root systems Ẽ7 and Ẽ8 (rather than just Ẽ6

studied here). We now turn to describing the context and precise meaning
of Theorem 1.1.

One motivation of this study comes from Hitchin’s WKB problem [22],
which roughly reads as follows: consider a C× orbit in the Hitchin base
and its lift to the Dolbeault space. Consider the family of flat connections
corresponding to this lift, and determine the behaviour of the associated
transport matrices, as the point of the Hitchin base converges to infinity
along a C×-orbit. For more about the WKB approximation theory of the
Schrödinger operator, see [47]. More recently, [13, Section 13] carried out
WKB analysis of Hitchin’s equations.

Another source of inspiration is the so-called P=W conjecture. The Betti
space is known to be an affine algebraic variety, and as such its cohomology
spaces carry a mixed Hodge structure [7]. On the other hand, the Hitchin
map endows the cohomology spaces of the Dolbeault space with a perverse
Leray filtration. The conjecture, formulated by M. de Cataldo, T. Hausel
and L. Migliorini [5], states that the diffeomorphism ψ between the spaces
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respects these filtrations. Recently this has been an intensely investigated
area, with strong ties to other fields such as Cohomological Hall Algebras,
the geometry of the affine Springer fiber, and Donaldson–Thomas theory.
In [5] it was proved in the rank two case for compact curves. The complete
proof for the P=W conjecture came recently from two different sources, using
different techniques [17] and [32].

A geometric counterpart of the conjecture was stated in [22, Conjec-
ture 1.1] and [43, Conjecture 11.1]. So far, this Geometric P = W conjecture
has received significantly less attention than the original cohomological ver-
sion. Mauri, Mazzon and Stevenson [31] proved it in genus 1 and type A.
Sz. Szabó dealt with the conjecture in case of rank 2 Higgs bundles with
irregular singularities over CP 1, belonging to the Painlevé cases [46], and
with rank 2 logarithmic Higgs bundles over the five-punctured sphere, by
establishing the WKB-analysis of coordinates of the character variety [45].
A. Némethi and Sz. Szabó provided a different proof for these Painlevé cases
using low-dimensional topology techniques [37]. As far as the authors know,
these are the only cases where the full assertion of the Geometric P=W is
proved. The Geometric P = W conjecture asserts the existence of the fol-
lowing homotopy commutative diagram:

MDol \ h−1(BR(0)) MB \ ψ(h−1(BR(0)))

H \BR(0) |D∂MB|

ψ

h ϕ (1)

where
ψ = RH ◦ NAHC

is the composition of the non-abelian Hodge correspondence

NAHC: MDol(α) → MdR(β, τ)

and the Riemann Hilbert correspondence

RH: MdR(β, τ) → MB(c)

and h is the Hitchin fibration over the Hitchin base H. The Hitchin base
will turn out to be a one-dimensional affine space in our case (see Section 2.3
for more details), and by H\BR(0) we denote the neighbourhood of infinity



4

in the base, for R ≫ 1. Moreover |D∂MB| denotes the body of the nerve
complex of the compactifying divisor of the Betti space, and ϕ is Simpson’s
natural map from a neighborhood of infinity in MB to the body of the nerve
complex (see Section 2.1 and 6.2 for more details).

In [22] the conjecture about the existence of a commutative diagram up to
homotopy was stated in higher generality. In particular, the homotopy type of
the body of the nerve complex is expected to be always that of a sphere. This
homotopy sphere assertion was proved by C. Simpson in [43] over CP 1, with
an arbitrary finite number of punctures in the rank 2 case. The investigation
of the homotopy type of the topological space of the dual boundary complex
of the character variety is a basic step to deal with the Geometric P = W
conjecture, and numerous results belong to this. A. Komyo [24] proved the
assertion for some 2 and 4 dimensional tame cases, and it was generalized
by C. Simpson [43], who showed that in the rank 2 case for an arbitrary
number n of logarithmic points on CP 1, the homotopy type of the dual
boundary complex is that of S2n−7. Another result fromM. Mauri, E. Mazzon
and M. Stevenson shows that that the dual boundary complex of a log-
Calabi-Yau compactification of the GL(n,C) character variety of a 2-torus is
homeomorphic to S2n−1, see [31].

We will adopt the asymptotic abelianization approach used in [46] to
establish the Geometric P=W conjecture in rank 2 corresponding to the
Painlevé cases. We will adapt this technique here to the rank 3 case. An im-
portant technical difference with the rank 2 case is that in [45], [46] we made
use of certain local models (called fiducial solutions) only available in rank 2;
here we have found a way to get around finding specific model solutions and
carry out the analysis solely using abelianization. This simplifies the presen-
tation and clarifies the picture, thus paving the way for potential higher-rank
and higher-dimensional generalizations of our viewpoint. As a consequence
of the analysis, we find that the asymptotic behavior of ψ depends on a
decomposition into sectors of the Hitchin base, namely it is determined by
different exponential terms in each sector around infinity. This clearly re-
minds of the Stokes phenomenon, which is somewhat surprising, because no
connection with irregular singularities seems to be present.

This paper is organized as follows. In Section 2, we recall the background
material necessary to explain our arguments. In Section 3, we first describe
the GL(3,C) character variety of the three-punctured sphere in general, and
prove Theorem 1.2. We then analyze trace coordinates on the character va-
riety, going back to classical work of R. Fricke and F. Klein [12], and which
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were generalized for GL(3,C) character varieties by S. Lawton [26], [27]. In
Section 4, we use T. Mochizuki’s asymptotic abelianization technique [34] to
give the large-scale analysis of harmonic bundles. In Section 5 we describe
the parallel transport matrices, and apply Riemann Hilbert correspondence
to the previous setup. Finally in Section 6, we investigate the asymptotic be-
haviour of the trace coordinates under the Riemann Hilbert correspondence,
and prove Theorem 1.1.

2 Preparatory material

First, let us introduce the material that we will need to establish and prove
our result. The structure follows more or less [45] and [10].

2.1 Basic notations, definitions and results

Consider X = CP 1 with the standard Riemannian-metric, and with coordi-
nate charts z and w = z−1. For the distinct points 0, 1,∞ ∈ CP 1, let D be
the simple effective divisorD = 0+1+∞ (and denote byD the support set of
the divisor as well). Consider furthermore a smooth vector bundle E of rank
3 and degree 0 on CP 1. We denote by K and O the sheaves of holomorphic
1-forms and functions on CP 1, and by Ω1,0 and Ω0,1 the smooth (1, 0)- and
(0, 1)-forms on CP 1. Then, a 1-form valued O-linear vector bundle morphism
θ is called a Higgs field:

θ : E → E ⊗ Ω1,0,

Moreover, we consider partial (0, 1)-connections ∂E on E over CP 1. Together
with a Hermitian metric h on E, the basic objects of our investigation will
be Higgs bundles (E, θ, ∂E), which satisfy Hitchin’s equations:{

∂Eθ = 0

Fh + [θ, θ†h ] = 0

where Fh denotes the curvature form of the Chern connection ∇+
h , associated

with ∂E and h, and θ†h denotes the adjoint of the Higgs field with respect to
h (i.e. θ†h : E → E ⊗Ω0,1). If the Hitchin’s equations are satisfied, then the
bundle is called harmonic, and h is called Hermitian-Einstein metric. We also
get a holomorphic structure ∂DetE on the complex line bundle DetE, induced
by ∂E, and a Hermitian metric hDetE on it, induced by h. Now denote by
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E the holomorphic vector bundle (E, ∂E) on CP 1 \ D. The holomorphic
vector bundle E is also defined over D, and we assume that θ has logarithmic
singularities at the points of D, that is we are considering logarithmic Higgs
bundles.

Let us define the parabolic structure of Higgs bundles, based on [33], [4]
and [30]. Fix a weight vector for all p ∈ D: αP = (α1

P , α
2
P , α

3
P ), where α

j
P ’s

lie in a unit interval for all j = 1, 2, 3, and α1
P < α2

P < α3
P . Also consider the

filtration on the fiber of E over each point of D:

0 = l3P ⊂ l2P ⊂ l1P ⊂ l0P = E
∣∣
P
,

We always assume that the Higgs field is weakly parabolic, meaning that
θ : liP → liP ⊗ K(D) at each P ∈ D. The Higgs field is called strongly
parabolic if θ : liP → li+1

P ⊗K(D) at each P ∈ D, i.e. the residue is nilpotent
with respect to the filtration in that the action on the graded pieces gr·lE of
l•P is trivial.

As usual, under stability of a Higgs bundle (E, θ, ∂E) we mean that for
any proper holomorphic subbundle F ⊂ E which satisfies θ : F → F⊗K(D),
the inequality µ(F ) < µ(E) holds, where µ(E) = degE

rankE
is the slope of the

bundle (µ(F ) defined similarly). In the parabolic setting, we speak about
α-stability, which depends on the weight vectors αP , and means that for all
F satisfying the above conditions

pdegαE

rankE
>

pdegαF

rankF
,

where the parabolic degree of the parabolic bundle (and subbundle) is:

pdegαE = degE +
∑
P∈D

3∑
j=1

αjP (2)

pdegαF = degF +
∑
P∈D

3∑
j=1

αjP · dim((F
∣∣
P
∩ lj−1

P )/(F
∣∣
P
∩ ljP )) (3)

The Higgs bundle is called α-polystable, if it is the direct sum of lower rank
α-stable Higgs bundles, with the same parabolic slope as (E, θ, ∂E). By the
results of Hitchin [19] and Simpson [41], it is known that a Higgs bundle
admits a unique Hermitian-Einstein metric h with Deth = hDetE if and only
if it is polystable.
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Let SL(E) be the principal bundle of automorphisms of E which induce
the identity on DetE. Then the group of complex gauge transformations,
denoted by G, is the group of sections of SL(E). Moreover its Lie algebra
consists of the sections of sl(E), the vector bundle of traceless endomorphisms
of E. The gauge group G acts on the Higgs bundles via

g.(E, θ, ∂E) = (E, g−1θg, g−1∂Eg), ∀g ∈ G.

