Publikációk
Szirmai
Jenő
2018. 08. 29.
Könyv,
disszertáció:
[1] Á. G. Horváth – J. Szirmai, Nemeuklideszi
geometriák modelljei,
Typotex Kiadó, Budapest (2004), ISBN: 963 9548
40 5.
Elektronikus kiadás:
Typotex kiadó, Budapest
[2009]: ISBN-13 978-963-9548-40-4.
[2] Szirmai J., Kombinatorikus térkikövezések
metrikus realizációi a hiperbolikus térben.
PhD Disszertáció, BME
(1997).
[3] Szirmai J., Gömbkitöltések és fedések
Thurston geometriákban, valamint magasabb dimenziós hiperbolikus terekben.
Habilitációs értekezés,
BME (2016).
Tudományos
publikációk:
[4] J. Szirmai, Density upper bound of
congruent and non-congruent hyperball packings generated by truncated regular
simplex tilings,
Rendiconti del Circolo Matematico
di Palermo Series 2,
67 [2018], 307-322,
DOI: 10.1007/s12215-017-0316-8,
arXiv:1510.03208.
[5] J.
Szirmai, Hyperball packings in hyperbolic 3-space,
[6] E. Molnár - J. Szirmai, Top dense
hyperbolic ball packings and coverings for complete Coxeter orthoscheme groups,
Publications de l'Institut
Mathématique, 103(117) [2018], 129-146,
DOI: 10.2298/PIM1817129M, arXiv: 1612.04541.
[7] J. Szirmai, Horoball packings related to the
4-dimensional hyperbolic 24 cell honeycomb {3,4,3,4},
Filomat [2018], 32/1,
87-100, DOI: 10.2298/FIL1801087S,
arXiv: 1502.02107.
[8] E. Molnár – I. Prok - J. Szirmai, On
maximal homogeneous 3-geometries and their visualization,
Universe , 3/4, (2017), 83, 12 pages; DOI:10.3390/universe3040083.
[9] J. Szirmai, Packings with horo- and hyperballs
generated by simple frustum orthoschemes,
Acta
Mathematica Hungarica, 152 (2), (2017), 365–382 DOI:10.1007/s10474-017-0728-0,
arXiv: 1505.03338.
[10] E. Molnár – P. Pech - J. Szirmai, Simson-Wallace locus
in d-dimensional projective-metric space,
Journal of Geometry, 108, 2017), 393–409, DOI: 10.1007/s00022-016-0346-y.
[11] E. Molnár - J. Szirmai – A. Vesnin, Geodesic
and translation ball packings
generated by prismatic
tesselations of the universal cover of SL(2,R),
Results
in Mathematics, 71(3), (2017), 623-642, DOI: 10.1007/s00025-016-0542-y.
[12] E. Molnár - J. Szirmai, On hyperbolic cobweb
manifolds,
Studies
of the University of Zilina,
Mathematical Series,
28 (2016), 43-52,
[13] J.
Szirmai, Non-periodic geodesic ball packings to infinite regular prism tilings
in SL(2,R) space,
Rocky
Mountain Journal of Mathematics, 46/3, (2016), 1055--1070,
arXiv: 1403.3192.
[14] G. Csima -- J. Szirmai, Isoptic surfaces of convex
polyhedra,
Computer Aided Geometric Design
(CAGD) , 47,
(2016), 55-60,
DOI: 10.1016/j.cagd.2016.03.001 arXiv:1510.07718.
[15] J.
Szirmai, The optimal hyperball packings related to the smallest compact
arithmetic 5-orbifolds,
Kragujevac
Journal of Mathematics, 40(2), (2016), 260-270,
DOI:10.5937/KgJMath1602260S,
arXiv: 1306.4221.
[16] R. T. Kozma -- J. Szirmai, Symmetries of
horoball packings related to famous 3-dimensional hyperbolic tilings,
Symmetry:
Culture and Science, Vol. 27, Number 4, [2016], 261-277.
[17] B. Schultz - J. Szirmai, Densest geodesic
ball packings to space groups generated by screw motions,
Mediterranean Journal of
Mathematics, 13/2, (2016), 775–788. DOI: 10.1007/s00009-014-0513-z, arXiv: 1405.5441 .
[18] J.
