Solution sheet 2: symmetries of the plane and of the space

Introduction to Geometry, Szilárd Szabó, special thanks to Zoltán Kovács

November the 13th, 2017

Exercise 1. Let ABC be any negatively oriented triangle and AB_1C , BCA_1 and be AC_1B be postively oriented regular triangles. Denote by O the center of AC_1B . Show that then A_1OB_1 is an isosceles triangle with base angles equal to $\pi/6$.

Solution: Consider the rotations $F_{B_{1},\pi/3}$ and $F_{A_{1},\pi/3}$. Their composition carries B to

$$F_{A_1,\pi/3}(F_{B_1,\pi/3}(B)) = F_{A_1,\pi/3}(C) = A.$$

Denote by ℓ the line joining A_1 and B_1 and by ℓ_A the line passing through A_1 forming angle $\pi/6$ with ℓ (so that ℓ be carried to ℓ_A by a negative rotation by angle $\pi/6$ about A_1). Similarly, denote by ℓ_B the line passing through B_1 forming angle $\pi/6$ with ℓ (so that ℓ be carried to ℓ_B by a positive rotation by angle $\pi/6$ about B_1). Furthermore, denote by R, R_A, R_B the reflections with respect to ℓ, ℓ_A, ℓ_B respectively. Then, we have

$$F_{A_1,\pi/3}F_{B_1,\pi/3} = (R_B R)(R R_A) = R_B R_A.$$

Let O' be the intersection point of ℓ_A and ℓ_B , then we see that the triangle $A_1O'B_1$ is isosceles with base angles equal to $\pi/6$. In particular,

$$F_{A_1,\pi/3}F_{B_1,\pi/3}$$

is rotation by positive angle $2\pi/3$ about O'. We have seen above that this rotation maps B to A. On the other hand, the only rotation by positive angle $2\pi/3$ mapping B to A has center O. We infer that O = O', hence by the above we get that $A_1O'B_1$ is isosceles with base angles equal to $\pi/6$.

Exercise 2. Let ℓ_1, ℓ_2, ℓ_3 be three lines in the plane and R_1, R_2, R_3 respectively the reflections with respect to them. Show that $(R_1R_2R_3)^2$ is a translation.

Solution: First, assume that ℓ_1, ℓ_2, ℓ_3 are all parallel to each other. Then, the composition R_1R_2 is a translation. It is then possible to find a line ℓ'_1 such that

$$R_1 R_2 = R_1' R_3,$$

where R'_1 stands for the reflection with respect to ℓ'_1 . We find

$$(R_1R_2R_3)^2 = (R'_1R_3R_3)^2 = (R'_1)^2 = \mathrm{Id}.$$

Assume now that the lines are not all parallel. Then, ℓ_2 is not parallel to at least one of ℓ_1, ℓ_3 . Without restricting the generality, we suppose that ℓ_2 is not parallel to ℓ_1 , i.e. they intersect each other in some point O. Then, the composition R_1R_2 is a rotation $F_{O,\varphi}$ about O. Then, we may find lines ℓ'_1, ℓ'_2 passing through O and forming the same angle $\varphi/2$ with each other as ℓ_1, ℓ_2 such that in addition ℓ'_2 is perpendicular to ℓ_3 . Then, $F_{O,\varphi}$ may also be expressed as

$$F_{O,\varphi} = R_1' R_2'$$

where R'_1, R'_2 stand for the reflections with respect to ℓ'_1, ℓ'_2 respectively. We then find:

$$R_1 R_2 R_3 = F_{O,\varphi} R_3 = R_1' R_2' R_3.$$

Let us denote by O' the intersection of ℓ'_2 and ℓ_3 . Then, R'_2R_3 is the half-turn $H_{O'}$ with respect to O'. In particular, we find that $R_1R_2R_3$ is a composition of a reflection with a half-turn, i.e. a glide-reflection. But it is clear that the square of a glide-reflection is a translation.

Exercise 3. Let ABCDE be vertices of a positively oriented regular pentagon. Show that D is the center of the positively oriented regular decagon (i.e., 10-gon) with vertices A and B. **Solution:** Let us set $\alpha = ADB \triangleleft$. It is sufficient to show that

$$\alpha = \frac{2\pi}{10}$$

because then the triangle ADB is isosceles with the same central angle at D as the regular decagon, however this property uniquely characterizes the center of the regular decagon.

Let us denote by O the center of the regular pentagon. Consider the rotation F by angle $\frac{2\pi}{5}$ in the negative direction about O. We will use a description of F as a product of two reflections. Introduce the following lines given by two incident points:

$$\ell_1 = AD$$
$$\ell_2 = DO$$
$$\ell_3 = AO.$$

Denote by R_j the reflection with respect to ℓ_j . Then, we have

$$F = R_3 R_2.$$

On the other hand, let F' be rotation centered at D by angle α in the positive direction. We then have

$$F' = R_2 R_1.$$

We know from the theory that FF' is a rotation by angle

$$\alpha - \frac{2\pi}{5} \pmod{2\pi}$$
.

Now, we see that

$$FF' = (R_3R_2)(R_2R_1) = R_3R_1.$$

In particular, we have that

$$FF'(A) = A, \quad FF'(D) = C,$$

so the center of the rotation obtained by composition is A and its angle is $-\alpha$. We infer that

$$\alpha - \frac{2\pi}{5} \equiv -\alpha \pmod{2\pi},$$

i.e.

$$2\alpha = \frac{2\pi}{5} + k2\pi$$

for some integer k. As $\alpha \in (0, \pi/2)$, we see that

$$\alpha = \frac{2\pi}{10},$$

and we are done.

Exercise 4. Let n = 2k + 1 be any odd number bigger than 3. Let P_0, \ldots, P_{n-1} denote consecutive vertices of a regular *n*-gon, increasingly labelled in the positive direction. Let N denote the intersection point of the diagonals P_0P_2 and P_1P_{k+1} . Show that the length of the segment P_0N is equal to the side of the *n*-gon.

Solution: Since $P_0P_{k+1}P_1$ is an equilateral triangle, it is sufficient to prove that P_1P_0N is similar to it. As these two triangles share the angle at P_1 , we merely need to show that they share another angle too. We will show that $P_1P_0N \leq = P_0P_{k+1}P_1 \leq$. We achieve this by showing that both of these angles are equal to $P_0P_2P_1 \leq$. Indeed, $P_1P_0N \leq = P_1P_0P_2 \leq$ (because N is on the diagonal P_0P_2) and $P_1P_0P_2 \leq = P_0P_2P_1 \leq$ (because the triangle $P_0P_1P_2$ is equilateral), show that $P_1P_0N \leq = P_0P_2P_1 \leq$. On the other hand, we have $P_0P_2P_1 \leq = P_0P_{k+1}P_1 \leq$ because P_0, P_1, P_2, P_{k+1} lie on a circle (the circumscribed circle of the regular *n*-gon). This finishes the proof.