Definition 2.1. The moduli space of harmonic, α-stable, strongly parabolic,
meromorphic SL(3,C)-Higgs bundles, with at most logarithmic singularities,
with given weight vectors αP , up to the complex gauge action, is called the
Dolbeault moduli space, denoted by MDol(α).

See [25] for a differential geometric construction of this space, and [38]
for an algebraic geometric one.

In case of logarithmic Higgs bundles, for θ and h the so called tameness
condition is satisfied, that is at each P ∈ D, h admits a lift along any ray
to P , which grows at most polynomially in the standard metric. (Here we
consider h as an equivariant harmonic map from the universal cover of the
Riemann surface to the Hermitian symmetric space GL(3,C)/U(3)). For
such a tame, harmonic bundle (E, θ, ∂E, h) the connection

∇ = ∇+
h + θ + θ†h (4)

is integrable, and ∇1,0 has regular singularities. Fix again for all P ∈ D
some β

P
= (β1

P , β
2
P , β

3
P ) parabolic weight vectors and the τP = (τ 1P , τ

2
P , τ

3
P )

eigenvalues of the residue of the connection. The definition of β-stability
and parabolic structure of the integrable connection is just the same as for
the Higgs field (the parabolic structure of the underlying vector bundle is
already given, see also [30]). We again require that (4) is compatible with
the filtration, that is (resP∇− τ jP id)(l

j
P ) ⊂ lj+1

P , for all P ∈ D and j = 0, 1, 2.
If the eigenvalues τ jP are pairwise different that this implies that resP∇ is
diagonal with respect to some basis compatible with the filtration. The
complex gauge group action on the space of connections is also inherited
from the action on the space of Higgs bundles.

Definition 2.2. The moduli space of β-stable, parabolic, integrable SL(3,C)-
connections, with regular singularities at the punctures, with given weight
vectors β

P
and given residues τP at each P ∈ D, up to the complex gauge

action, is called the de Rham moduli space, denoted by MdR(β, τ).
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The third main object of our research is the Betti moduli space, also
known as character variety. Under the stability condition, (4) is an irre-
ducible integrable connection. For any choice of base point x0 /∈ D, analytic
continuation of solutions provides a representation

ρ : π1(CP 1 \D, x0) → SL(3,C)

that is well-defined up to simultaneous conjugation by elements of PGL(3,C)
(corresponding to different choices of a basis of solutions at x0). The eigen-
values, denoted by cP = (c1P , c

2
P , c

3
P ), of the local monodromy around P ∈ D

are determined by (β
P
, τP ). (As a matter of fact, the local system admits

a filtration and corresponding weights too, but we will not need this extra
structure here.)

Definition 2.3. The moduli space of the above described representations is
called the Betti moduli space or character variety, denoted by MB(c).

It is known that the Betti space is a smooth, affine algebraic variety for
generic parameters. There exists a compactification of the Betti space by a
simple normal crossing divisor DB (see the results of Nagata and Hironaka
[36], [18]). In our case DB is a complex curve. As customary, we define
its dual complex DDB as the simplicial complex whose vertices are the irre-
ducible components of DB, and whose edges corresponds to the intersections
of the components. We want to apply this to the compactification of the
Betti moduli space, therefore the resulting simplicial complex will be called
dual boundary complex, denoted by D∂MB(c).

It is known from Simpson [42]that there is a connection between the above
defined parameters. With the eigenvalues of the residues of the Higgs-field
being equal to 0, it simplifies to

αiP = βiP = τ iP , and ciP = e−2π
√
−1αi

P ,∀P ∈ D, ∀i ∈ {1, 2, 3}.

Moreover, the following theorem holds.

Theorem 2.4. Assume that the parabolic degree of E is 0.

1. [3] The spaces MDol(α), MdR(β, τ) and MB(c) are C-analytic mani-
folds, and there exists a diffeomorphism

NAHC : MDol(α) → MdR(β, τ)

called the non-abelian Hodge correspondence.
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2. [20, Theorem 7.1] There exists a complex bianalytic isomorphism

RH : MdR(β, τ) → MB(c),

called the Riemann–Hilbert correspondence.

2.2 Choice of parameters

Now let us choose the parameters introduced in the previous subsection, and
explain these choices. For all P ∈ D, set

α1
P = β1

P = τ 1P = −1

3
α2
P = β2

P = τ 2P = 0

α3
P = β3

P = τ 3P =
1

3

Consequently

c2P = 1, c3P = −1

2
+

√
3

2
i = ε, c1P = −1

2
−

√
3

2
i = ε2,

where i =
√
−1 and ε stands for a primitive cubic root of unity.

Lemma 2.5. With these parameter values

i) the parabolic degree of E is zero,

ii) the traces of θ and θ2 are identically zero.

Proof. i) Since at all P ∈ D, the sum of the parabolic weights equal to
0, it follows from equation (2), that the parabolic degree of E is 0.

ii) The residues of the Higgs field are traceless at all P ∈ D.

On CP 1 we have for the sheaf of holomorphic 1-forms K ∼= O(−2),
and with the divisor D = 0 + 1 +∞, we have K(D) ∼= O(1), via the
identification dz

z(z−1)
↔ 1. Then

Trθ ∈ H0(CP 1, K(D)) ∼= H0(CP 1,O(1)) ∼= C2

Trθ2 ∈ H0(CP 1, K(D)⊗2) ∼= H0(CP 1,O(2)) ∼= C3,

We have three independent vanishing conditions for both Trθ and Trθ2

at the points P ∈ D, therefore both must be zero globally. (One
condition is even redundant in the case of Trθ.)
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2.3 The Hitchin fibration

The characteristic coefficients of a Higgs bundle of rank 3 over CP 1 with
logarithmic singularities at D belong to the vector space

B = H0(CP 1, K(D))⊕H0(CP 1, K(D)⊗2)⊕H0(CP 1, K(D)⊗3) ∼=
∼= H0(CP 1,O(1))⊕H0(CP 1,O(2))⊕H0(CP 1,O(3)) ∼= C2 ⊕ C3 ⊕ C4

According to Lemma 2.5, with the choices made in Section 2.2, the first
two components vanish. The third characteristic coefficient of θ is Detθ ∈
H0(CP 1, K(D)⊗3). Let us use the notation L = K(D), with the natural
projection from the total space of L, pL : TotL→ CP 1. Define ζ dz

z(z−1)
to be

the canonical section of p∗LL over p−1
L (C), i.e. away from the infinity section.

With this, the characteristic polynomial of θ is

Det(ζidE − θ) = ζ3id⊗3
E +Hθ

where Hθ lies in the last direct summand of B. The third coefficient Detθ =
Hθ has 4 parameters of freedom, but with the three independent vanishing
relations at P ∈ D, this reduces to a one-parameter family. One can see [30,
Appendix A], that it has the form

Detθ = Hθ = (tz(z − 1) + p2(z))
dz⊗3

z3(z − 1)3

where p2(z) = az2 + bz + c is a quadratic polynomial, and a, b, c, t are the 4
parameters, from which a, b, c are fixed to be 0, and t ∈ C is the only free
parameter. The 1-dimensional subspace

H =

{
t

dz⊗3

z2(z − 1)2
: t ∈ C

}
⊂ B

where Detθ may take its values is called the Hitchin base of MDol(α), and
the map

H : MDol(α) → H, (E , θ) 7→ Detθ

is called the Hitchin fibration. Clearly, for any τ ∈ C× and (E , θ) we have

H((E , τθ)) = τ 3H((E , θ)).

For every t ∈ C the smooth curve called the spectral curve is defined via

Σt = {(z, ζ)|ζ3 + tz(z − 1) = 0} ⊂ TotL. (5)
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Notice that Σt has maximal ramification over 0, 1 and a smooth compactifi-
cation, denoted by Σ̃t, in TotL at z = ∞ with (w, ζ) = (0, 0), where it also
admits cyclic ramification. One can easily compute from Riemann–Hurwitz
formula that its genus is equal to 1.

2.4 Ramification of the spectral curve and the Jaco-
bian

The equation in (5) defining Σ̃t has three roots over every point of CP 1 \D:

ξ1 = R1/3eiφ/3z1/3(z − 1)1/3, ξ2 = εR1/3eiφ/3z1/3(z − 1)1/3,

ξ3 = ε2R1/3eiφ/3z1/3(z − 1)1/3,

where we recall that ε is a cubic root of unity and we switched to polar
coordinates t = Reiφ. That is, ξ1,2,3 is a three-valued holomorphic function

on CP 1 \ D, and pL induces a projection map pR,φ : Σ̃R,φ → CP 1. This is
indeed a ramified triple cover over CP 1, with ramification points z = 0, z = 1
on chart z, and w = 0 on chart w, independently of the value of t > 0. Thus
we introduce the ramification divisor ∆ = {0, 1,∞} = D, and denote the lift

of the ramification divisor by ∆̃ (or D̃), whose points are the branch points

on Σ̃R,φ. We summarize properties of the spectral curve.

Proposition 2.6. Σ̃R,φ is a smooth genus 1 curve, with ramification index
at all 3 points of D equal to 3, i.e. all its ramifications are cyclic.

Let us use the notation for the cubic meromorphic differentials, with
double poles at the punctures

qR,φ := DetθR,φ = Reiφ
dz⊗3

z2(z − 1)2
∈ H0(CP 1, K⊗3(2D)). (6)

Then the sheets of Σ̃R,φ are just the cubic roots of qR,φ:

Q1,R,φ = R1/3eiφ/3
dz

z2/3(z − 1)2/3
, Q2,R,φ = εR1/3eiφ/3

dz

z2/3(z − 1)2/3
,

Q3,R,φ = ε2R1/3eiφ/3
dz

z2/3(z − 1)2/3
,

(7)
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According to [1], the three corresponding eigenspaces determine a line bundle

LR,φ → Σ̃R,φ, whose pushforward (pR,φ)∗LR,φ is isomorphic to E . The degree
of LR,φ can be computed via [29, 2.3.3] or [44, Theorem 5.4]:

degL = degE + r(1− r)
(
1− g − n

2

)
= 3,

where r = 3 is the rank, n = 3 is the number of ramification points, and
g = 0 is the genus of CP 1. Thus an element of the Dolbeault moduli space
determines a spectral curve and a line bundle of degree 3 on it, and vica
versa. So, the fiber of the Hitchin fibration over the point parameterized by
a fixed t ∈ H is Pic3(Σ̃t), that is a 2-torus, namely a torsor over Jac(Σ̃t). In
particular, the Hitchin fibration is an elliptic fibration.