Szirmai, The least dense hyperball covering to the regular prism tilings in the
hyperbolic n-space,
Annali
di Matematica Pura ed Applicata, 195,
(2016) 235-248, DOI: 10.1007/s10231-014-0460-0,
arXiv: 1312.2328.
[19] E. Molnár – I. Prok - J. Szirmai, The
Euclidean visualization and projective modelling of the 8 Thurston geometries,
Studies of the University of
Zilina, Mathematical Series 27, (2015), 35-62.
[20] R. T. Kozma – J. Szirmai, New Lower Bound
for the Optimal Ball Packing Density of
Hyperbolic 4-space,
Discrete and Computational
Geometry 53, (2015), 182--198, DOI: 10.1007/s00454-014-9634-1, arXiv: 1401.6084.
[21] A. Cavichioli – E. Molnár –
F. Spaggiari – J. Szirmai, Some tetrahedron manifolds with Sol geometry.
Journal
of Geometry, 105/3, (2014), 601-614, DOI:
10.1007/s00022-014-0222-6.
[22] J. Szirmai, A candidate to the densest
packing with equal balls in the Thurston geometries,
Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry),
55/2, (2014), 441- 452, DOI: 10.1007/s13366-013-0158-2, arXiv:1210.2202 .
[23] J. Szirmai, Regular prism tilings in SL(2,R) space,
Aequationes
mathematicae 88/1 – 2, (2014), 67-79, DOI: 10.1007/s00010-013-0221-y, arXiv:1206.4408 .
[24] J. Szirmai, Simply transitive
geodesic ball packings to space groups
generated by glide reflections,
Annali
di Matematica Pura ed Applicata, 193/4, (2014), 1201-1211, DOI: 10.1007/s10231-013-0324-z, arXiv1206.0566.
[25] E. Molnár - J. Szirmai – A. Vesnin, The
optimal Packings by translation balls in SL(2,R),
Journal of Geometry, 105 (2), (2014), 287-306, DOI:
10.1007/s00022-013-0207-x.
[26] G. Csima - J. Szirmai, Isoptic curves of conic sections in constant curvature geometries,
Mathematical
Communications, 19
(2014), 277-290 arXiv: 1301.6991.
[27] E. Molnár - J. Szirmai: Volumes and geodesic
ball packings to the regular prism tilings in SL(2,R) space
Publ. Math. Debrecen, 84/1-2 (2014), 189–203, DOI: 10.5486/PMD.2014.5832, arXiv: 1304.0546.
[28] G. Csima - J. Szirmai, On the isoptic
hypersurfaces in the n-dimensional
Euclidean space,
KoG (Scientific and professional journal of Croatian Society for
Geometry and Graphics),
17, (2013), 53-57.
[29] J. Szirmai, On lattice coverings of the Nil
space by congruent geodesic balls,
Mediterranean Journal of
Mathematics, Vol. 10. No. 2, (2013),
953-970, DOI: 10.1007/s00009-012-0211-7, arXiv:1105.1986.
[30] J. Szirmai, Horoball packings to the
totally asymptotic regular simplex in the hyperbolic n-space,
Aequationes mathematicae, 85 (2013), 471–482, DOI: 10.1007/s00010-012-0158-6, arXiv:1112.1969.
[31] J. Szirmai, Geodesic ball packings in space for generalized
Coxeter space groups,
Mathematical Communications, 17/1, (2012),
151-170.
[32] B. Odehnal - J. Szirmai, Packing Coxeter honeycombs with sequences
of spheres,
Beiträge zur Algebra und Geometrie (Contributions to Algebra and
Geometry), 54/1 (2013), 441 – 452, DOI: 10.1007/s13366-012-0110-x.
[33] J. Szirmai, Lattice-like translation ball
packings in Nil space,
Publ. Math.Debrecen,
80/3-4, [2012], 427-440, DOI: 10.5486/PMD.2012.5117.
[34] J. Szirmai, Horoball packings and their
densities by generalized simplicial density function in the hyperbolic space,
Acta
Mathematica Hungarica, 136/1-2, [2012],
39-55, DOI: 10.1007/s10474-012-0205-8, arXiv:1105.4315.
[35] E.
Molnár, J. Szirmai, Classification of Sol lattices,
Geometriae Dedicata, 161, (2012), 251-275, DOI: 10.1007/s10711-012-9705-5, arXiv:1106.4646.
[36] J.
