- 1. Show that if A > 0, then the inverse of the Lyapunov operator $L_A(X) = A^*X + XA$ is a positive map.
- 2. Prove that if $\|\phi(I)\| = \|\phi\|$ and $\phi(I) \ge 0$ holds for a linear functional $\phi: M_n \to \mathbb{C}$, then it is positive.
- 3. Let ϕ be a linear map. Show that ϕ is positive iff ϕ^* is positive, and ϕ is unital iff ϕ^* is trace preserving
- 4. Let ϕ be a completely positive unital map. Show that if f is convex, then

$$\operatorname{Tr} f(\phi(A)) \leq \operatorname{Tr} \phi(f(A)).$$

Moreover, if f is matrix convex, then the inequality holds without the trace as well.

Deadline: Dec 8.