Let us discuss this correspondence between the Hitchin fibers and the
Jacobian of the spectral curve a bit more in detail. Consider the following
period lattice Λt ⊂ H0,1(Σ̃t) ∼= C, provided by the image Im(p0,1 ◦ ι), where

ι : H1(Σ̃t, 2πiZ) → H1(Σ̃t,C)
p0,1 : H1(Σ̃t,C) → H0,1(Σ̃t)

are the coefficient inclusion on the first cohomology class, and the projec-
tion of harmonic forms to their antiholomorphic part respectively. There
exists a C-analytic isomorphism Jac(Σ̃t) ∼= H0,1(Σ̃t)/Λt. Namely, any class

in H0,1(Σ̃t)/Λt can be represented by a µ ∈ Ω0,1(Σ̃t), because of the abelian
Hodge correspondence. Then the connection form B = µ − µ = 2iImµ ∈
Ω1(Σ̃t) defines a flat U(1)-connection, and the abelian version of Theorem 2.4
can be expressed as an isomorphism between the Jacobian and the 2-torus:

Jac(Σ̃t) → T 2 = S1 × S1, µ 7→ (e
∫
X B, e

∫
Y B),

where X, Y are fixed 1-cycles generating H1(Σ̃t,Z). See [14, Section 4] for
more details.

2.5 The Hitchin section

There is a preferred line bundle L0 over Σ̃t giving rise to a section of H
analogous to the Hitchin section. Namely, as it is well-known,

(pL)∗OΣ̃t

∼= OCP 1⊕KCP 1(D)−1⊕KCP 1(D)−2 ∼= OCP 1⊕OCP 1(−1)⊕OCP 1(−2),
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the direct summands being generated by 1, ζ, ζ2 respectively. The preferred
choice of spectral sheaf is then L0 = p∗LL ⊗ OΣ̃t

. Notice that OΣ̃t

∼= KΣ̃t
,

because Σ̃t is an elliptic curve. Moreover, from the local form at z = 0 of the
equation defining Σ̃t we get

dz

z
= h(w)

dw

w

for some local holomorphic function h(w) with h(0) ̸= 0, i.e.

p∗LKCP 1(D)⊗OΣ̃t
= KΣ̃t

(D̃).

We infer
L0 = p∗LL⊗OΣ̃t

∼= KΣ̃t
(D̃) ∼= OΣ̃t

(D̃).

By the projection formula we then have

E0 = (pL)∗L0
∼= K(D)⊕O ⊕K(D)−1,

in particular, the degree of E0 is equal to zero, as required. Stable Higgs
fields

θt : K(D)⊕O ⊕K(D)−1 → K(D)2 ⊕K(D)⊕O (8)

over E0 are of the form

θt =

0 0 qt
1 0 0
0 1 0


where qt is given in (6) (and recall that R,φ are polar coordinates of t ∈ C∗).
Applying a constant (i.e., depending only on t) gauge transformationt− 1

3 0 0
0 1 0

0 0 t
1
3


the Higgs field gets transformed into

θt = t
1
3

0 0 q1
1 0 0
0 1 0

 . (9)



14

The strongly parabolic condition (namely, that the residues of θt at the points
of D are nilpotent) then implies

resP (θt) =

0 0 0
1 0 0
0 1 0

 .

Now, there exists a unique filtration of E0 over the points of D compatible
with this residue, namely

l2P = C · ζ2, l1P = C · ζ ⊕ C · ζ2

The parabolic weights corresponding to the generators 1, ζ, ζ2 are respectively
−1

3
, 0, 1

3
. See also the results from [11], [16].

3 Description of the Betti moduli space

In this chapter we consider the Betti space (or character variety), parame-
terizing the irreducible representations of the fundamental group of CP 1 \D
in GL(3,C), up to the simultaneous conjugation by of PGL(3,C). We pick
z0 ∈ CP 1 \ {0, 1,∞} once and for all, and all occurrences of fundamen-
tal group will mean with base point z0. Since the fundamental group of
CP 1 \ {0, 1,∞} is isomorphic to the free group generated by two elements,
this amounts to considering maps

ρ : π1
(
CP 1 \ {0, 1,∞}

) ∼= ⟨a, b⟩ → GL(3,C)

under the constraint that the eigenvalues of ρ(a), ρ(b) and ρ(ab) are fixed:
{λ1, λ2, λ3}, {µ1, µ2, µ3} and {ν1, ν2, ν3} respectively (previously denoted by
the vectors cP ). Because of the PGL(3,C) action, we have the freedom to
choose ρ(a) to be diagonal with elements {λ1, λ2, λ3}. Having achieved this,
there remains the action of the maximal torus (C×)

2
of PGL(3,C). The

action of (t1, t2) ∈ (C×)
2
on a matrix B = [bij] is the standard conjugation

(t1, t2).B =

 b11 t1b12 t1t2b13
t−1
1 b21 b22 t2b23

t−1
1 t−1

2 b31 t−1
2 b32 b33

 .

With the notations ρ(a) = A, ρ(b) = B, the constraints on the eigenvalues
are equivalent to constraints on the traces of Aj, Bj and (AB)j for j = 1, 2, 3.
Thus the Betti space can be written as
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MB = {A,B ∈ GL(3,C)|A = Diag[λ1, λ2, λ3], B = [bi,j],

Tr(Bj) = σj(µ),Tr((AB)j) = σj(ν), j = 1, 2, 3}/
(
C×)2

where σj is the degree j homogeneous symmetric polynomial in 3 variables.
Because of the irreducibility of the representations, we are given that both
b21 and b31 can not vanish simultaneously. Possibly passing to a Zariski open
subset (that does not alter validity of our arguments), we may assume that
they are both nonzero. We may then use the (C×)

2
action to remove these

coefficients. Since the assumption on (AB)3 is redundant, this gives

MB = {B =

b11 b12 b13
1 b22 b23
1 b32 b33

 |Tr(Bj) = σj(µ), j = 1, 2, 3,

Tr((AB)j) = σj(ν), j = 1, 2}.

Now, the conditions Tr(B) = b11 + b22 + b33 = σ1(µ), and Tr(AB) = λ1b11 +
λ2b22 + λ3b33 = σ1(ν) can be used to express b22 and b33 in terms of b11:

b22 =
λ3 − λ1
λ2 − λ3

b11 + c1(λ, µ, ν) =: Q(b11)

b33 =
λ1 − λ2
λ2 − λ3

b11 + c2(λ, µ, ν) =: P (b11),

where c1, c2 are constants depending only on λ, µ, ν, while P and Q are degree
1 polynomials in b11. Switching to the notation

B =

b11 b12 b13
1 b22 b23
1 b32 b33

 =

X Y Z
1 Q(X) V
1 W P (X)


implies

MB = {(X, Y, Z, V,W ) ∈ C5|Tr(B2) = σ2(µ),Tr(B
3) = σ3(µ),Tr((AB)2) = σ2(ν)}.

The remaining three conditions read as:

Tr(B2) = X2 + 2Y + 2Z +Q2(X) + P 2(X) + 2VW = σ2(µ)

Tr((AB)2) = λ21X
2 + 2λ1λ2Y + 2λ1λ3Z + λ22Q

2(X) + λ23P
2(X) + 2λ2λ3VW = σ2(ν)

Tr(B3) = X3 + P 3(X) +Q3(X) + 3ZW + 3XZ + 3Y V + 3XY

+3Q(X)VW + 3Q(X)Y + 3P (X)VW + 3P (X)Z = σ3(µ)



16

Now, the first two equations allow us to express Y and Z, and eliminate
these variables from the third equation. We thus obtain a description of the
Betti space as a cubic surface in SpecC[X, V,W ]. Then, we can consider
the homogenisation of the resulting equation. This procedure provides us
the compatifying curve of MB as a homogeneous cubic curve in CP 2, with
equation

−3(λ1 − λ2)(λ1 − λ3)
2(λ2 + λ3)

λ1(λ2 − λ3)4
X3 +

3(λ1 − λ3)
2(λ1λ3 − λ22)

λ1(λ2 − λ3)3
X2V

+
3(λ1 − λ2)

2(λ23 − λ1λ2)

λ1(λ2 − λ3)3
X2W +

−3(λ1(λ2 − λ3)
2 + λ2(λ1 − λ3)

2 + λ3(λ1 − λ2)
2)

λ1(λ2 − λ3)2
XVW

+
3λ2(λ1 − λ3)

λ1(λ3 − λ2)
VW 2 +

3λ3(λ1 − λ2)

λ1(λ2 − λ3)
V 2W = 0

(10)

3.1 Topology of the compactifying divisor

Although we have made special choices for the parameters λ, µ, ν, here we
will see that up to homeomorphism, the compatifying curve is the same as
with general choices. Namely, it is the genus 0 curve with nodal singularity,
also called fishtail, and denoted by I1 in Kodaira’s list of singular elliptic
curves [23].

Proposition 3.1. The curve C determined by equation (10) in CP 2 = {[X :
V : W ]}, is of type I1.

Proof. The proof has a similar idea as Proposition 2.3.3 in [15]. Consider the

pencil of projective lines passing through the point P =
[
λ2−λ3
λ3−λ1 : λ1−λ2

λ3−λ1 : 1
]

in CP 2, and parameterize them by [t0 : t1] ∈ CP 1, via

L[t0:t1] = {[X : V : W ] ∈ CP 2|t0
(
X − λ2 − λ3

λ3 − λ1

)
= t1

(
V − λ1 − λ2

λ3 − λ1

)
}.