Pallagi - B. Schultz - J. Szirmai, On regular square prism tilings in SL(2,R)
space,
KoG (Scientific and professional journal of Croatian Society for
Geometry and Graphics) 16, [2012], 36-42.
[37] R. T. Kozma – J. Szirmai, Optimally Dense
Packings for Fully Asymptotic Coxeter Tilings by Horoballs of Different Types,
Monatshefte
für Mathematik, 168, [2012],27-47 DOI: 10.1007/s00605-012-0393-x, arXiv:1007.0722.
[38] J. Szirmai - J. Pallagi, Visualization of
the Dirichlet-Voronoi cells in space,
Pollack
Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 95-104 DOI: 10.1556/Pollack.7.2012.S.9.
[39] J. Szirmai - G. Csima, Isoptic curves to
parabolas in the hyperbolic plane,
Pollack
Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 55-64 DOI: 10.1556/Pollack.7.2012.S.5.
[40] J. Szirmai - B. Schultz, On parallelohedra
of Nil-space,
Pollack
Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 129-136 DOI: 10.1556/Pollack.7.2012.S.12.
[41] J. Pallagi - B. Schultz - J. Szirmai, Equidistant
surfaces in Nil space,
Studies of the University of
Zilina, Mathematical Series, 25, [2011),
31-40.
[42] J. Pallagi - B. Schultz - J. Szirmai, Equidistant
surfaces in space,
KoG (Scientific and professional journal of Croatian Society for
Geometry and Graphics) 15, [2011], 3-6.
[43] E. Molnár- J. Szirmai - J. R. Weeks, 3-simplex tilings, splitting orbifolds and manifolds,
Symmetry:
Culture and Science, Vol. 22, Numbers 3-4, [2011], 435-459.
[44] J. Katona - E. Molnár- I. Prok - J. Szirmai, Higher-dimensional central projection into 2-plane with visibility and applications,
Kragujevac Journal of Mathematics, Vol.
35, Number 2, [2011], 249-263.
[45] J. Szirmai, Geodesic ball packings in space for generalized
Coxeter space groups,
Beiträge zur Algebra und Geometrie (Contributions to Algebra and
Geometry) 52/2 (2011),
413 – 430, DOI: 10.1007/s13366-011-0023-0
[46] G. Csima - J. Szirmai,
Isoptic curves in hyperbolic plane,
Studies
of the University of Zilina, Mathematical Series. Vol. 24 (2010), 15-22.
[47] Szirmai,
J. The densest translation ball packing by fundamental lattices in Sol space,
Beiträge zur Algebra und Geometrie (Contributions to Algebra and
Geometry) 51 No. 2 (2010),
353 – 373.
[48] E. Molnár - I. Prok - J. Szirmai,
Szimmetrikus kövezések végtelen sorozata a hiperbolikus térben,
Matematikai Lapok 16, Numbers 2, [2010], 79-92.
[49] J. Pallagi - B. Schultz - J. Szirmai, Visualization
of geodesic curves, spheres and equidistant surfaces in space,
KoG (Scientific and professional journal of Croatian Society for
Geometry and Graphics) 14, [2010], 35-40.
[50] E.
Molnár- J. Szirmai, Symmetries
in the 8 homogeneous 3-geometries.
Symmetry: Culture and Science, Vol. 21, Numbers
1-3, [2010], 87-117.
[51] E. Molnár - J. Szirmai – A. Vesnin, Projective
metric realizations of cone-manifolds with singularities along 2-bridge knots
and links,
Journal
of Geometry, 95 ,
(2009], 91–133.
[52] E. Molnár- J. Szirmai, Generalized polygonal
Wankel engines, Periodica Polytechnika Ser.Transp. Eng. 37/1-2, [2009], 29-32.
[53] J. Szirmai, Extremal ball and horoball
packings to the regular tilings by infinitely centred cells in the hyperbolic
d-space,
Studies of the University of Zilina, Mathematical
Series. Vol. 22 (2008), 39-50.
[54] E. Molnár - J. Szirmai, Minimally presented
orientable splitting 3-manifold with one cusp,
Studies of the University of Zilina, Mathematical
Series. Vol. 22 (2008), 19-30.
[55] J. Szirmai, The optimal ball and horoball
packings to the Coxeter honeycombs in
the hyperbolic d-space,
Beiträge
zur Algebra und Geometrie (Contributions to Algebra and Geometry).
