- 1. Give examples of A and B 2×2 matrices, such that
 - a) no two of matrices $e^A e^B$, $e^B e^A$ and e^{A+B} agree
 - b) $AB \neq BA$, but still $e^A e^B = e^A e^B = e^{A+B}$
 - c) $e^{A}e^{B} = e^{B}e^{A} \neq e^{A+B}$
 - $d) e^A e^B \neq e^B e^A = e^{A+B}$
- $2. e^{i(v \cdot \sigma)} = ?$
- 3. Prove, that $\det e^X = e^{\operatorname{Tr} X}$ for any matrix
- 4. Using the Golden-Thompson-Lieb inequality, prove
 - a) the Golden-Thompson inequality
 - a) that if BC = CB, then $\operatorname{Tr} e^{A+B+C} \leq \operatorname{Tr} e^A e^B e^C$

Deadline: October 27.