Determine the intersection points of line L[t0:t1] with C: if [t0 : t1] = [1 : 0],
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then X = λ2−λ3
λ3−λ1 , and substituting this into (10):

−(λ1 − λ2)
2(λ2 + λ3)

(λ3 − λ1)(λ2 − λ3)
+ (λ1λ3 − λ22)V +

(λ1 − λ2)
2(λ23 − λ1λ2)

(λ3 − λ1)2(λ2 − λ3)
W

+
−(λ1(λ2 − λ3)

2 + λ2(λ1 − λ3)
2 + λ3(λ1 − λ2)

2)

(λ3 − λ1)(λ2 − λ3)
VW

+
λ2(λ1 − λ3)

(λ3 − λ2)
VW 2 +

λ3(λ1 − λ2)

(λ2 − λ3)
V 2W = 0

Here, if W = 0, then (λ1λ3−λ22)V = (λ1−λ2)2(λ2+λ3)
(λ3−λ1)(λ2−λ3) has a unique solution for

V . If W ̸= 0, then we can choose W = 1, and the equation simplifies:

V 2 − 2(λ1 − λ2)

λ3 − λ1
V +

(λ1 − λ2)
2

(λ3 − λ1)2
= 0,

which is a complete square, therefore has a unique solution for V . That is,
L[1:0] and C have two intersection points:

P =

[
λ2 − λ3
λ3 − λ1

:
λ1 − λ2
λ3 − λ1

: 1

]
, Q =

[
λ2 − λ3
λ3 − λ1

:
(λ1 − λ2)

2(λ2 + λ3)

(λ3 − λ1)(λ2 − λ3)(λ1λ3 − λ22)
: 0

]
The other case, if t1 ̸= 0 (assume t1 = 1), then V = t0

(
X − λ2−λ3

λ3−λ1

)
+ λ1−λ2

λ3−λ1 .

If W ̸= 0 (W = 1), then substitute the above equation for V into (10)

1

λ2 − λ3

(
X − λ2 − λ3

λ3 − λ1

)2(
X

(
(λ1 − λ3)

2(λ1λ3 − λ22)

(λ2 − λ3)2
t0

+
−(λ1 − λ2)

2(λ1 − λ3)
2(λ2 + λ3)

(λ2 − λ3)3)

)
+ λ3(λ1 − λ2)t

2
0

+
−λ21λ2 − 2λ21λ3 + 6λ1λ2λ3 − 2λ22λ3 − λ2λ

2
3

λ2 − λ3
t0

+
(λ1 − λ2)(λ

2
1λ2 + 2λ21λ3 − 4λ1λ2λ3 + λ22λ3 + λ2λ

2
3)

(λ2 − λ3)2

)
= 0

This has solution X = λ2−λ3
λ3−λ1 , which provides P . The remaining factor is

linear in X, so for fixed t0, it has a unique solution for X, except if the

coefficient of X is 0, i.e.: t′0 =
(λ1−λ2)2(λ2+λ3)
(λ2−λ3)(λ1λ3−λ22)

, this case the only intersection

point of C and L[t0:t1] is P . In other cases, there are one more intersection
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point besides P , except when the root of the linear factor provides P again.
This happens if the following quadratic equation satisfies for t0:

λ3(λ1 − λ2)t
2
0 +

(λ1 − λ2)(−λ1λ2 − 3λ1λ3 + 3λ2λ3 + λ23)

λ2 − λ3
t0

+
(λ1 − λ2)(2λ

2
1λ2 + 2λ21λ3 − λ1λ

2
2 − 6λ1λ2λ3 − λ1λ

2
3 + 2λ22λ3 + 2λ2λ

2
3)

(λ2 − λ3)2
= 0

This has solutions t+0 = 2λ1−λ2−λ3
λ2−λ3 and t−0 = λ1λ2+λ1λ3−2λ2λ3

λ3(λ2−λ3) . One can check

that for t+0 , the line L[t+0 :1] passes through [0 : 1 : 0], so it has two intersection
points with C. But C has only two common points with the line W = 0,
namely [0 : 1 : 0] and Q, thus L[t−0 :1] intersects C only at P . We deduce

that there are exactly two parameters [t′0 : 1] and [t+0 : 1] for which L[t0:t1]

has only one intersection point with C, namely P . This means that the map
CP 1 → C sending [t0 : t1] to the other intersection of L[t0:t1] and C (besides
P ) is one-to-one, except for [t′0 : 1] and [t+0 : 1]. That is, C is homeomorphic
with a CP 1 with [t′0 : 1] and [t+0 : 1] identified.

3.2 The trace coordinates

We will use the so called trace coordinates on the Betti moduli space, intro-
duced by Lawton [26], [27]. Let ρ be at the SL(3,C) character variety of a
rank 2 free group ⟨a, b⟩, and consider the character map MB → C9:

ρ 7→
(
Tr(ρ(a)),Tr(ρ(b)),Tr(ρ(a)ρ(b)),Tr(ρ(a)−1),Tr(ρ(b)−1),Tr((ρ(a)ρ(b))−1),

Tr(ρ(a)ρ(b)−1),Tr(ρ(a)−1ρ(b)),Tr(ρ(a)ρ(b)ρ(a)−1ρ(b)−1)
)
=: (x1, x2, ..., x9).

(11)
This way the above map gives coordinates on MB, under the condition x

2
9−

p(x)x9+q(x) = 0, where p and q are two polynomials in the variables {xi}9i=1,
see [26, Section 4]. On the three-punctured sphere, where γ1, γ2, γ3 are simple
loops around the punctures (0, 1,∞), with a common base point, [γ1] and
[γ2] generate the fundamental group of the curve, while [γ3] = ([γ1][γ2])

−1.
With our special choice of eigenvalues for ρ([γ1]), ρ([γ2]), described in Section
2.2, we have the following: x1 = x2 = x3 = x4 = x5 = x6 = 0, and
x7, x8, x9 are the nonzero coordinates. Indeed, the above character map gives
a MB(c) → C3 morphism, and the polynomials simplify to p(x) = x7x8 − 3,
and q(x) = 9− 6x7x8 + x37 + x38. Thus the condition x29 − p(x)x9 + q(x) = 0
reads as

0 = x29 − x7x8x9 + 3x9 + 9− 6x7x8 + x37 + x38.
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The homogenisation of this will again provide the equation of the curve at
the infinity: 0 = −x7x8x9 + x37 + x38.

Lemma 3.2. This curve 0 = −x7x8x9 + x37 + x38 is also of type I1.

Proof. One can easily see that (x7, x8) = (0, 0) is its only singular point. We
may set near that point x9 = 1, and the equation becomes x7x8 ≈ 0 up
to terms of degree 3. This shows that the singularity is a node. Therefore
the singular cubic curve must be a singular elliptic curve, and we can apply
Kodaira’s classification, which shows that an elliptic curve with one nodal
singularity must be an I1 curve.

Figure 1: The −x7x8 + x37 + x38 = 0 nodal (fishtail) curve.

Corollary 3.3. The fundamental group of the body of the dual boundary com-
plex of the compactifying divisor DB is cyclic, so |D∂MB(c)| is of homotopy
type S1.

Notice that we used two different types of coordinates, but the two pic-
tures coincide, as expected: for our special choice of parameters, the com-
pactifying divisor of the Betti space is topologically the same as in the general
description. According to Simpson [40], the Riemann Hilbert correspondence
provides equivalence between vector bundles with integrable connection and
representations of the fundamental group, via the monodromies of the con-
nection around the punctures. Therefore our aim is to apply the trace coordi-
nates to the monodromies of the connection, and investigate their asymptotic
behaviour.
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4 Asymptotic analysis of the Dolbeault space

Consider a Higgs bundle (E , θ) ∈ MDol(α) such that H(E , θ) = q for some
fixed, generic q ∈ H. For any nonzero complex number t, the Higgs bundle
(E , ∂E, tθ) is also stable with the same parabolic structure, therefore it is an
element of MDol(α) as well. For this Higgs bundle H(E , tθ) = t3q, and the
second one of Hitchin’s equations reads as

Fht + t2[θ, θ†ht ] = 0,

where ht is the unique Hermitian Einstein metric solving the equation. We
consider the 1-parameter family of Higgs bundles (E , ∂E, tθ), where t → ∞,
or equivalently the family (E , ∂E, θt), where t → ∞ again on the Hitchin
base. Our aim is to analyze the behaviour of ht under this asymptotics,
and describe its limiting behaviour. For this purpose we apply the following
theorem of T. Mochizuki [34, Theorem 1.2]:

Theorem 4.1. For any neighbourhood N of the discriminant D, there exist
positive constants C0 and ϵ0 only depending on N such that over CP 1 \ N
we have

|Fht |ht = |t2||[θ, θ†ht ]|ht ≤ C0e
−ϵ0t.

Notice that in [35], T.Mochizuki and the second author developed tools to
understand the limiting behaviour of the harmonic bundle at the discriminant
locus too.

We now set N = Bδ(P ) for P ∈ D and some 0 < δ ≪ 1 (see Fig.2). It
then follows from the theorem that on simply connected subsets of CP 1 \⋃
P∈D Bδ(P ), with respect to some gauge ∇+

h , θ, θ
†ht can be simultaneously

diagonalized, up to exponentially small error terms. Our aim is to describe
the matrix of the parallel transport map (4) along a loop around the points
P ∈ D, which lies in CP 1\

⋃
P∈D Bδ(P ). We will make use of a decomposition

of the surface CP 1 \D into open regions U1, U2 where

U1 = CP 1 \
⋃
P∈D

Bδ(P )

U2 =
⋃
P∈D

B2δ(P ).

We pick a loop γP in the annulus U1 ∩U2 = B2δ(P ) \Bδ(P ) winding around
P once in positive direction. On the other hand, we pick a path ηP in U1

from the base point z0 to the starting point of γP see Figure 4.
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Figure 2: The base point z0 and path ηP approaching the point P ∈ D, and
the setup near P : the loop γ lying in the annulus B2δ(P ) \Bδ(P ).

4.1 Away from the ramification divisor

In this section we will work over the set U1 = CP 1 \
⋃
P∈D Bδ(P ).

From Theorem 4.1, the solutions (E , θt, ht) of Hitchin’s equations asymp-
totically decouple into the direct sum of rank 1 (abelian) solutions. Therefore
we can construct a model Hermitian metric h∞ as the orthogonal pushforward
of a metric on the line bundle Lt → Σ̃t, which actually solves the decoupled
Hitchin’s equations (remember that we work away from D), induces a fixed
Hermitian metric on DetE, and turns out to be the limit of ht.