48 No. 1 (2007), 35-47.
[56] J. Szirmai, The densest geodesic ball
packing by a type of Nil lattices,
Beiträge
zur Algebra und Geometrie (Contributions to Algebra and Geometry).
48 No. 2 (2007), 383-397.
[57] J. Szirmai, The regular p-gonal prism
tilings and their optimal hyperball packings in the hyperbolic 3-space,
Acta Mathematica Hungarica 111 (1-2) (2006), 65-76.
[58] E. Molnár- J. Szirmai, On Nil
crystallography, Symmetry: Culture and Science Volume
17, Numbers 1-2, pages 55-74 (2006).
[59] J. Szirmai: The regular prism tilings and
their optimal hyperball packings in the hyperbolic n-space,
Publ.
Math. Debrecen, 69 (1-2) (2006), 195-207.
[60] I. Prok - J. Szirmai, Optimal ball packings
for crystallographic groups of cubic systems and their visualization by
computer,
Zeitschrift
für Kristallographie, 221/1 (2006),
99-103.
[61] E. Molnár - I. Prok - J. Szirmai,
Classification of tile-transitive 3-simplex tilings and their realizations in
homogeneous geometries,
Non-Euclidean Geometries, János Bolyai
Memorial Volume, Editors: A. Prékopa and E. Molnár,
Mathematics and Its Applications, Vol. 581, Springer
(2006), pp. 321--363.
[62] J. Szirmai: Horoball packings for the
Lambert-cube tilings in the hyperbolic 3-space,
Beiträge zur Algebra und Geometrie (Contributions
to Algebra und Geometry) 46 No. 1
(2005), 43-60.
[63] J. Szirmai,
The optimal ball and horoball packings of the Coxeter tilings in the
hyperbolic 3-space,
Beiträge
zur Algebra und Geometrie (Contributions to Algebra and Geometry) 46 No. 2 (2005), 545-558.
[64] J. Szirmai: Derivation of a class of
complete orthoschemes by Coxeter's method in the hyperbolic 4-space,
Studies of the University of Zilina, Mathematical
Series. Vol. 18/1
(2004), 49-62.
[65] J. Szirmai: Flächentransitiven Lambert
Würfeltypen und ihre optimale Kugelpackungen ,
Acta
Mathematica Hungarica, (2003), 100 (1-2), 101-116.
[66] I. Prok - J. Szirmai, Simply transitive
optimal ball packings for the orientable crystallographic groups of the cubic
system,
Periodica
Polytechnica Ser. Mech. Eng. (2003), 47/1 57-64.
[67] J. Szirmai: Determining the optimal Horoball
packings to some famous tilings in the hyperbolic 3-space,
Studies of the University of Zilina, Mathematical Series. Vol. 16/1 (2003),
89-98.
[68] E. Molnár - I. Prok - J. Szirmai, D-V cells
and fundamental domains for crys-tallographic groups, algorithms and graphic
realizations, Mathematical and Computer Modelling, (2003), 38, 929-943.
[69] E. Molnár - I. Prok - J. Szirmai, Bestimmung
der transitiven optimalen Kugelpackungen für die 29 Raumgruppen, die
Coxetersche Spiegelungs-untergruppen enthalten,
Studia
Sci. Math. Hungarica, (2002), 39 443--483.
[70] E. Molnár - T. Schulz - J. Szirmai, Periodic
and aperiodic figures on the plane by higher dimensions,
Journal
for Geometry and Graphics (2001), Vol 5, No 2. 133-144.
[71] Máté Cs. - Szirmai J., A kockarendszerhez
tartozó tércsoportok egyszeresen tranzitív gömbkitöltéseinek meghatározása
számítógéppel,
Alkalmazott Matematikai
Lapok , 19 (1999),
87-111.
[72] E. Molnár - I. Prok - J. Szirmai, The
Gieseking manifold and its surgery orbifolds,
Novi Sad, Journal of
Mathematics (1999), Vol 29, No. 3.
187-197.
[73] E. Molnár - I. Prok - J. Szirmai,
Classification of solid transitive simplex tilings in simply connected
3-spaces, Part II. Metric realizations of the maximal simplex tilings,
Periodica Mathematica
Hungarica. 35 (1-2) (1997),
47-94.
