Publikációk

Szirmai Jenő

2017. 04. 01.

 

 

99 publikáció került beadásra ebből 86 megjelent, 3 elfogadott és 10 benyújtott munka.

A publikációimra 97 független hivatkozást kaptam. 

 

Könyv, disszertáció:

 

[1]      Á. G. Horváth – J. Szirmai, Nemeuklideszi geometriák modelljei,

         Typotex Kiadó, Budapest (2004), ISBN: 963 9548 40 5.

 

Elektronikus kiadás:

Typotex kiadó, Budapest [2009]: ISBN-13 978-963-9548-40-4.

[2]      Szirmai J., Kombinatorikus térkikövezések metrikus realizációi a hiperbolikus térben.

         PhD Disszertáció, BME (1997).

[3]      Szirmai J., Gömbkitöltések és fedések Thurston geometriákban, valamint magasabb dimenziós hiperbolikus terekben.

         Habilitációs értekezés, BME (2016).

        

Tudományos publikációk:

[4]      E. Molnár - J. Szirmai – A. Vesnin, Geodesic and translation ball packings

generated by prismatic tesselations of  the universal cover of SL(2,R),

Results in Mathematics, (2017) 71(3), 623-642, DOI: 10.1007/s00025-016-0542-y.

[5]      E. Molnár - J. Szirmai, On hyperbolic cobweb manifolds,

Studies of the University of  Zilina, Mathematical Series, 28 (2016), 43-52,

arXiv: 1701.06757.

[6]      J. Szirmai, Non-periodic geodesic ball packings to infinite regular prism tilings in SL(2,R) space,

Rocky Mountain Journal of Mathematics, 46/3 (2016), 1055--1070,  arXiv: 1403.3192.

[7]      G. Csima -- J. Szirmai, Isoptic surfaces of convex polyhedra,

Computer Aided Geometric Design (CAGD) , 47  (2016), 55-60,

DOI: 10.1016/j.cagd.2016.03.001  arXiv:1510.07718.

[8]      J. Szirmai, The optimal hyperball packings related to the smallest compact arithmetic 5-orbifolds,

Kragujevac Journal of Mathematics, 40(2) (2016), 260-270,

DOI:10.5937/KgJMath1602260S, arXiv: 1306.4221.

 

[9]      R. T. Kozma -- J. Szirmai, Symmetries of horoball packings related to famous 3-dimensional hyperbolic tilings,

Symmetry: Culture and Science, Vol. 27, Number 4, [2016], 261-277.

[10]    B. Schultz - J. Szirmai, Densest geodesic ball packings to  space groups generated by screw motions,

Mediterranean Journal of Mathematics, 13/2 (2016), 775–788. DOI: 10.1007/s00009-014-0513-z,  arXiv: 1405.5441 .

[11]    J. Szirmai, The least dense hyperball covering to the regular prism tilings in the hyperbolic n-space,

Annali di Matematica Pura ed Applicata,  195, (2016) 235-248,  DOI: 10.1007/s10231-014-0460-0, arXiv: 1312.2328.

[12]    E. Molnár – I. Prok - J. Szirmai, The Euclidean visualization and projective modelling of the 8 Thurston geometries,

Studies of the University of Zilina, Mathematical Series 27, (20,15), 35-62.

[13]    R. T. Kozma – J. Szirmai, New Lower Bound for the Optimal Ball Packing    Density of Hyperbolic 4-space,

Discrete and Computational Geometry   53, (2015), 182--198, DOI: 10.1007/s00454-014-9634-1,  arXiv: 1401.6084.

[14]     A. Cavichioli – E. Molnár – F. Spaggiari – J. Szirmai, Some tetrahedron manifolds with Sol geometry.

Journal of Geometry, 105/3, (2014), 601-614, DOI: 10.1007/s00022-014-0222-6.