First, we study the Hermitian metric ht,DetE on DetE induced by ht. We
observe that since Trθ = 0, i.e. the Higgs field takes values in sl(3,C), the
metric ht,DetE turns DetE into a flat unitary parabolic line bundle. Moreover,
the parabolic weight of DetE at P ∈ D is the sum of the parabolic weights
of E at P , so it vanishes. Now, DetE is a line bundle of degree 0 over CP 1,
therefore it is isomorphic to OCP 1 . Therefore, we see that with respect to a
trivialization of O, the metric hDetE is some constant. We may rescale the
solution for each t so that with respect to a fixed trivialization of O we have
hDetE ≡ 1, see [10, Corollary 3.3].

Now, let us equip Lt → Σt with a parabolic structure. For the lifted
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points P̃ ∈ D̃ on the spectral curve let us set the parabolic weights to be
α̃P̃ = −1, for all P̃ . Then pdegL = 0, because degL = 3. By [42], [2], there
exists a metric hL that

1. is adapted to the above parabolic structure

2. solves the abelian Hitchin’s equation, and

3. induces the metric hDetE on DetE.

Furthermore, hL is unique up to a constant factor.
Now define h∞ on U1 to be the orthogonal pushforward of hL. This means

that the eigenspaces of θ are orthogonal with respect to h∞, and

h∞((pL)∗l, (pL)∗l) = hL(l, l)

for any local section l of L supported on a single sheet of Σ̃t. Then h∞ is the
unique solution of the decoupled Hitchin’s equations.

As previously discussed, let L be the line bundle such that E = p∗L (now

we omit the factor t, because of the isomorphisms Σ̃t
∼= Σ̃t′ for all t, t

′ ̸= 0,
compatibly with p). Consider the map

ρ : Σ̃t → Σ̃t

which is a cyclic permutation of Qi,t, i = 1, 2, 3 (see equation (7)) on the
spectral curve. Then there exists a short exact sequence

0 → p∗E → L⊕ ρ∗L ⊕ (ρ∗)2L → O∆̃ → 0.

Let U ⊂ U1 be a simply connected open subset such that p−1
L (U) ∩ Σ̃t =

V1
∐
V2
∐
V3, each Vi being homeomorphic to U . Then we have

E
∣∣
U
= L

∣∣
V1

⊕ L
∣∣
V2

⊕ L
∣∣
V3

so
(p
∣∣
V1
)∗(E

∣∣
U
) = L

∣∣
V1

⊕ ρ∗
(
L
∣∣
V2

)
⊕ (ρ∗)2

(
L
∣∣
V3

)
. (12)

Then the above definition of h∞ in detail reads as follows. By definition,

the direct summands L
∣∣
V1
, ρ∗
(
L
∣∣
V2

)
, (ρ∗)2

(
L
∣∣
V3

)
are orthogonal to each

other, and
hL ⊗ ρ∗hL ⊗ (ρ∗)2hL = hDetE ≡ 1.
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Furthermore, we construct h∞, such that its restrictions on the direct sum-
mands of (12) are

hL, ρ∗hL, (ρ∗)2hL.

Then the constructed model metric, with respect to a trivialization of E
coming from L, reads as

h∞ =

hL 0 0
0 ρ∗hL 0
0 0 (ρ∗)2hL

 =

h1 0 0
0 h2 0
0 0 h3


where the functions h1, h2, h3 are defined by the second equality.

Moreover, the holomorphic structure on the line bundle L is provided by
the operator ∂L = ∂ + µ, for some µ ∈ Ω0,1(Σ̃t). With respect to the same
frame as above, the holomorphic structure of E reads as

∂E = ∂ +

µ1 0 0
0 µ2 0
0 0 µ3

 .

The metric hL is Hermitian-Einstein, thus the associated unitary connection
∇+
hL

is flat on V1. Let us denote its connection form by B1 = µ1−µ1, which is

in Ω1(Σ̃) (equivalently p0,1B1 = µ1). Similarly B2 = µ2−µ2 and B3 = µ3−µ3

are the U(1)-connection forms on the direct summands of (12). Then the
flat U(1)×3-connection form on E , associated with h∞ is

∇+
h∞

=

B1 0 0
0 B2 0
0 0 B3

 .

with respect to some ρ-equivariant smooth unitary frame

(f1, f2, f3) (13)

on U . The Higgs field is also diagonal in this frame, with its eigenvalues (7) as
diagonal elements. Now we can define the flat model integrable connection:
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∂E + ∂h∞ + θt + θ
†h∞
t = ∂E + h−1

∞ ∂h∞ + θt + h−1
∞ θt

T
h∞ =

= d+
(
B1 0 0
0 B2 0
0 0 B3

)
+

(
h−1
1 ∂h1 0 0

0 h−1
2 ∂h2 0

0 0 h−1
3 ∂h3

)
+

(
Q1,t+Q1,t 0 0

0 Q2,t+Q2,t 0

0 0 Q3,t+Q3,t

)
=

= d+

(
B1+∂(ln(h1))+2ReQt 0 0

0 B2+∂(ln(h2))+2Re(εQt) 0

0 0 B3+∂(ln(h3))+2Re(ε2Qt)

)
(14)

with the simplifying notation Q1,t = Qt. Notice that in the formula

Bi + ∂(ln(h1)) + 2Re(εi−1Qt)

the first term is its imaginary part and the remaining two are its real part.
The situation greatly simplifies over the Hitchin section. Indeed, when

L = L0 = OΣ̃t
(D̃), then the parabolic weights of

L0(−D̃) ∼= OΣ̃t

induced by the parabolic structure of L0 all vanish. Therefore, this is just the
trivial line bundle over Σ̃t with trivial parabolic structure, so the solution of
the Hermite–Einstein equations written in a global holomorphic trivialization
l of L0(−D̃) is hL0(−D̃) ≡ 1. Moreover, we also have µ ≡ 0 for the (0, 1)-partial

connection defining L0(−D̃). This then implies Bi ≡ 0 for all 1 ≤ i ≤ 3. In
conclusion, over the Hitchin section, with respect to the trivialization

l
∣∣
V1
, l
∣∣
V2
, l
∣∣
V3

of E0 over a domain U as above, the limiting connection simplifies to

∇lim
t = d+ 2Re

(
Qt 0 0
0 εQt 0
0 0 ε2Qt

)
.

Now if ht is the metric solving the Hitchin’s equations for (E , θt), and
∇t is the associated flat integrable connection form, as in eq. (4), then we
can refer again to the result of T. Mochizuki, and conclude the asymptotic
equality ∇t ≈ ∇lim

t , precisely by [34, Corollary 2.13].

Theorem 4.2. Over any simply connected open subset U of U1, there exists
a gauge transformation gt and positive constants C1 and ϵ1 depending only
on δ > 0 used to define U1, such that

|gt · ∇t −∇lim
t |ht ≤ C1e

−ϵ1t.



25

4.2 Near the ramification divisor

In this section we describe asymptotic behaviour of solutions of Hitchin’s
equations on U2. Obviously, it is sufficient to deal with B2δ(P ) for a given
P ∈ D, see Figure 4, where 0 < δ ≪ 1. Let us consider the cyclic triple cover
B̃2δ(P ) → B2δ(P ) defined by Σ̃1, i.e.

ζ3 = z(z − 1),

where we use the trivialization

dz

z(z − 1)

of L = K(D). Over B2δ(P ) ⊂ CP 1, E can be decomposed as

E
∣∣
B2δ(P )

∼= OB2δ(P )⟨1⟩ ⊕ OB2δ(P )⟨ζ⟩ ⊕ OB2δ(P )⟨ζ2⟩

(see (8)), and with respect to a suitable frame the Higgs field is a multiple
of a companion matrix (see (9)):

θt = t
1
3

0 0 dz⊗3

z2(z−1)2

1 0 0
0 1 0

 .

For 0 < δ ≪ 1, let us use the approximations up to higher order terms
on γ0, γ1, near the points 0, 1 ∈ CP 1:

θt
∣∣
γ0

≈ t
1
3

0 0 dz⊗3

z2

1 0 0
0 1 0

 , θt
∣∣
γ1

≈ t
1
3

0 0 dz⊗3

(z−1)2

1 0 0
0 1 0

 .

We focus on the first one, i.e. the neighbourhood of 0, but a similar analysis
holds near 1 too. Our next aim is to introduce a smooth approximately
unitary frame

(e1, e2, e3) (15)

defined over B̃2δ(P ) in which the Higgs field is diagonal. These vectors can
be determined uniquely (up to phase) as the unit length eigenvectors of θt

∣∣
γ0
.

Therefore, let us switch to local polar coordinates on the circle γ0(t) of radius
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r0 =
3δ
2
centered at 0, with angle coordinate ϑ ∈ [0, 2π]. Then, independently

of the value of t, the frame (15) is:

e1 =
1√

|z|4/3 + |z|2/3 + 1

z2/3 (dzz )⊗2

z1/3 dz
z

1


e2 =

1√
|z|4/3 + |z|2/3 + 1

εz2/3 (dzz )⊗2

ε2z1/3 dz
z

1


e3 =

1√
|z|4/3 + |z|2/3 + 1

ε2z2/3 (dzz )⊗2

εz1/3 dz
z

1


By Theorem ?? applied to the complement of Bδ(0), the limit of the

metrics ht is the decoupled metric h∞ over γ0. Therefore, in the smooth

unitary frame (15) both θt and θ
†ht
t are asymptotically diagonal, up to expo-

nentially small terms. Thus the approximation for θt + θ
†ht
t over γ0 (in polar

coordinates t = Reiφ) is

θt + θ
†ht
t ≈

(
2R1/3Re(eiφ/3z−2/3 dz) 0 0

0 2ε2R1/3Re(eiφ/3z−2/3 dz) 0

0 0 2εR1/3Re(eiφ/3z−2/3 dz)

)
The model integrable connection is ∇mod

t = d + Dt, where Dt is a diagonal
matrix, with diagonal elements:

B1 + ∂(ln(h1)) + 2R1/3Re(eiφ/3z−2/3 dz)

B2 + ∂(ln(h2)) + 2R1/3Re(ε2eiφ/3z−2/3 dz)

B3 + ∂(ln(h3)) + 2R1/3Re(εeiφ/3z−2/3 dz).