[74] J. Szirmai, Über eine unendliche Serie der
Polyederpflasterungen von flchentransitiven Bewegungsgruppen,
Acta Mathematica
Hungarica, 73 (3) (1996),
247-261.
[75] J. Szirmai, Metrische Realisierungen von
zwei Familien der dreidimension-alen körpertransitiven Symplexpflasterungen,
Annales Univ. Sci.
Budapest. Sect. Math. 39,
(1996), 145-162.
[76] E. Molnár - J. Szirmai, Einige Pflasterungen
des hyperbolischen Raumes mittels flächentransitiver Bewegungsgruppen,
Annales Univ. Sci. Budapest.
Sect. Math. 38, (1995),
95-108.
[77] J. Szirmai, Typen von flächentransitiven
Würfelpflasterungen,
Annales Univ. Sci.
Budapest. Sect. Math. 37, (1994)
171-184.
[78] Szirmai J., Néhány tércsoport optimális
gömbkitöltése,
Alkalmazott Matematikai
Lapok 17
(1993), 87-99.
[79] J. Szirmai, Optimale Kugelpackungen für die
Raumgruppen F23, P432 und F432,
Periodica Polytechnika
Ser. Mech. Eng. 36, (1992),
317-331.
Tudományos
publikációk konferencia kiadványban:
[80] B.
Schultz - J. Szirmai, Interesting surfaces in Nil space,
Proceedings
of 8th International Conference on Applied Informatics,
(ICAI) Eger, (2010)
Hungary, Vol.1 185-192.
[81] J. Szirmai, Visualization of the geodesic
ball packings in the Nil geometry
Proceedings
of 7th International Conference on Applied Informatics
(ICAI) Eger, (2007)
Hungary,
163-174.
[82] J. Szirmai: Iterationsserien der
Dirichlet-Voronoi Zerlegungen,
Proceedings
of „Dresden Symposium Geomety ”. (2003), 347-355.
[83] E. Molnár - I. Prok - J. Szirmai,
Classification of hyperbolic manifolds and related orbifolds with charts up to
two ideal simplices, Proceedings of Internationale Tagung über
Geometrie, Algebra und Analysis Balatonfüred, Hungary, (1999), 293-315.
[84] E. Molnár - I. Prok - J. Szirmai, Two
families of fundamental 3-simplex tilings and their realizations in various
3-spaces, Proceedings of International Scientific Conference
of Mathematics, Zilina, Slovakia, (1998) Vol 2, 43-64.
[85] J. Szirmai, Ein Computeralgorithmus für die
Bestimmung der einfach transitiven optimalen Kugelpackungen unter zum
Würfelsystem gehörigen Raumgruppen,
Proceedings
of International Conference
on Applied Informatics Eger-Noszvaj, Hungary, (1997) 285-301.
[86] G. Csima - J. Szirmai, Isoptic curves of
generlized conic sections in hyperbolic geometry, isoptics in Euclidean space,
Proceedings
of the PhD Conference, Doctoral School of Mathematics an Computer Science,
Budapest
University of Technology and Economics, [2013] , 51-55, ISBN 978-963-313-085-8.
[87] B. Schultz - J. Szirmai, Densest geodesic
ball packings to space groups generated
by rotations,
Proceedings
of the PhD Conference, Doctoral School of Mathematics an Computer Science,
Budapest
University of Technology and Economics, [2013] , 56-61, ISBN 978-963-313-085-8.
[88] J. Katona
- E. Molnár- I. Prok - J. Szirmai, Visualization
with visibility of higher dimensional and non-Euclidean geometries,
Proceedings
of the 16th International Conference on Geometry and Graphics, H. Schröcker,
M. Husty (ed.); Innsbruck University Press, Innsbruck [2014], No. 60, 10 pages,
ISBN: 978-3-902936-46-2.
[89] E.
Molnár- I. Prok - J. Szirmai, Visual
mathematics and geometry, the "final" step: projective geometry through linear algebra,
Proceedings
of the 5th International Scientific Colloquium
Mathematics and Children, (Teaching and Learning Mathematics) /
Kolar-Begović, Z., Kolar-Šuper, R., Đurđević Babić, I. (ed.). - Osijek ) [2015], 239-249 , ISBN:
978-953-197-586-5.