[15]     J. Szirmai, A candidate to the densest packing with equal balls in the Thurston geometries,

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry),

55/2, (2014), 441- 452, DOI: 10.1007/s13366-013-0158-2, arXiv:1210.2202 .

[16]     J. Szirmai, Regular prism tilings in SL(2,R) space,  

Aequationes mathematicae  88/1 – 2,  (2014), 67-79, DOI: 10.1007/s00010-013-0221-y, arXiv:1206.4408 .

[17]    J. Szirmai, Simply transitive geodesic ball packings to  space groups generated by glide reflections,

Annali di Matematica Pura ed Applicata, 193/4, (2014), 1201-1211, DOI: 10.1007/s10231-013-0324-z,  arXiv1206.0566.

[18]    E. Molnár - J. Szirmai – A. Vesnin, The optimal Packings by translation balls in SL(2,R),

Journal of Geometry, 105 (2), (2014), 287-306, DOI: 10.1007/s00022-013-0207-x.

[19]    G. Csima - J. Szirmai, Isoptic curves of conic sections in constant curvature geometries, 

Mathematical Communications, 19 (2014), 277-290 arXiv: 1301.6991.

[20]    E. Molnár - J. Szirmai: Volumes and geodesic ball packings to the regular prism tilings in SL(2,R) space

Publ. Math. Debrecen, 84/1-2 (2014), 189–203, DOI: 10.5486/PMD.2014.5832,  arXiv: 1304.0546.  

[21]    G. Csima - J. Szirmai, On the isoptic hypersurfaces in the n-dimensional Euclidean space,

KoG (Scientific and professional journal of Croatian Society for Geometry and Graphics), 17, (2013), 53-57.

[22]    J. Szirmai, On lattice coverings of the Nil space by congruent geodesic balls,

         Mediterranean Journal of Mathematics, Vol. 10. No. 2, (2013), 953-970, DOI: 10.1007/s00009-012-0211-7,  arXiv:1105.1986.

[23]     J. Szirmai, Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space,  

Aequationes mathematicae,  85 (2013), 471–482,  DOI: 10.1007/s00010-012-0158-6,  arXiv:1112.1969.

[24]    J. Szirmai, Geodesic ball packings in  space for generalized Coxeter space groups,   

Mathematical Communications, 17/1,  (2012), 151-170.

[25]    B. Odehnal - J. Szirmai, Packing Coxeter honeycombs with sequences of spheres

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 54/1  (2013), 441 452, DOI: 10.1007/s13366-012-0110-x.

[26]    J. Szirmai, Lattice-like translation ball packings in Nil space,

Publ. Math.Debrecen, 80/3-4, [2012], 427-440, DOI: 10.5486/PMD.2012.5117.

[27]    J. Szirmai, Horoball packings and their densities by generalized simplicial density function in the hyperbolic space,

Acta Mathematica Hungarica, 136/1-2, [2012], 39-55, DOI: 10.1007/s10474-012-0205-8, arXiv:1105.4315.

[28]    E. Molnár, J. Szirmai, Classification of Sol lattices,

Geometriae Dedicata,   161, (2012), 251-275, DOI: 10.1007/s10711-012-9705-5,   arXiv:1106.4646.

[29]     J. Pallagi - B. Schultz - J. Szirmai, On regular square prism tilings in SL(2,R) space,

         KoG (Scientific and professional journal of Croatian Society for Geometry and Graphics)  16,  [2012], 36-42.

[30]    R. T. Kozma – J. Szirmai, Optimally Dense Packings for Fully Asymptotic Coxeter Tilings by Horoballs of Different Types,

Monatshefte für Mathematik, 168, [2012],27-47 DOI: 10.1007/s00605-012-0393-x, arXiv:1007.0722.

[31]    J. Szirmai - J. Pallagi, Visualization of the Dirichlet-Voronoi cells in  space,

Pollack Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 95-104 DOI: 10.1556/Pollack.7.2012.S.9.