(16)

(Similarly with (z − 1) instead of z over γ1). As a consequence of the
previously cited theorems, asymptotically ∇mod

t ≈ ∇t, as t→ ∞, similarly as
in the previous subsection. From now on, ”≈” will mean ”up to exponentially
small terms”, or more precisely:

A ≈ B ⇐⇒ AB−1 = id +O(e−R
1/3

)



27

5 Parallel transport and the Riemann Hilbert

correspondence

In the sequel, our aim is to apply the non-abelian Hodge correspondence and
the Riemann Hilbert correspondence to a Higgs bundle in a Hitchin fiber
close to infinity. Therefore the next step is to determine the monodromy on
a positively oriented loop around the punctures. Let us fix some base point
z0 ∈ CP 1 \D, and consider the concatenations of paths ηP ∗ γP ∗ η−1

P , where
η−1
P is the path ηP with opposite orientation (see Fig.2). This is indeed
homotopic to a loop around the puncture P ∈ D separating it from the
other two punctures. We need to determine along these paths the parallel
transport maps of the flat connections whose approximations were given in
the previous section, and determine the monodromies by integrating the
connection forms on the paths, and taking their exponential. We will do it
separately on the paths γP and ηP , and the mondoromy on the concatenation
will be the triple product of the parallel transport maps corresponding to the
above decomposition into paths.

5.1 Monodromy of the diagonalizing frame

Firstly consider the loop γ0, and the connection form with diagonal elements
(16). In order to apply the Riemann–Hilbert correspondence, we need to find
a fundamental solution of the local system. For this purpose, we first need
to integrate the connection form on γ0, that is:(

2R1/3Re(eiφ/3
∫
γ0
z−2/3 dz) 0 0

0 2R1/3Re(ε2eiφ/3
∫
γ0
z−2/3 dz) 0

0 0 2R1/3Re(εeiφ/3
∫
γ0
z−2/3 dz)

)
+ U0.

The integrals of the terms ∂(ln(hi)), i = 1, 2, 3 vanish because we integrate
them on a closed loop, and U0 is the diagonal matrix with diagonal entries∫
γ0
Bi. The integrals appearing here can be determined explicitly, because

γ0 is just the boundary of a disc of radius r1 around 0 ∈ CP 1:∫
γ0

z−2/3 dz =

∫ 2π

0

r1ie
iϑ dϑ

r
2/3
1 e2iϑ/3

= r
1/3
1 (ε− 1)



28

Now, to get the parallel transport map, we take the exponential of this
matrix, and we obtain:

N0,R,φ =

(
exp(2(Rr1)1/3Re(eiφ/3(ε−1))) 0 0

0 exp(2(Rr1)1/3Re(ε2eiφ/3(ε−1))) 0

0 0 exp(2(Rr1)1/3Re(εeiφ/3(ε−1)))

)
.

However this is not yet the monodromy of the flat connection on γ0, because
when we transport the frame (15) around the loop in positive direction, the
effect on the frame is a cyclic permutation. Indeed, one can easily check that

e1(ϑ = 0) = e2(ϑ = 2π)

e2(ϑ = 0) = e3(ϑ = 2π)

e3(ϑ = 0) = e1(ϑ = 2π)

Thus the monodromy of the diagonalizing frame (e1, e2, e3) is the permuta-
tion matrix

T =

0 1 0
0 0 1
1 0 0

 ,

and the monodromy of the connection on γ0 can be obtained by multiplying
the N0,R,φe

U0 with T , i.e. M0,R,φ = TN0,R,φe
U0 . Notice that the monodromy

M1,R,φ on γ1 near the puncture 1 ∈ CP 1 is just the same, because the integrals
coincide: ∫

γ0

z−2/3dz =

∫
γ1

(z − 1)−2/3dz

5.2 Parallel transport to the punctures and the whole
monodromy

Similarly as above, apply the Riemann–Hilbert correspondence to the parallel
transport map (14) on η0, and we obtain the matrix: h1(η0(0))

h1(η0(1))
exp(

∫
η0
B1+2Re

∫
η0
Qt) 0 0

0
h2(η0(0))
h2(η0(1))

exp(
∫
η0
B2+2Re(ε

∫
η0
Qt)) 0

0 0
h3(η0(0))
h3(η0(1))

exp(
∫
η0
B3+2Re(ε2

∫
η0
Qt))


and similarly for η1.
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Lemma 5.1. The factors hi(η0(0))
hi(η0(1))

, i = 1, 2, 3 can be omitted from the above
matrix.

Proof. Since η0 lies in a region, where the conditions of Theorem 4.2 satisfy,
we can apply the theorem. Thus there exists a gauge transformation, more
precisely a torus action, with which on L0,t, we can simultaneously get rid of

the factors hi(η0(0))
hi(η0(1))

, i = 1, 2, 3.

Again, a similar result holds for η1. The monodromies on η0 and η1 are
respectively

L0,t =

(
exp(

∫
η0
B1+2Re

∫
η0
Qt) 0 0

0 exp(
∫
η0
B2+2Re(ε

∫
η0
Qt)) 0

0 0 exp(
∫
η0
B3+2Re(ε2

∫
η0
Qt))

)

L1,t =

(
exp(

∫
η1
B1+2Re

∫
η1
Qt) 0 0

0 exp(
∫
η1
B2+2Re(ε

∫
η1
Qt)) 0

0 0 exp(
∫
η1
B3+2Re(ε2

∫
η1
Qt))

)

Now the monodromy on η0 ∗ γ0 ∗ η−1
0 will be provided as the product of

L0,t,M0,R,φ and L−1
0,t . However, there is one more thing we need to consider:

over η0 we had smooth unitary frame (13), but over γ0 we had another smooth
unitary frame (15), so we need to determine the matrix of the change of bases
at η0(1). Let us denote this base change by J0,t.

Lemma 5.2. For suitable choice of the frame (13), the matrix of the change
of bases to (15) at η0(1) is given by

J0,t =

exp(2Re
∫
η0
Qt) 0 0

0 exp(2Re(ε
∫
η0
Qt)) 0

0 0 exp(2Re(ε2
∫
η0
Qt))


Proof. The proof goes very similar as in [45, Proposition 11]. The paral-
lel transport map L0,t carries the frame (f1, f2, f3) from η0(0) to another
frame at η0(1). At η0(0) it has unit length, but then at η0(1) the vectors
L0,tf1, L0,tf2, L0,tf3 will respectively be of length

|L0,tf1(η0(1))|= e
2Re

∫
η0
Qt

|L0,tf2(η0(1))|= e
2Re(ε

∫
η0
Qt)

|L0,tf3(η0(1))|= e
2Re(ε2

∫
η0
Qt).
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The other frame (e1, e2, e3) at η0(1) has unit length, and both frames diag-
onalize the Higgs field at this point. It is known that any two diagonalizing
frames of a given semi-simple endomorphism of a finite-dimensional C-vector
space differ from each other by a diagonal automorphism with nonzero diag-
onal elements. The norms of these elements are the above determined values
|L0,tfi(η0(1))|, i = 1, 2, 3, so the matrix of the basis change is

J0,t =

a0 exp(2Re
∫
η0
Qt) 0 0

0 b0 exp(2Re(ε
∫
η0
Qt)) 0

0 0 c0 exp(2Re(ε
2
∫
η0
Qt))


for some a0, b0, c0 ∈ U(1) unit length complex numbers. Now the point
η0(1) lies in a region where Theorem ?? holds, thus we can apply a gauge
transformation on J0,t as well, and get rid of the factors a0, b0, c0.

Again, we have the analogue for J1,t with the same argument. Now we can
describe the monodromies around the punctures on the two loops η0∗γ0∗η−1

0

and η1 ∗ γ1 ∗ η−1
1 , denoted by A and B respectively, depending of course on

the parameter t, or R and φ in polar coordinates:

At = AR,φ = L−1
0,tJ

−1
0,t TN0,R,φe

U0J0,tL0,t

Bt = BR,φ = L−1
1,tJ

−1
1,t TN1,R,φe

U1J1,tL1,t

(17)

After we execute the matrix multiplications, we get that both matrices have
the following form similar to a companion matrix:

At = AR,φ =

 0 A1(t) 0
0 0 A2(t)

A3(t) 0 0

 , Bt = BR,φ =

 0 B1(t) 0
0 0 B2(t)

B3(t) 0 0

 .

Proposition 5.3. For the nonzero elements of At, as t→ ∞ we have

A1(t) ≈ exp

(
R1/3Re(eiφ/3πa) +

∫
η0

(B2 −B1) +

∫
γ0

B2

)
A2(t) ≈ exp

(
R1/3Re(eiφ/3επa) +

∫
η0

(B3 −B2) +

∫
γ0

B3

)
A3(t) ≈ exp

(
R1/3Re(eiφ/3ε2πa) +

∫
η0

(B1 −B3) +

∫
γ0

B1

)
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where πa = 4
∫
η0
(ε− 1) dz

z2/3(z−1)2/3
. Similarly for Bt we have

B1(t) ≈ exp

(
R1/3Re(eiφ/3πb) +

∫
η1

(B2 −B1) +

∫
γ1

B2

)
B2(t) ≈ exp

(
R1/3Re(eiφ/3επb) +

∫
η1

(B3 −B2) +

∫
γ1

B3

)
B3(t) ≈ exp

(
R1/3Re(eiφ/3ε2πb) +

∫
η1

(B1 −B3) +

∫
γ1

B1

)
where πb = 4

∫
η1
(ε− 1) dz

z2/3(z−1)2/3
.