[90] E. Molnár – P. Pech - J. Szirmai, On visualization of
homogeneous 3-geometries and their Simson-Wallace locus for simplices via exterior
calculus,
Proceedings
of the Czech-Slovak Conference on Geometry and Graphics,
A. Kolcun, M. Lávicka, M. Zácek [ed]; Ostravská
Univerzita (2016), 129-144, ISBN 978-80-7464-874-8 (online), ISBN
978-80-7464873-1 (CD).
[91] E. Molnár- I. Prok - J. Szirmai, The
football {5, 6, 6} and its geometries: from a sport tool to fullerens and
further,
Proceedings
of the 6th International Scientific
Colloquium Mathematics and Children, (Mathematics
Education as a Science and a Profession) / Kolar-Begović, Z., Kolar-Šuper, R., Jukić Matić,
I. (ed.). – Zagreb-ELEMENT ) [2017], 66-87 , ISBN: 978-953-197-592-6, arXiv: 1703.02264.
[92] E. Molnár – J. Szirmai, Non-Euclidean
polyhedral manifolds, models and visualization,
Proceedings
of the Slovak-Czech Conference on Geometry and Graphics,
D. Velichová, M. Lávicka, S. Tomiczková [ed]; Vydavatelstvo
SCHK, Bratislava, (2017), 133-140, ISBN 978-80-89597-78-9.
[93] E. Molnár – J. Szirmai, Hyperbolic space
forms with crystallographic applications and visualization, In: Cocchiarella L. (eds) ICGG 2018 - Proceedings of the 18th
International Conference on Geometry and Graphics. ICGG 2018.
Advances in Intelligent Systems and Computing, vol 809.
Springer, (2018), 320-337, DOI: 10.1007/978-3-319-95588-9_26.
Elfogadott
munkák:
[94] G. Csima - J. Szirmai, Isoptic curves of
generalized conic sections in the hyperbolic plane,
Ukrainian Mathematical Journal (2017),
arXiv: 1504.06450.
[95] J. Szirmai, Nil geodesic triangles and their interior
angle sums,
Bulletin of the
Brazilian Mathematical Society, New Series (2018),
DOI: 10.1007/s00574-018-0077-9,
arXiv: 1611.05613.
[96] G. Csima – J. Szirmai, The sum of the
interior angles in geodesic and translation triangles of SL(2,R) geometry,
Filomat (2018),
arXiv: 1610.01500.
Benyújtott
munkák:
[97] R. T. Kozma – J. Szirmai, The structure and
visualization of optimal horoball packings in 3-dimensional hyperbolic space,
Submitted Manuscript [2017]. arXiv: 1601.03620, (Melléklet: http://homepages.math.uic.edu/~rkozma/SVOHP.html)
[98] B. Schultz -- J. Szirmai, Geodesic ball packings generated by
regular prism tilings in Nil geometry,
Submitted Manuscript [2017], arXiv: 1607.04401.
[99] J. Szirmai, Triangle angle sums related to translation
curves in Sol geometry,
Submitted Manuscript [2017], arXiv: 1703.06646.
[100] J. Szirmai, Bisector surfaces and
circumscribed spheres of tetrahedra derived by translation curves in Sol
geometry,
Submitted Manuscript [2017], arXiv: 1705.04207.
[101] J. Szirmai, Decomposition method related
to saturated hyperball packings,
Submitted Manuscript (2017), arXiv: 1709.04369.
[102] J. Szirmai -- A. Vránics, Lattice
coverings by congruent translation balls using translation-like bisector
surfaces in Nil geometry,
Submitted Manuscript (2017),
arXiv:1710.02394.
[103] E. Molnár – J. Szirmai, Infinite series
of compact hyperbolic manifolds,
as possible crystal
structures,
Submitted Manuscript (2018),
arXiv:1711.09799.
[104] J. Szirmai, Hyperball packings related to
octahedron and cube tilings in hyperbolic space,
Submitted Manuscript (2018), arXiv: 1709.04369.
[105]
R. T. Kozma – J. Szirmai, New horoball packing density
lower bounds in hyperbolic 5-space,
Submitted Manuscript (2018).
Egyéb:
[106] Szirmai J., Ábrázoló geometria, (Munkafüzet középiskolák számára) 1992 Budapest
[107] E. Molnár - I. Prok - J. Szirmai, Kristályok
és periodikus kövezések,
Erdélyi Matematikai Lapok (Brassó) (2005) 6, 1-15.