[32]    J. Szirmai - G. Csima, Isoptic curves to parabolas in the hyperbolic plane,

Pollack Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 55-64 DOI: 10.1556/Pollack.7.2012.S.5.

[33]    J. Szirmai - B. Schultz, On parallelohedra of Nil-space,

Pollack Periodica (International Journal for Engineering and Information Sciences), Vol. 7, (2012) Supp l. 129-136 DOI: 10.1556/Pollack.7.2012.S.12.

[34]    J. Pallagi - B. Schultz - J. Szirmai, Equidistant surfaces in Nil space,

         Studies of the University of Zilina, Mathematical Series, 25, [2011), 31-40.

[35]    J. Pallagi - B. Schultz - J. Szirmai, Equidistant surfaces in  space,

         KoG (Scientific and professional journal of Croatian Society for Geometry and Graphics) 15, [2011], 3-6.

 

[36]    E. Molnár- J. Szirmai - J. R. Weeks, 3-simplex tilings, splitting orbifolds and manifolds,  

Symmetry: Culture and Science, Vol. 22, Numbers 3-4, [2011], 435-459.

[37]    J. Katona - E. Molnár- I. Prok - J. Szirmai, Higher-dimensional central projection into 2-plane with visibility and applications, 

            Kragujevac Journal of Mathematics, Vol. 35, Number 2, [2011], 249-263.

[38]    J. Szirmai, Geodesic ball packings in  space for generalized Coxeter space groups,  

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 52/2 (2011), 413 430, DOI: 10.1007/s13366-011-0023-0

[39]    G. Csima - J. Szirmai, Isoptic curves in hyperbolic plane, 

Studies of the University of Zilina, Mathematical Series. Vol. 24 (2010), 15-22.

[40]   Szirmai, J. The densest translation ball packing by fundamental lattices in Sol space,

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 51 No. 2 (2010), 353 373.   

[41]    E. Molnár - I. Prok - J. Szirmai, Szimmetrikus kövezések végtelen sorozata a hiperbolikus térben,

         Matematikai Lapok 16, Numbers 2, [2010], 79-92.

[42]     J. Pallagi - B. Schultz - J. Szirmai, Visualization of geodesic curves, spheres and equidistant surfaces in  space,

         KoG (Scientific and professional journal of Croatian Society for Geometry and Graphics)  14,  [2010], 35-40.

[43]    E. Molnár- J. Szirmai, Symmetries in the 8 homogeneous 3-geometries.

         Symmetry: Culture and Science, Vol. 21, Numbers 1-3,  [2010], 87-117.

[44]    E. Molnár - J. Szirmai – A. Vesnin, Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links,

            Journal of Geometry,  95 (2009]91–133.

[45]    E. Molnár- J. Szirmai, Generalized polygonal Wankel engines, Periodica Polytechnika Ser.Transp. Eng. 37/1-2, [2009], 29-32.

[46]    J. Szirmai, Extremal ball and horoball packings to the regular tilings by infinitely centred cells in the hyperbolic d-space,

Studies of the University of Zilina, Mathematical Series. Vol. 22 (2008), 39-50.

[47]    E. Molnár - J. Szirmai, Minimally presented orientable splitting 3-manifold with one cusp,

Studies of the University of Zilina, Mathematical Series. Vol. 22 (2008), 19-30.

[48]    J. Szirmai, The optimal ball and horoball packings to the Coxeter honeycombs  in the hyperbolic d-space,

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry).

         48 No. 1 (2007), 35-47.

[49]    J. Szirmai, The densest geodesic ball packing by a type of Nil lattices,

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry).

48 No. 2 (2007), 383-397.

[50]    J. Szirmai, The regular p-gonal prism tilings and their optimal hyperball packings in the hyperbolic 3-space, 

Acta Mathematica Hungarica 111 (1-2) (2006), 65-76.