Proof. From the matrix multiplication (17) we get

A1(t) = exp

(
−
∫
η0

B1 − 4Re

(∫
η0

Qt

)
+

∫
η0

B2 + 4Re

(
ε

∫
η0

Qt

))
·

· exp
(
2R1/3r

1/3
1 Re(ε2eiφ/3(ε− 1)) +

∫
γ0

B2

)
Now using the notation πa and Qt = R1/3eiφ/3 dz

z2/3(z−1)2/3
from (7), this for-

mula becomes

A1(t) = exp

(
R1/3

[
Re(eiφ/3πa) + 2r

1/3
1 Re(ε2eiφ/3(ε− 1))

]
+

∫
η0

(B2 −B1) +

∫
γ0

B2

)
Similarly

A2(t) = exp

(
R1/3

[
Re(eiφ/3επa) + 2r

1/3
1 Re(εeiφ/3(ε− 1))

]
+

∫
η0

(B3 −B2) +

∫
γ0

B3

)
A3(t) = exp

(
R1/3

[
Re(eiφ/3ε2πa) + 2r

1/3
1 Re(eiφ/3(ε− 1))

]
+

∫
η0

(B1 −B3) +

∫
γ0

B1

)
Now the values

∫
η0
Bi+1 − Bi, and

∫
γ0
Bi i = 1, 2, 3 (understood mod3),

and the values Re(eiφ/3εjπa), j = 0, 1, 2 are fixed, and similarly the terms
of Bt with η1 and πb . Although the r1 parameter is one, we can choose.
Recall that is the radius of the circles around the punctures, which actually
describe γ0 and γ1. For the local analysis we already settled 0 < r1 ≪ 1,
but now we can choose it to be far smaller than the absolute values of all
the above values. Then the terms 2r

1/3
1 Re(εieiφ/3(ε − 1)), i = 0, 1, 2 will

have approximately no contribution in the above formulas, and we receive
the desired approximations for the elements of At and Bt.
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6 Asymptotics of the trace coordinates and

proof of the main theorem

Finally, in this section we will compute the trace coordinates introduced in
Section 3.2 to the approximations for the monodromy matrices determined
in Section 5.2. Curiously, we will find a structure that is reminiscent to the
Stokes phenomenon, namely that depending on sectors in the Hitchin base,
different exponential terms of the coordinates dominate.

From the shape of the above determined matrices At and Bt, it trivially
follows that six out of the nine coordinates from (11) are zero.

Proposition 6.1. The only nonzero trace coordinates are Tr(AtB
−1
t ), Tr(A−1

t Bt)
and Tr(AtBtA

−1
t B−1

t ).

Introduce the notations

XR,φ = Tr(AR,φB
−1
R,φ) = Tr(AtB

−1
t )

YR,φ = Tr(A−1
R,φBR,φ) = Tr(A−1

t Bt)

ZR,φ = Tr(AR,φBR,φA
−1
R,φB

−1
R,φ) = Tr(AtBtA

−1
t B−1

t )

After performing the matrix multiplications, we can give the approximations
for the absolute values of this three coordinates:

|XR,φ| ≈ exp(R1/3Re(eiφ/3(πa − πb))) + exp(R1/3Re(eiφ/3ε(πa − πb)))+

+exp(R1/3Re(eiφ/3ε2(πa − πb)))

|YR,φ| ≈ exp(R1/3Re(eiφ/3(πb − πa))) + exp(R1/3Re(eiφ/3ε(πb − πa)))+

+exp(R1/3Re(eiφ/3ε2(πb − πa)))

|ZR,φ| ≈ exp(R1/3Re(eiφ/3(1− ε)(πa − πb)))+

+exp(R1/3Re(eiφ/3(1− ε)ε(πa − πb))) + exp(R1/3Re(eiφ/3(1− ε)ε2(πa − πb)))
(18)

Notice here that the terms
∫
η0
Bi+1 − Bi, and

∫
γ0
Bi i = 1, 2, 3 are purely

imaginary, thus they have no contribution to the absolute values of the co-
ordinates.

6.1 Asymptotics of the trace coordinates

Remember that the polar coordinates (R,φ) ∈ R+ × S1 parameterize the
Hitchin base (except for its origin), and the Dolbeault moduli space admits
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the Hitchin fibration over the Hitchin base. Now consider 1 ≪ R fixed,
and φ going through [0, 2π], parameterizing the circle S1

R of radius R in
the base. We consider any smooth lift of this loop to the Dolbeault space.
(A natural choice is to use the Hitchin section, but we will not exploit this
choice anywhere.) The question we would like to answer is: where does
the Riemann–Hilbert correspondence map such a loop, as R → ∞? The
Geometric P=W conjecture follows from the property that it maps into the
generator of the fundamental group of the body of the dual boundary complex
of the Betti moduli space.

Proposition 6.2. Let σ : S1 → MDol(α) be a lift of the loop Reiφ, i.e.
h ◦ σ = IS1. Assume that dimRMDol(α) = 4 (which holds for the case at
hand). Assume that ϕ ◦ ψ ◦ σ induces an isomorphism

Z ∼= π1(S
1) → π1(|D∂MB|) ∼= Z

for R ≫ 1. Then the diagram (1) is commutative up to homotopy.

Proof. The argument of [37, Section 5] applies verbatim. It only depends on
the condition that the moduli space is a 4-manifold, not on the rank nor the
type of singularities of the underlying Higgs bundles.

For fixed 0 ≪ R, and φ going through [0, 2π] the coordinates XR,φ, YR,φ,
ZR,φ describe the image of the above mentioned loop under the Riemann
Hilbert map. To prove the statement of the Geometric P=W conjecture, we
investigate the magnitude of the XR,φ, YR,φ, ZR,φ coordinates with respect
to each other.

Introduce x = eiφ/3(πa − πb) = a+ b
√
−1 for simplicity. Then

Re(x) = a, Re(εx) = −1

2
a−

√
3

2
b, Re(ε2x) = −1

2
a+

√
3

2
b

Re(−x) = −a, Re(−εx) = 1

2
a+

√
3

2
b, Re(−ε2x) = −1

2
a−

√
3

2
b

Re((1− ε)x) =
3

2
a+

√
3

2
b, Re((1− ε)εx) = −

√
3b, Re((1− ε)ε2x) = −3

2
a+

√
3

2
b

(19)
Consider |XR,φ| from (18). It has three terms, all exponential. The

question, which of these three terms dominates as R → ∞, depends on
which of three exponents {Re(x), Re(εx), Re(ε2x)} is the largest. Similarly
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for |YR,φ| and |ZR,φ|, the dominating term depends on, which is the largest
from {Re(−x), Re(−εx), Re(−ε2x)} and from {Re((1− ε)x), Re((1− ε)εx),
Re((1−ε)ε2x)} respectively. Therefore we can decompose the complex plane
(parameterized by x) into 12 sectors, defined as follows (see also Figure 3):

Sj = {x ∈ C|π(j − 1)

6
< arg(x) <

πj

6
}, j = 1, 2, ..., 12

Since we want to analyze the asymptotic behaviour of the coordinates, we
introduce the concept of dominance: we say, that function F (R) dominates

the function G(R), if and only if |G(R)|
|F (R)| → 0, as R → ∞. Now we can

sum up in the following table, in which sector which term dominates for the
coordinates.
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Sector Dominating term of each coordinate

S1 |XR,φ| ≈ exp(R1/3Re(x)) = exp(R1/3a)

|YR,φ| ≈ exp(R1/3Re(−εx)) = exp(R1/3(1
2
a+

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)x)) = exp(R1/3(3
2
a+

√
3
2
b))

S2 |XR,φ| ≈ exp(R1/3Re(x)) = exp(R1/3a)

|YR,φ| ≈ exp(R1/3Re(−εx)) = exp(R1/3(1
2
a+

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)x)) = exp(R1/3(3
2
a+

√
3
2
b))

S3 |XR,φ| ≈ exp(R1/3Re(ε2x)) = exp(R1/3(−1
2
a+

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−εx)) = exp(R1/3(1
2
a+

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)x)) = exp(R1/3(3
2
a+

√
3
2
b))

S4 |XR,φ| ≈ exp(R1/3Re(ε2x)) = exp(R1/3(−1
2
a+

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−εx)) = exp(R1/3(1
2
a+

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)ε2x)) = exp(R1/3(−3
2
a+

√
3
2
b))

S5 |XR,φ| ≈ exp(R1/3Re(ε2x)) = exp(R1/3(−1
2
a+

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−x)) = exp(R1/3(−a))
|ZR,φ| ≈ exp(R1/3Re((1− ε)ε2x)) = exp(R1/3(−3

2
a+

√
3
2
b))

S6 |XR,φ| ≈ exp(R1/3Re(ε2x)) = exp(R1/3(−1
2
a+

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−x)) = exp(R1/3(−a))
|ZR,φ| ≈ exp(R1/3Re((1− ε)ε2x)) = exp(R1/3(−3

2
a+

√
3
2
b))

S7 |XR,φ| ≈ exp(R1/3Re(εx)) = exp(R1/3(−1
2
a−

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−x)) = exp(R1/3(−a))
|ZR,φ| ≈ exp(R1/3Re((1− ε)ε2x)) = exp(R1/3(−3

2
a+

√
3
2
b))

S8 |XR,φ| ≈ exp(R1/3Re(εx)) = exp(R1/3(−1
2
a−

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−x)) = exp(R1/3(−a))
|ZR,φ| ≈ exp(R1/3Re((1− ε)εx)) = exp(R1/3(−

√
3b))

S9 |XR,φ| ≈ exp(R1/3Re(εx)) = exp(R1/3(−1
2
a−

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−ε2x)) = exp(R1/3(1
2
a−

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)εx)) = exp(R1/3(−
√
3b))

S10 |XR,φ| ≈ exp(R1/3Re(εx)) = exp(R1/3(−1
2
a−

√
3
2
b))

|YR,φ| ≈ exp(R1/3Re(−ε2x)) = exp(R1/3(1
2
a−

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)εx)) = exp(R1/3(−
√
3b))

S11 |XR,φ| ≈ exp(R1/3Re(x)) = exp(R1/3(a))

|YR,φ| ≈ exp(R1/3Re(−ε2x)) = exp(R1/3(1
2
a−

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)εx)) = exp(R1/3(−
√
3b))

S12 |XR,φ| ≈ exp(R1/3Re(x)) = exp(R1/3(a))

|YR,φ| ≈ exp(R1/3Re(−ε2x)) = exp(R1/3(1
2
a−

√
3
2
b))

|ZR,φ| ≈ exp(R1/3Re((1− ε)x)) = exp(R1/3(3
2
a+

√
3
2
b))



36

Lemma 6.3. i) |ZR,φ| dominates |XR,φ| and |YR,φ| in all sectors.

ii) On sectors Si, i = 1, 4, 5, 8, 9, 12 |XR,φ| dominates |YR,φ|, while on
sectors Si, i = 2, 3, 6, 7, 10, 11 |YR,φ| dominates |XR,φ|.

