Exercise sheet 2: symmetries of the plane and of the space

Introduction to Geometry, Szilárd Szabó, special thanks to Zoltán Kovács

November the 26th, 2017

Exercise 1. Let ABC be any negatively oriented triangle and AB_1C , BCA_1 and be AC_1B be postively oriented regular triangles. Denote by O the center of AC_1B . Show that then A_1OB_1 is an isosceles triangle with base angles equal to $\pi/6$.

Exercise 2. Let ℓ_1, ℓ_2, ℓ_3 be three lines in the plane and R_1, R_2, R_3 respectively the reflections with respect to them. Show that $(R_1R_2R_3)^2$ is a translation.

Exercise 3. Let ABCDE be vertices of a positively oriented regular pentagon. Show that D is the center of the positively oriented regular decagon (i.e., 10-gon) with vertices A and B.

Exercise 4. Let n = 2k + 1 be any odd number bigger than 3. Let P_0, \ldots, P_{n-1} denote consecutive vertices of a regular *n*-gon, increasingly labelled in the positive direction. Let N denote the intersection point of the diagonals P_0P_2 and P_1P_{k+1} . Show that the length of the segment P_0N is equal to the side of the *n*-gon.