[51]    E. Molnár- J. Szirmai, On Nil crystallography, Symmetry: Culture and Science Volume 17, Numbers 1-2, pages 55-74 (2006).

[52]    J. Szirmai: The regular prism tilings and their optimal hyperball packings in the hyperbolic n-space,

Publ. Math. Debrecen, 69 (1-2) (2006), 195-207.

[53]    I. Prok - J. Szirmai, Optimal ball packings for crystallographic groups of cubic systems and their visualization by computer, 

Zeitschrift für Kristallographie, 221/1 (2006), 99-103.

[54]    E. Molnár - I. Prok - J. Szirmai, Classification of tile-transitive 3-simplex tilings and their realizations in homogeneous geometries,

Non-Euclidean Geometries, János Bolyai Memorial Volume, Editors: A. Prékopa and E. Molnár, Mathematics and Its Applications, Vol. 581, Springer (2006), pp. 321--363.

[55]    J. Szirmai: Horoball packings for the Lambert-cube tilings in the hyperbolic 3-space,

Beiträge zur Algebra und Geometrie (Contributions to Algebra und Geometry) 46 No. 1 (2005), 43-60.

[56]    J. Szirmai,  The optimal ball and horoball packings of the Coxeter tilings in the hyperbolic 3-space,

Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry)  46 No. 2  (2005), 545-558.

[57]    J. Szirmai: Derivation of a class of complete orthoschemes by Coxeter's method in the hyperbolic 4-space,

Studies of the University of Zilina, Mathematical Series. Vol. 18/1  (2004),  49-62.

[58]    J. Szirmai: Flächentransitiven Lambert Würfeltypen und ihre optimale Kugelpackungen ,

Acta Mathematica Hungarica, (2003),  100 (1-2),  101-116.

[59]    I. Prok - J. Szirmai, Simply transitive optimal ball packings for the orientable crystallographic groups of the cubic system,

Periodica Polytechnica Ser. Mech. Eng. (2003), 47/1  57-64.

[60]    J. Szirmai: Determining the optimal Horoball packings to some famous tilings in the hyperbolic 3-space,

Studies of the University of  Zilina, Mathematical Series. Vol. 16/1 (2003), 89-98.

[61]    E. Molnár - I. Prok - J. Szirmai, D-V cells and fundamental domains for crys-tallographic groups, algorithms and graphic realizations, Mathematical and Computer Modelling, (2003),  38,  929-943.

[62]    E. Molnár - I. Prok - J. Szirmai, Bestimmung der transitiven optimalen Kugelpackungen für die 29 Raumgruppen, die Coxetersche Spiegelungs-untergruppen enthalten,

Studia Sci. Math. Hungarica, (2002), 39  443--483.

[63]    E. Molnár - T. Schulz - J. Szirmai, Periodic and aperiodic figures on the plane by higher dimensions,

Journal for Geometry and Graphics (2001), Vol 5, No 2. 133-144.

[64]    Máté Cs. - Szirmai J., A kockarendszerhez tartozó tércsoportok egyszeresen tranzitív gömbkitöltéseinek meghatározása számítógéppel,

         Alkalmazott Matematikai Lapok , 19 (1999), 87-111.

[65]    E. Molnár - I. Prok - J. Szirmai, The Gieseking manifold and its surgery orbifolds,

         Novi Sad, Journal of Mathematics (1999), Vol 29, No. 3. 187-197.

[66]    E. Molnár - I. Prok - J. Szirmai, Classification of solid transitive simplex tilings in simply connected 3-spaces, Part II. Metric realizations of the maximal simplex tilings,

         Periodica Mathematica Hungarica. 35 (1-2) (1997), 47-94.

[67]    J. Szirmai, Über eine unendliche Serie der Polyederpflasterungen von flchentransitiven Bewegungsgruppen,

         Acta Mathematica Hungarica, 73 (3) (1996), 247-261.