Figure 3: The (a, b) complex plane, divided into 12 sectors, marked in every
sector whether |XR,φ| dominates |YR,φ| or the other way.

Actually lines b = ±
√
3a, b = ± 1√

3
a and the two axis divide the plane

into the above defined Si, i = 1, ..., 12 sectors, which are open subsets of the
plane, as on Figure 3. Define Ri to be the ray between sectors Si and Si+1

(where i+ 1 understood modulo 12).

Proof. The comparison of the exponents from the table in each sector shows
straightforward this result.

On S1:
3
2
a+

√
3
2
b > a > 1

2
a+

√
3
2
b, that is |ZR,φ| > |XR,φ| > |YR,φ|.

On S2:
3
2
a+

√
3
2
b > 1

2
a+

√
3
2
b > a, that is |ZR,φ| > |YR,φ| > |XR,φ|.

On S3:
3
2
a+

√
3
2
b > 1

2
a+

√
3
2
b > −1

2
a+

√
3
2
b, that is |ZR,φ| > |YR,φ| > |XR,φ|.

On S4: −3
2
a +

√
3
2
b > −1

2
a +

√
3
2
b > 1

2
a +

√
3
2
b, that is |ZR,φ| > |XR,φ| >

|YR,φ|.
On S5: −3

2
a+

√
3
2
b > −1

2
a+

√
3
2
b > −a, that is |ZR,φ| > |XR,φ| > |YR,φ|.

On S6: −3
2
a+

√
3
2
b > −a > −1

2
a+

√
3
2
b, that is |ZR,φ| > |YR,φ| > |XR,φ|.

On S7: −3
2
a+

√
3
2
b > −a > −1

2
a−

√
3
2
b, that is |ZR,φ| > |YR,φ| > |XR,φ|.
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On S8: −
√
3b > −1

2
a−

√
3
2
b > −a, that is |ZR,φ| > |XR,φ| > |YR,φ|.

On S9: −
√
3b > −1

2
a−

√
3
2
b > 1

2
a−

√
3
2
b, that is |ZR,φ| > |XR,φ| > |YR,φ|.

On S10: −
√
3b > 1

2
a−

√
3
2
b > −1

2
a−

√
3
2
b, that is |ZR,φ| > |YR,φ| > |XR,φ|.

On S11: −
√
3b > 1

2
a−

√
3
2
b > a, that is |ZR,φ| > |YR,φ| > |XR,φ|.

On S12:
3
2
a+

√
3
2
b > a > 1

2
a−

√
3
2
b, that is |ZR,φ| > |XR,φ| > |YR,φ|.

6.2 Proof of the main theorem

As previously denoted, D∂MB(c) stands for the dual boundary complex of
the compactifying divisor on the Betti side. By the results of Section 3, the
divisor is of type I1, i.e. a so called fishtail curve, and its dual simplicial
complex has one vertex with a graph loop. Denote by V the vertex, and
by E the loop edge of the graph of the complex (V corresponds to the one
irreducible component of the I1 curve). Let ϕ be Simpson’s natural map from
the punctured neighbourhood of the compactifying divisor of the Betti space,
to the body of its dual boundary complex (as denoted in the commutative
diagram in the introduction). See the definition ”evaluation map” in [31].

Consider any section (ER,φ, θR,φ) of the h Hitchin map over some fixed R.
Then its image under the non-abelian Hodge correspondence, the Riemann
Hilbert correspondence (their composition denoted by ψ earlier) and ϕ

ϕ ◦ RH ◦ NAHC(ER,φ, θR,φ) = ϕ ◦ ψ(ER,φ, θR,φ)

is a loop, and we need to shows, that it is a generator of the fundamental
group of |D∂MB|. The coordinates XR,φ, YR,φ, ZR,φ describe the Betti space,
we need to see what happens with them, as 0 ≪ R is fixed, and φ goes
through the interval [0, 2π]. Lemma 6.2 shows, that |ZR,φ| dominates the
other two coordinates, so as R → ∞, the image of the loop tends to the
point [0 : 0 : 1] on the open sectors, which is actually the nodal point of the
curve C determined by the equation

X3 + Y 3 −XY Z = 0,

and this point corresponds to the E edge of |D∂MB(c)|. The remaining
question, whether it maps into the generator of its fundamental group. Con-
sider XR,φ and YR,φ, as the function of φ, see formulas (18). In the exponent
of this formulas, eiφ/3 appears, so the exponent suffers a rotation of total
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degree 120◦ on the (a, b)-coordinate plane (see Figure 3). Here each of the 12
sectors are actually a 2-dimensional open cone with angle 30◦, so under the
rotation, exactly two times changes whether the exponent is in some white or
grey sector, that is XR,φ dominates or YR,φ. Therefore there are two critical
angles φ1 = φcrit and φ2 = φcrit + π, where the dominance of |XR,φ| or |YR,φ|
changes. That is, we can decompose S1 into two closed arcs

S1 = I1 ∪ I2,

such that, let’s say,

• for φ ∈ IntI1: |XR,φ| > |YR,φ|

• for φ ∈ IntI2: |YR,φ| > |XR,φ|.

Now consider a blow up of the compactifying curve at its nodal point.
Then the dual boundary graph changes, as on the below picture:

Figure 4: The transformation of the graph of the dual boundary complex
under the blow up. The vertex V transforms into V1, and V2 corresponds to
the appearing exceptional divisor.

The curve C locally around the nodal point is of two component, which
are the X− and Y− axis in the [X : Y : Z] coordinate system locally. After
the blow up at its nodal point, C transforms into C1 curve, and exceptional
curve C2 appears, such that C1 and C2 have two intersection points. These
two intersection points correspond to E1 and E2 in the dual picture.

That is

• for φ ∈ IntI1: ϕ ◦ ψ(ER,φ, θR,φ) ∈ E1

• for φ ∈ IntI2: ϕ ◦ ψ(ER,φ, θR,φ) ∈ E2.



39

Lemma 6.4. Consider some tiny open neighbourhoods of the critical angles
U1 = (φ1 − ϵ, φ1 + ϵ) and U2 = (φ2 − ϵ, φ2 + ϵ). Then one of U1 and U2 is
mapped onto C1, and the other one is mapped onto C2 under ψ.

Proof. There is two different behaviour of the asymptotics of the coordinates
at two different type of critical angles. One of them is on R3, R7 and R11.
Here

|ZR,φ| = |YR,φ| = |XR,φ|.

Therefore the image of this type of critical angles are away from the nodal
point [0 : 0 : 1], after the blow up it is inner point of C1. On the other hand
on R1, R5 and R9:

|ZR,φ| > |YR,φ| = |XR,φ|.

Therefore the image of this type of critical angles are in the nodal point
[0 : 0 : 1], and the image of tiny open interval around it have intersection
with both component: one coming from X− direction, one coming from Y−
direction, so the image of the critical angle must be inner point of C2 after
the blow up (also follows from |YR,φ| = |XR,φ|).

Since we have of rotation of total angle 120◦, and the arrangement of the
two type of critical angles is 120◦-periodic, one of φ1 and φ2 is of the first
type, and the other one is of the second type.

As a consequence of the above lemma

• for φ = φ1: ϕ ◦ ψ(ER,φ, θR,φ) ∈ V1

• for φ = φ2: ϕ ◦ ψ(ER,φ, θR,φ) ∈ V2

It also follows, that some tiny open neighbourhoods of the critical angles
are mapped around the vertices of the dual graph, such way, that their images
connect the images of IntI1 and IntI2 on E1 and E2. So as φ ranges through
the interval [0, 2π], the images of the tiny open intervals U1, U2 connect the
images of IntI1 and IntI2 at V1 and V2. Thus the elements ϕ ◦ ψ(ER,φ, θR,φ)
describe a path in the dual graph, which is exactly the generator of the
fundamental group of |D∂MB(c)|.

Now recall the commutative diagram, which is the subject of the conjec-
ture.
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MDol \ h−1(BR(0)) MB \ ψ(h−1(BR(0)))

H \BR(0) |D∂MB|

ψ

h ϕ

Here we constructed the map

H \BR(0) → |D∂MB|,

such as applying ϕ ◦ ψ for an arbitrary section (ER,φ, θR,φ) of h. Denote
this section by:

σ : (R,φ) 7→ (ER,φ, θR,φ)

Therefore we saw, that ϕ ◦ ψ ◦ σ : S1 → S1 is homotopic to the iden-
tity. But from the above analysis also follows, that ϕ ◦ ψ is constant on the
preimage h−1(R,φ) (which is a smooth elliptic curve of genus 1), thus ϕ◦ψ is
homotopic to h on S1, which shows the commutativity of the above diagram,
and completes the proof.
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the Painlevé cases via plumbing calculus, Int. Math. Res. Not.
2022, 5, (2020), 3201–3218.

[38] N. Nitsure: Moduli space of semistable pairs on a curve, Proc.
London Math. Soc. 62, (1991), 275–300.

[39] J. Shen, Z. Zhang: Perverse filtrations, Hilbert schemes,
and the P=W conjecture for parabolic Higgs bundles, preprint,
arXiv:1810.05330.

[40] C. Simpson: Moduli of representations of the fundamen-
tal group of a smooth projective variety II, JPublications
Mathématiques de l’IHÉS, 80 (1994), 5–79.

[41] C. Simpson: Constructing variations of Hodge structure using
Yang-Mills theory and application to uniformization, J. Amer.
Math. Soc., 1 (1988), 867–918.

[42] C. Simpson: Harmonic Bundles on Noncompact Curves, J.
Amer. Math. Soc., 3 3 (1990), 713–770.

[43] C. Simpson: The dual boundary complex of the SL(2,C)
character variety of a punctured sphere, Ann. Fac. Sci.
Toulouse, Math. (6), 25 2-3, Part A, (2016), 317–361., doi:
10.5802/afst.1496.
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