[68]    J. Szirmai, Metrische Realisierungen von zwei Familien der dreidimension-alen körpertransitiven Symplexpflasterungen,

         Annales Univ. Sci. Budapest. Sect. Math. 39, (1996), 145-162.

[69]    E. Molnár - J. Szirmai, Einige Pflasterungen des hyperbolischen Raumes mittels flächentransitiver Bewegungsgruppen,

         Annales Univ. Sci. Budapest. Sect. Math. 38, (1995), 95-108.

[70]    J. Szirmai, Typen von flächentransitiven Würfelpflasterungen,

         Annales Univ. Sci. Budapest. Sect. Math. 37, (1994) 171-184.

[71]    Szirmai J., Néhány tércsoport optimális gömbkitöltése,

         Alkalmazott Matematikai Lapok 17 (1993), 87-99.

[72]    J. Szirmai, Optimale Kugelpackungen für die Raumgruppen F23, P432 und F432,

         Periodica Polytechnika Ser. Mech. Eng.  36, (1992), 317-331.

 

Tudományos publikációk konferencia kiadványban:

 

[73]    B. Schultz - J. Szirmai, Interesting surfaces in Nil space,

Proceedings of 8th International Conference on Applied Informatics,  

(ICAI) Eger, (2010) Hungary, Vol.1 185-192.

[74]    J. Szirmai, Visualization of the geodesic ball packings in the Nil geometry

Proceedings of 7th International Conference on Applied Informatics

(ICAI) Eger, (2007) Hungary, 163-174.

[75]    J. Szirmai: Iterationsserien der Dirichlet-Voronoi Zerlegungen,

Proceedings of „Dresden Symposium Geomety ”. (2003), 347-355.

[76]    E. Molnár - I. Prok - J. Szirmai, Classification of hyperbolic manifolds and related orbifolds with charts up to two ideal simplices, Proceedings of Internationale Tagung über Geometrie, Algebra und Analysis Balatonfüred, Hungary, (1999), 293-315.

[77]    E. Molnár - I. Prok - J. Szirmai, Two families of fundamental 3-simplex tilings and their realizations in various 3-spaces, Proceedings of International Scientific Conference of Mathematics, Zilina, Slovakia, (1998) Vol 2, 43-64.

[78]    J. Szirmai, Ein Computeralgorithmus für die Bestimmung der einfach transitiven optimalen Kugelpackungen unter zum Würfelsystem gehörigen Raumgruppen,

Proceedings of International Conference on Applied Informatics Eger-Noszvaj, Hungary, (1997) 285-301.

[79]    G. Csima - J. Szirmai, Isoptic curves of generlized conic sections in hyperbolic geometry, isoptics in Euclidean space,

Proceedings of the PhD Conference, Doctoral School of Mathematics an Computer Science,

Budapest University of Technology and Economics,  [2013] , 51-55, ISBN 978-963-313-085-8.

[80]    B. Schultz - J. Szirmai, Densest geodesic ball packings to  space groups generated by rotations,

Proceedings of the PhD Conference, Doctoral School of Mathematics an Computer Science,

Budapest University of Technology and Economics,  [2013] , 56-61, ISBN 978-963-313-085-8.

[81]    J. Katona - E. Molnár- I. Prok - J. Szirmai, Visualization with visibility of higher dimensional and non-Euclidean geometries,

Proceedings of the 16th International Conference on Geometry and Graphics, H. Schröcker, M. Husty (ed.); Innsbruck University Press, Innsbruck [2014], No. 60, 10 pages, ISBN: 978-3-902936-46-2.

[82]    E. Molnár- I. Prok - J. Szirmai, Visual mathematics and geometry, the "final" step:  projective geometry through linear algebra,

Proceedings of the 5th International  Scientific Colloquium  Mathematics and Children, (Teaching and Learning Mathematics) / Kolar-Begović, Z., Kolar-Šuper, R., Đurđević Babić, I. (ed.). - Osijek ) [2015], 239-249 , ISBN: 978-953-197-586-5.

[83]     E. Molnár – P. Pech - J. Szirmai, On visualization of homogeneous 3-geometries and their Simson-Wallace locus for simplices via exterior calculus,

Proceedings of the Czech-Slovak conference on Geometry and Graphics,

A. Kolcun, M. Lávicka, M. Zácek [ed]; Ostravská Univerzita (2016), 129-144, ISBN 978-80-7464-874-8 (online), ISBN 978-80-7464873-1 (CD).

[84]    E. Molnár- I. Prok - J. Szirmai, The football {5, 6, 6} and its geometries: from a sport tool to fullerens and further,

Proceedings of the 6th International  Scientific Colloquium  Mathematics and Children, (Mathematics Education as a Science and a Profession) / Kolar-Begović, Z., Kolar-Šuper, R., Jukić Matić, I. (ed.). – Zagreb-ELEMENT ) [2017], 66-87 , ISBN: 978-953-197-592-6, arXiv: 1703.02264.

 

Elfogadott munkák:

 

[85]     E. Molnár – P. Pech - J. Szirmai, Simson-Wallace locus in d-dimensional projective-metric space,

Journal of Geometry [2016], DOI: 10.1007/s00022-016-0346-y.

[86]     J. Szirmai, Packings with horo- and hyperballs generated by simple frustum orthoschemes,

Acta Mathematica Hungarica, [2017], DOI:10.1007/s10474-017-0728-0, arXiv: 1505.03338.

 

[87]    J. Szirmai, Horoball packings related to hyperbolic 24 cell,

Filomat [2017], arXiv: 1502.02107.

 

Benyújtott munkák:

[88]    J. Szirmai, Hyperball packings in hyperbolic 3-space,

Submitted Manuscript [2014] arXiv: 1405.0248.

[89]    G. Csima -- J. Szirmai, Isoptic curves of generalized conic sections in the hyperbolic plane,

            Submitted Manuscript [2015]  arXiv: 1504.06450.

[90]     J. Szirmai, Density upper bound of congruent and non-congruent hyperball packings generated by truncated regular simplex tilings,

Submitted Manuscript [2015] arXiv:1510.03208.

[91]     R. T. Kozma – J. Szirmai, The structure and visualization of optimal horoball packings in 3-dimensional hyperbolic space,

Submitted Manuscript [2016].  arXiv: 1601.03620, (Melléklet: http://homepages.math.uic.edu/~rkozma/SVOHP.html)

[92]     B. Schultz -- J. Szirmai, Geodesic ball packings generated by regular prism tilings in Nil geometry,

Submitted Manuscript [2016], arXiv: 1607.04401.

[93]    G. Csima -- J. Szirmai, The sum of the interior angles in geodesic and translation triangles of SL(2,R) geometry,

            Submitted Manuscript [2016], arXiv: 1610.01500.

[94]     J. Szirmai, Nil geodesic triangles and their interior angle sums,

Submitted Manuscript [2016] arXiv: 1611.05613.

[95]    E. Molnár - J. Szirmai, Top dense hyperbolic ball packings and coverings for complete Coxeter orthoscheme groups,

Submitted Manuscript [2016], arXiv: 1612.04541.

[96]     J. Szirmai, Triangle angle sums related to translation curves in Sol geometry,

Submitted Manuscript [2017],  arXiv: 1703.06646.

[97]     J. Szirmai, Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in Sol geometry,

Submitted Manuscript [2017],  arXiv: 1705.04207.

Egyéb:

[98]    Szirmai J., Ábrázoló geometria, (Munkafüzet középiskolák számára) 1992 Budapest

[99]    E. Molnár - I. Prok - J. Szirmai, Kristályok és periodikus kövezések,

         Erdélyi Matematikai Lapok (Brassó) (2005)  6,  1-15.